[f237c05] | 1 | .. _Writing_a_Plugin: |
---|
| 2 | |
---|
[7f23423] | 3 | Writing a Plugin Model |
---|
| 4 | ====================== |
---|
[f237c05] | 5 | |
---|
[b2a3814] | 6 | .. note:: If some code blocks are not readable, expand the documentation window |
---|
[f237c05] | 7 | |
---|
[7e6bdf9] | 8 | Introduction |
---|
| 9 | ^^^^^^^^^^^^ |
---|
[f237c05] | 10 | |
---|
[3e1c9e5] | 11 | There are essentially three ways to generate new fitting models for SasView: |
---|
[f237c05] | 12 | |
---|
[af6de50] | 13 | * Using the SasView :ref:`New_Plugin_Model` helper dialog (best for beginners |
---|
| 14 | and/or relatively simple models) |
---|
| 15 | * By copying/editing an existing model (this can include models generated by |
---|
| 16 | the *New Plugin Model* dialog) in the :ref:`Python_shell` or |
---|
| 17 | :ref:`Advanced_Plugin_Editor` as described below (suitable for all use cases) |
---|
| 18 | * By writing a model from scratch outside of SasView (only recommended for |
---|
| 19 | code monkeys!) |
---|
[f237c05] | 20 | |
---|
[7f23423] | 21 | Overview |
---|
| 22 | ^^^^^^^^ |
---|
[f237c05] | 23 | |
---|
[7e6bdf9] | 24 | If you write your own model and save it to the the SasView *plugin_models* folder |
---|
[05829fb] | 25 | |
---|
[3e1c9e5] | 26 | *C:\\Users\\{username}\\.sasview\\plugin_models* (on Windows) |
---|
[05829fb] | 27 | |
---|
[7e6bdf9] | 28 | the next time SasView is started it will compile the plugin and add |
---|
[9687d58] | 29 | it to the list of *Plugin Models* in a FitPage. |
---|
[05829fb] | 30 | |
---|
[3e1c9e5] | 31 | SasView models can be of three types: |
---|
[05829fb] | 32 | |
---|
[3e1c9e5] | 33 | - A pure python model : Example - |
---|
[f237c05] | 34 | `broadpeak.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/broad_peak.py>`_ |
---|
[3e1c9e5] | 35 | - A python model with embedded C : Example - |
---|
[f237c05] | 36 | `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_ |
---|
[3e1c9e5] | 37 | - A python wrapper with separate C code : Example - |
---|
[f237c05] | 38 | `cylinder.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.py>`_, |
---|
| 39 | `cylinder.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/cylinder.c>`_ |
---|
| 40 | |
---|
[3d164b9] | 41 | The built-in modules are available in the *sasmodels-data\\models* subdirectory |
---|
[7f23423] | 42 | of your SasView installation folder. On Windows, this will be something like |
---|
| 43 | *C:\\Program Files (x86)\\SasView\\sasmodels-data\\models*. On Mac OSX, these will be within |
---|
[f237c05] | 44 | the application bundle as |
---|
| 45 | */Applications/SasView 4.0.app/Contents/Resources/sasmodels-data/models*. |
---|
| 46 | |
---|
[7f23423] | 47 | Other models are available for download from our |
---|
| 48 | `Model Marketplace <http://marketplace.sasview.org/>`_. You can contribute your own models to the |
---|
| 49 | Marketplace aswell. |
---|
| 50 | |
---|
[f237c05] | 51 | Create New Model Files |
---|
| 52 | ^^^^^^^^^^^^^^^^^^^^^^ |
---|
| 53 | |
---|
[3d164b9] | 54 | In the *~\\.sasview\\plugin_models* directory, copy the appropriate files |
---|
[7e6bdf9] | 55 | (we recommend using the examples above as templates) to mymodel.py (and mymodel.c, etc) |
---|
[f237c05] | 56 | as required, where "mymodel" is the name for the model you are creating. |
---|
| 57 | |
---|
| 58 | *Please follow these naming rules:* |
---|
| 59 | |
---|
[7f23423] | 60 | - No capitalization and thus no CamelCase |
---|
[3d164b9] | 61 | - If necessary use underscore to separate words (i.e. barbell not BarBell or |
---|
[f237c05] | 62 | broad_peak not BroadPeak) |
---|
[907186d] | 63 | - Do not include "model" in the name (i.e. barbell not BarBellModel) |
---|
[f237c05] | 64 | |
---|
| 65 | |
---|
| 66 | Edit New Model Files |
---|
| 67 | ^^^^^^^^^^^^^^^^^^^^ |
---|
| 68 | |
---|
[7f23423] | 69 | Model Contents |
---|
| 70 | .............. |
---|
| 71 | |
---|
[f237c05] | 72 | The model interface definition is in the .py file. This file contains: |
---|
| 73 | |
---|
| 74 | - a **model name**: |
---|
| 75 | - this is the **name** string in the *.py* file |
---|
| 76 | - titles should be: |
---|
| 77 | |
---|
| 78 | - all in *lower* case |
---|
| 79 | - without spaces (use underscores to separate words instead) |
---|
| 80 | - without any capitalization or CamelCase |
---|
[7f23423] | 81 | - without incorporating the word "model" |
---|
[f237c05] | 82 | - examples: *barbell* **not** *BarBell*; *broad_peak* **not** *BroadPeak*; |
---|
| 83 | *barbell* **not** *BarBellModel* |
---|
| 84 | |
---|
| 85 | - a **model title**: |
---|
| 86 | - this is the **title** string in the *.py* file |
---|
| 87 | - this is a one or two line description of the model, which will appear |
---|
[7f23423] | 88 | at the start of the model documentation and as a tooltip in the SasView GUI |
---|
[f237c05] | 89 | |
---|
| 90 | - a **short discription**: |
---|
| 91 | - this is the **description** string in the *.py* file |
---|
| 92 | - this is a medium length description which appears when you click |
---|
[7f23423] | 93 | *Description* on the model FitPage |
---|
[f237c05] | 94 | |
---|
| 95 | - a **parameter table**: |
---|
| 96 | - this will be auto-generated from the *parameters* in the *.py* file |
---|
| 97 | |
---|
| 98 | - a **long description**: |
---|
| 99 | - this is ReStructuredText enclosed between the r""" and """ delimiters |
---|
| 100 | at the top of the *.py* file |
---|
[7f23423] | 101 | - what you write here is abstracted into the SasView help documentation |
---|
| 102 | - this is what other users will refer to when they want to know what your model does; |
---|
| 103 | so please be helpful! |
---|
[f237c05] | 104 | |
---|
| 105 | - a **definition** of the model: |
---|
| 106 | - as part of the **long description** |
---|
| 107 | |
---|
| 108 | - a **formula** defining the function the model calculates: |
---|
| 109 | - as part of the **long description** |
---|
| 110 | |
---|
| 111 | - an **explanation of the parameters**: |
---|
| 112 | - as part of the **long description** |
---|
| 113 | - explaining how the symbols in the formula map to the model parameters |
---|
| 114 | |
---|
| 115 | - a **plot** of the function, with a **figure caption**: |
---|
[7f23423] | 116 | - this is automatically generated from your default parameters |
---|
[f237c05] | 117 | |
---|
| 118 | - at least one **reference**: |
---|
| 119 | - as part of the **long description** |
---|
| 120 | - specifying where the reader can obtain more information about the model |
---|
| 121 | |
---|
| 122 | - the **name of the author** |
---|
| 123 | - as part of the **long description** |
---|
| 124 | - the *.py* file should also contain a comment identifying *who* |
---|
| 125 | converted/created the model file |
---|
| 126 | |
---|
[3d164b9] | 127 | Models that do not conform to these requirements will *never* be incorporated |
---|
| 128 | into the built-in library. |
---|
| 129 | |
---|
[f237c05] | 130 | More complete documentation for the sasmodels package can be found at |
---|
| 131 | `<http://www.sasview.org/sasmodels>`_. In particular, |
---|
| 132 | `<http://www.sasview.org/sasmodels/api/generate.html#module-sasmodels.generate>`_ |
---|
| 133 | describes the structure of a model. |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | Model Documentation |
---|
| 137 | ................... |
---|
| 138 | |
---|
| 139 | The *.py* file starts with an r (for raw) and three sets of quotes |
---|
| 140 | to start the doc string and ends with a second set of three quotes. |
---|
| 141 | For example:: |
---|
| 142 | |
---|
| 143 | r""" |
---|
| 144 | Definition |
---|
| 145 | ---------- |
---|
| 146 | |
---|
| 147 | The 1D scattering intensity of the sphere is calculated in the following |
---|
| 148 | way (Guinier, 1955) |
---|
| 149 | |
---|
| 150 | .. math:: |
---|
| 151 | |
---|
| 152 | I(q) = \frac{\text{scale}}{V} \cdot \left[ |
---|
| 153 | 3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3} |
---|
| 154 | \right]^2 + \text{background} |
---|
| 155 | |
---|
| 156 | where *scale* is a volume fraction, $V$ is the volume of the scatterer, |
---|
| 157 | $r$ is the radius of the sphere and *background* is the background level. |
---|
| 158 | *sld* and *sld_solvent* are the scattering length densities (SLDs) of the |
---|
| 159 | scatterer and the solvent respectively, whose difference is $\Delta\rho$. |
---|
| 160 | |
---|
| 161 | You can included figures in your documentation, as in the following |
---|
| 162 | figure for the cylinder model. |
---|
| 163 | |
---|
| 164 | .. figure:: img/cylinder_angle_definition.jpg |
---|
| 165 | |
---|
| 166 | Definition of the angles for oriented cylinders. |
---|
| 167 | |
---|
| 168 | References |
---|
| 169 | ---------- |
---|
| 170 | |
---|
| 171 | A Guinier, G Fournet, *Small-Angle Scattering of X-Rays*, |
---|
| 172 | John Wiley and Sons, New York, (1955) |
---|
| 173 | """ |
---|
| 174 | |
---|
| 175 | This is where the FULL documentation for the model goes (to be picked up by |
---|
| 176 | the automatic documentation system). Although it feels odd, you |
---|
| 177 | should start the documentation immediately with the **definition**---the model |
---|
| 178 | name, a brief description and the parameter table are automatically inserted |
---|
| 179 | above the definition, and the a plot of the model is automatically inserted |
---|
| 180 | before the **reference**. |
---|
| 181 | |
---|
| 182 | Figures can be included using the *figure* command, with the name |
---|
| 183 | of the *.png* file containing the figure and a caption to appear below the |
---|
| 184 | figure. Figure numbers will be added automatically. |
---|
| 185 | |
---|
| 186 | See this `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 187 | for a quick guide to the documentation layout commands, or the |
---|
| 188 | `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ for |
---|
| 189 | complete details. |
---|
| 190 | |
---|
| 191 | The model should include a **formula** written using LaTeX markup. |
---|
[7f23423] | 192 | The example above uses the *math* command to make a displayed equation. You |
---|
[f237c05] | 193 | can also use *\$formula\$* for an inline formula. This is handy for defining |
---|
| 194 | the relationship between the model parameters and formula variables, such |
---|
| 195 | as the phrase "\$r\$ is the radius" used above. The live demo MathJax |
---|
| 196 | page `<http://www.mathjax.org/>`_ is handy for checking that the equations |
---|
[7f23423] | 197 | will look like you intend. |
---|
[f237c05] | 198 | |
---|
| 199 | Math layout uses the `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 200 | package for aligning equations (see amsldoc.pdf on that page for complete documentation). |
---|
| 201 | You will automatically be in an aligned environment, with blank lines separating |
---|
| 202 | the lines of the equation. Place an ampersand before the operator on which to |
---|
| 203 | align. For example:: |
---|
| 204 | |
---|
| 205 | .. math:: |
---|
| 206 | |
---|
| 207 | x + y &= 1 \\ |
---|
| 208 | y &= x - 1 |
---|
| 209 | |
---|
| 210 | produces |
---|
| 211 | |
---|
| 212 | .. math:: |
---|
| 213 | |
---|
| 214 | x + y &= 1 \\ |
---|
| 215 | y &= x - 1 |
---|
| 216 | |
---|
| 217 | If you need more control, use:: |
---|
| 218 | |
---|
| 219 | .. math:: |
---|
| 220 | :nowrap: |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | Model Definition |
---|
| 224 | ................ |
---|
| 225 | |
---|
| 226 | Following the documentation string, there are a series of definitions:: |
---|
| 227 | |
---|
| 228 | name = "sphere" # optional: defaults to the filename without .py |
---|
[7f23423] | 229 | |
---|
[f237c05] | 230 | title = "Spheres with uniform scattering length density" |
---|
[7f23423] | 231 | |
---|
[f237c05] | 232 | description = """\ |
---|
| 233 | P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr)) |
---|
| 234 | /(qr)^3]^2 + background |
---|
| 235 | r: radius of sphere |
---|
| 236 | V: The volume of the scatter |
---|
| 237 | sld: the SLD of the sphere |
---|
| 238 | sld_solvent: the SLD of the solvent |
---|
| 239 | """ |
---|
[7f23423] | 240 | |
---|
[f237c05] | 241 | category = "shape:sphere" |
---|
[7f23423] | 242 | |
---|
[f237c05] | 243 | single = True # optional: defaults to True |
---|
[7f23423] | 244 | |
---|
[f237c05] | 245 | opencl = False # optional: defaults to False |
---|
[7f23423] | 246 | |
---|
[f237c05] | 247 | structure_factor = False # optional: defaults to False |
---|
| 248 | |
---|
| 249 | **name = "mymodel"** defines the name of the model that is shown to the user. |
---|
| 250 | If it is not provided, it will use the name of the model file, with '_' |
---|
| 251 | replaced by spaces and the parts capitalized. So *adsorbed_layer.py* will |
---|
| 252 | become *Adsorbed Layer*. The predefined models all use the name of the |
---|
| 253 | model file as the name of the model, so the default may be changed. |
---|
| 254 | |
---|
| 255 | **title = "short description"** is short description of the model which |
---|
| 256 | is included after the model name in the automatically generated documentation. |
---|
[7f23423] | 257 | The title can also be used for a tooltip. |
---|
[f237c05] | 258 | |
---|
| 259 | **description = """doc string"""** is a longer description of the model. It |
---|
[7f23423] | 260 | shows up when you press the "Description" button of the SasView FitPage. |
---|
[f237c05] | 261 | It should give a brief description of the equation and the parameters |
---|
| 262 | without the need to read the entire model documentation. The triple quotes |
---|
| 263 | allow you to write the description over multiple lines. Keep the lines |
---|
| 264 | short since the GUI will wrap each one separately if they are too long. |
---|
[7f23423] | 265 | **Make sure the parameter names in the description match the model definition!** |
---|
[f237c05] | 266 | |
---|
| 267 | **category = "shape:sphere"** defines where the model will appear in the |
---|
| 268 | model documentation. In this example, the model will appear alphabetically |
---|
[7f23423] | 269 | in the list of spheroid models in the *Shape* category. |
---|
[f237c05] | 270 | |
---|
| 271 | **single = True** indicates that the model can be run using single |
---|
| 272 | precision floating point values. Set it to False if the numerical |
---|
| 273 | calculation for the model is unstable, which is the case for about 20 of |
---|
| 274 | the built in models. It is worthwhile modifying the calculation to support |
---|
| 275 | single precision, allowing models to run up to 10 times faster. The |
---|
| 276 | section `Test_Your_New_Model`_ describes how to compare model values for |
---|
| 277 | single vs. double precision so you can decide if you need to set |
---|
| 278 | single to False. |
---|
| 279 | |
---|
| 280 | **opencl = False** indicates that the model should not be run using OpenCL. |
---|
| 281 | This may be because the model definition includes code that cannot be |
---|
| 282 | compiled for the GPU (for example, goto statements). It can also be used |
---|
| 283 | for large models which can't run on most GPUs. This flag has not been |
---|
| 284 | used on any of the built in models; models which were failing were |
---|
| 285 | streamlined so this flag was not necessary. |
---|
| 286 | |
---|
| 287 | **structure_factor = True** indicates that the model can be used as a |
---|
| 288 | structure factor to account for interactions between particles. See |
---|
| 289 | `Form_Factors`_ for more details. |
---|
| 290 | |
---|
| 291 | Model Parameters |
---|
| 292 | ................ |
---|
| 293 | |
---|
| 294 | Next comes the parameter table. For example:: |
---|
| 295 | |
---|
| 296 | # pylint: disable=bad-whitespace, line-too-long |
---|
| 297 | # ["name", "units", default, [min, max], "type", "description"], |
---|
| 298 | parameters = [ |
---|
| 299 | ["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Layer scattering length density"], |
---|
| 300 | ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", "Solvent scattering length density"], |
---|
| 301 | ["radius", "Ang", 50, [0, inf], "volume", "Sphere radius"], |
---|
| 302 | ] |
---|
[31d7803] | 303 | # pylint: enable=bad-whitespace, line-too-long |
---|
[f237c05] | 304 | |
---|
| 305 | **parameters = [["name", "units", default, [min,max], "type", "tooltip"],...]** |
---|
[7f23423] | 306 | defines the parameters that form the model. |
---|
[f237c05] | 307 | |
---|
[7f23423] | 308 | **Note: The order of the parameters in the definition will be the order of the |
---|
| 309 | parameters in the user interface and the order of the parameters in Iq(), |
---|
| 310 | Iqxy() and form_volume(). And** *scale* **and** *background* **parameters are |
---|
| 311 | implicit to all models, so they do not need to be included in the parameter table.** |
---|
[f237c05] | 312 | |
---|
[7f23423] | 313 | - **"name"** is the name of the parameter shown on the FitPage. |
---|
[f237c05] | 314 | |
---|
| 315 | - parameter names should follow the mathematical convention; e.g., |
---|
[7f23423] | 316 | *radius_core* not *core_radius*, or *sld_solvent* not *solvent_sld*. |
---|
| 317 | |
---|
[f237c05] | 318 | - model parameter names should be consistent between different models, |
---|
| 319 | so *sld_solvent*, for example, should have exactly the same name |
---|
[7f23423] | 320 | in every model. |
---|
| 321 | |
---|
[f237c05] | 322 | - to see all the parameter names currently in use, type the following in the |
---|
| 323 | python shell/editor under the Tools menu:: |
---|
| 324 | |
---|
| 325 | import sasmodels.list_pars |
---|
| 326 | sasmodels.list_pars.list_pars() |
---|
| 327 | |
---|
| 328 | *re-use* as many as possible!!! |
---|
[7f23423] | 329 | |
---|
[f237c05] | 330 | - use "name[n]" for multiplicity parameters, where *n* is the name of |
---|
| 331 | the parameter defining the number of shells/layers/segments, etc. |
---|
| 332 | |
---|
| 333 | - **"units"** are displayed along with the parameter name |
---|
| 334 | |
---|
[7f23423] | 335 | - every parameter should have units; use "None" if there are no units. |
---|
| 336 | |
---|
[f237c05] | 337 | - **sld's should be given in units of 1e-6/Ang^2, and not simply |
---|
| 338 | 1/Ang^2 to be consistent with the builtin models. Adjust your formulas |
---|
| 339 | appropriately.** |
---|
[7f23423] | 340 | |
---|
[f237c05] | 341 | - fancy units markup is available for some units, including:: |
---|
| 342 | |
---|
| 343 | Ang, 1/Ang, 1/Ang^2, 1e-6/Ang^2, degrees, 1/cm, Ang/cm, g/cm^3, mg/m^2 |
---|
| 344 | |
---|
| 345 | - the list of units is defined in the variable *RST_UNITS* within |
---|
| 346 | `sasmodels/generate.py <https://github.com/SasView/sasmodels/tree/master/sasmodels/generate.py>`_ |
---|
| 347 | |
---|
| 348 | - new units can be added using the macros defined in *doc/rst_prolog* |
---|
| 349 | in the sasmodels source. |
---|
| 350 | - units should be properly formatted using sub-/super-scripts |
---|
| 351 | and using negative exponents instead of the / operator, though |
---|
| 352 | the unit name should use the / operator for consistency. |
---|
[7f23423] | 353 | - please post a message to the SasView developers mailing list with your changes. |
---|
[f237c05] | 354 | |
---|
[7f23423] | 355 | - **default** is the initial value for the parameter. |
---|
[f237c05] | 356 | |
---|
| 357 | - **the parameter default values are used to auto-generate a plot of |
---|
| 358 | the model function in the documentation.** |
---|
| 359 | |
---|
[7f23423] | 360 | - **[min, max]** are the lower and upper limits on the parameter. |
---|
| 361 | |
---|
| 362 | - lower and upper limits can be any number, or *-inf* or *inf*. |
---|
[f237c05] | 363 | |
---|
| 364 | - the limits will show up as the default limits for the fit making it easy, |
---|
| 365 | for example, to force the radius to always be greater than zero. |
---|
| 366 | |
---|
[9687d58] | 367 | - these are hard limits defining the valid range of parameter values; |
---|
| 368 | polydisperity distributions will be truncated at the limits. |
---|
| 369 | |
---|
[7f23423] | 370 | - **"type"** can be one of: "", "sld", "volume", or "orientation". |
---|
[f237c05] | 371 | |
---|
| 372 | - "sld" parameters can have magnetic moments when fitting magnetic models; |
---|
| 373 | depending on the spin polarization of the beam and the $q$ value being |
---|
| 374 | examined, the effective sld for that material will be used to compute the |
---|
[7f23423] | 375 | scattered intensity. |
---|
| 376 | |
---|
[f237c05] | 377 | - "volume" parameters are passed to Iq(), Iqxy(), and form_volume(), and |
---|
| 378 | have polydispersity loops generated automatically. |
---|
[7f23423] | 379 | |
---|
[f237c05] | 380 | - "orientation" parameters are only passed to Iqxy(), and have angular |
---|
| 381 | dispersion. |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | Model Computation |
---|
| 385 | ................. |
---|
| 386 | |
---|
| 387 | Models can be defined as pure python models, or they can be a mixture of |
---|
| 388 | python and C models. C models are run on the GPU if it is available, |
---|
| 389 | otherwise they are compiled and run on the CPU. |
---|
| 390 | |
---|
| 391 | Models are defined by the scattering kernel, which takes a set of parameter |
---|
| 392 | values defining the shape, orientation and material, and returns the |
---|
| 393 | expected scattering. Polydispersity and angular dispersion are defined |
---|
| 394 | by the computational infrastructure. Any parameters defined as "volume" |
---|
| 395 | parameters are polydisperse, with polydispersity defined in proportion |
---|
| 396 | to their value. "orientation" parameters use angular dispersion defined |
---|
| 397 | in degrees, and are not relative to the current angle. |
---|
| 398 | |
---|
| 399 | Based on a weighting function $G(x)$ and a number of points $n$, the |
---|
| 400 | computed value is |
---|
| 401 | |
---|
| 402 | .. math:: |
---|
| 403 | |
---|
| 404 | \hat I(q) |
---|
| 405 | = \frac{\int G(x) I(q, x)\,dx}{\int G(x) V(x)\,dx} |
---|
| 406 | \approx \frac{\sum_{i=1}^n G(x_i) I(q,x_i)}{\sum_{i=1}^n G(x_i) V(x_i)} |
---|
| 407 | |
---|
| 408 | That is, the indivdual models do not need to include polydispersity |
---|
| 409 | calculations, but instead rely on numerical integration to compute the |
---|
| 410 | appropriately smeared pattern. Angular dispersion values over polar angle |
---|
| 411 | $\theta$ requires an additional $\cos \theta$ weighting due to decreased |
---|
| 412 | arc length for the equatorial angle $\phi$ with increasing latitude. |
---|
| 413 | |
---|
| 414 | Python Models |
---|
| 415 | ............. |
---|
| 416 | |
---|
[7f23423] | 417 | For pure python models, define the *Iq* function:: |
---|
[f237c05] | 418 | |
---|
| 419 | import numpy as np |
---|
| 420 | from numpy import cos, sin, ... |
---|
| 421 | |
---|
| 422 | def Iq(q, par1, par2, ...): |
---|
| 423 | return I(q, par1, par2, ...) |
---|
| 424 | Iq.vectorized = True |
---|
| 425 | |
---|
| 426 | The parameters *par1, par2, ...* are the list of non-orientation parameters |
---|
| 427 | to the model in the order that they appear in the parameter table. |
---|
[7f23423] | 428 | **Note that the autogenerated model file uses** *x* **rather than** *q*. |
---|
[f237c05] | 429 | |
---|
| 430 | The *.py* file should import trigonometric and exponential functions from |
---|
[7f23423] | 431 | numpy rather than from math. This lets us evaluate the model for the whole |
---|
[f237c05] | 432 | range of $q$ values at once rather than looping over each $q$ separately in |
---|
| 433 | python. With $q$ as a vector, you cannot use if statements, but must instead |
---|
| 434 | do tricks like |
---|
| 435 | |
---|
| 436 | :: |
---|
| 437 | |
---|
| 438 | a = x*q*(q>0) + y*q*(q<=0) |
---|
| 439 | |
---|
| 440 | or |
---|
| 441 | |
---|
| 442 | :: |
---|
| 443 | |
---|
| 444 | a = np.empty_like(q) |
---|
| 445 | index = q>0 |
---|
| 446 | a[index] = x*q[index] |
---|
| 447 | a[~index] = y*q[~index] |
---|
| 448 | |
---|
| 449 | which sets $a$ to $q \cdot x$ if $q$ is positive or $q \cdot y$ if $q$ |
---|
| 450 | is zero or negative. If you have not converted your function to use $q$ |
---|
| 451 | vectors, you can set the following and it will only receive one $q$ |
---|
| 452 | value at a time:: |
---|
| 453 | |
---|
| 454 | Iq.vectorized = False |
---|
| 455 | |
---|
| 456 | Return np.NaN if the parameters are not valid (e.g., cap_radius < radius in |
---|
| 457 | barbell). If I(q; pars) is NaN for any $q$, then those parameters will be |
---|
| 458 | ignored, and not included in the calculation of the weighted polydispersity. |
---|
| 459 | |
---|
| 460 | Similar to *Iq*, you can define *Iqxy(qx, qy, par1, par2, ...)* where the |
---|
| 461 | parameter list includes any orientation parameters. If *Iqxy* is not defined, |
---|
| 462 | then it will default to *Iqxy = Iq(sqrt(qx**2+qy**2), par1, par2, ...)*. |
---|
| 463 | |
---|
| 464 | Models should define *form_volume(par1, par2, ...)* where the parameter |
---|
| 465 | list includes the *volume* parameters in order. This is used for a weighted |
---|
| 466 | volume normalization so that scattering is on an absolute scale. If |
---|
[7f23423] | 467 | *form_volume* is not defined, then the default *form_volume = 1.0* will be |
---|
[f237c05] | 468 | used. |
---|
| 469 | |
---|
| 470 | Embedded C Models |
---|
| 471 | ................. |
---|
| 472 | |
---|
[7f23423] | 473 | Like pure python models, inline C models need to define an *Iq* function:: |
---|
[f237c05] | 474 | |
---|
| 475 | Iq = """ |
---|
| 476 | return I(q, par1, par2, ...); |
---|
| 477 | """ |
---|
| 478 | |
---|
| 479 | This expands into the equivalent C code:: |
---|
| 480 | |
---|
| 481 | #include <math.h> |
---|
| 482 | double Iq(double q, double par1, double par2, ...); |
---|
| 483 | double Iq(double q, double par1, double par2, ...) |
---|
| 484 | { |
---|
| 485 | return I(q, par1, par2, ...); |
---|
| 486 | } |
---|
| 487 | |
---|
[af6de50] | 488 | *Iqxy* is similar to *Iq*, except it uses parameters *qx, qy* instead of *q*, |
---|
| 489 | and it includes orientation parameters. |
---|
| 490 | |
---|
[907186d] | 491 | *form_volume* defines the volume of the shape. As in python models, it |
---|
[af6de50] | 492 | includes only the volume parameters. |
---|
| 493 | |
---|
| 494 | *Iqxy* will default to *Iq(sqrt(qx**2 + qy**2), par1, ...)* and |
---|
| 495 | *form_volume* will default to 1.0. |
---|
| 496 | |
---|
| 497 | **source=['fn.c', ...]** includes the listed C source files in the |
---|
| 498 | program before *Iq* and *Iqxy* are defined. This allows you to extend the |
---|
| 499 | library of C functions available to your model. |
---|
| 500 | |
---|
| 501 | Models are defined using double precision declarations for the |
---|
| 502 | parameters and return values. When a model is run using single |
---|
| 503 | precision or long double precision, each variable is converted |
---|
| 504 | to the target type, depending on the precision requested. |
---|
| 505 | |
---|
| 506 | **Floating point constants must include the decimal point.** This allows us |
---|
| 507 | to convert values such as 1.0 (double precision) to 1.0f (single precision) |
---|
| 508 | so that expressions that use these values are not promoted to double precision |
---|
| 509 | expressions. Some graphics card drivers are confused when functions |
---|
| 510 | that expect floating point values are passed integers, such as 4*atan(1); it |
---|
| 511 | is safest to not use integers in floating point expressions. Even better, |
---|
| 512 | use the builtin constant M_PI rather than 4*atan(1); it is faster and smaller! |
---|
| 513 | |
---|
[f237c05] | 514 | The C model operates on a single $q$ value at a time. The code will be |
---|
| 515 | run in parallel across different $q$ values, either on the graphics card |
---|
| 516 | or the processor. |
---|
| 517 | |
---|
| 518 | Rather than returning NAN from Iq, you must define the *INVALID(v)*. The |
---|
| 519 | *v* parameter lets you access all the parameters in the model using |
---|
| 520 | *v.par1*, *v.par2*, etc. For example:: |
---|
| 521 | |
---|
| 522 | #define INVALID(v) (v.bell_radius < v.radius) |
---|
| 523 | |
---|
[af6de50] | 524 | Special Functions |
---|
| 525 | ................. |
---|
[f237c05] | 526 | |
---|
[af6de50] | 527 | The C code follows the C99 standard, with the usual math functions, |
---|
[f237c05] | 528 | as defined in |
---|
| 529 | `OpenCL <https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/mathFunctions.html>`_. |
---|
[af6de50] | 530 | This includes the following: |
---|
| 531 | |
---|
| 532 | M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: |
---|
| 533 | $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ |
---|
| 534 | exp, log, pow(x,y), expm1, sqrt: |
---|
| 535 | Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\sqrt{x}$. |
---|
| 536 | The function expm1(x) is accurate across all $x$, including $x$ |
---|
| 537 | very close to zero. |
---|
| 538 | sin, cos, tan, asin, acos, atan: |
---|
| 539 | Trigonometry functions and inverses, operating on radians. |
---|
| 540 | sinh, cos, tanh, asinh, acosh, atanh: |
---|
| 541 | Hyperbolic trigonometry functions. |
---|
| 542 | atan2(y,x): |
---|
| 543 | Angle from the $x$\ -axis to the point $(x,y)$, which is equal to |
---|
| 544 | $\tan^{-1}(y/x)$ corrected for quadrant. That is, if $x$ and $y$ are |
---|
| 545 | both negative, then atan2(y,x) returns a value in quadrant III where |
---|
| 546 | atan(y/x) would return a value in quadrant I. Similarly for |
---|
| 547 | quadrants II and IV when $x$ and $y$ have opposite sign. |
---|
| 548 | fmin(x,y), fmax(x,y), trunc, rint: |
---|
| 549 | Floating point functions. rint(x) returns the nearest integer. |
---|
| 550 | NAN: |
---|
| 551 | NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that |
---|
| 552 | you cannot use :code:`x == NAN` to test for NaN values since that |
---|
| 553 | will always return false. NAN does not equal NAN! |
---|
| 554 | INFINITY: |
---|
| 555 | $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) |
---|
| 556 | to test for finite and not NaN. |
---|
| 557 | erf, erfc, tgamma, lgamma: **do not use** |
---|
| 558 | Special functions that should be part of the standard, but are missing |
---|
| 559 | or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma |
---|
| 560 | instead (see below). Note: lgamma(x) has not yet been tested. |
---|
| 561 | |
---|
| 562 | Some non-standard constants and functions are also provided: |
---|
| 563 | |
---|
| 564 | M_PI_180, M_4PI_3: |
---|
[ca1eaeb] | 565 | $\frac{\pi}{180}$, $\frac{4\pi}{3}$ |
---|
[af6de50] | 566 | SINCOS(x, s, c): |
---|
| 567 | Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s* |
---|
| 568 | must be declared first. |
---|
| 569 | square(x): |
---|
| 570 | $x^2$ |
---|
| 571 | cube(x): |
---|
| 572 | $x^3$ |
---|
[ca6cbc1c] | 573 | sas_sinx_x(x): |
---|
[af6de50] | 574 | $\sin(x)/x$, with limit $\sin(0)/0 = 1$. |
---|
| 575 | powr(x, y): |
---|
| 576 | $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs. |
---|
| 577 | pown(x, n): |
---|
| 578 | $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs. |
---|
| 579 | FLOAT_SIZE: |
---|
| 580 | The number of bytes in a floating point value. Even though all |
---|
| 581 | variables are declared double, they may be converted to single |
---|
| 582 | precision float before running. If your algorithm depends on |
---|
| 583 | precision (which is not uncommon for numerical algorithms), use |
---|
| 584 | the following:: |
---|
| 585 | |
---|
| 586 | #if FLOAT_SIZE>4 |
---|
| 587 | ... code for double precision ... |
---|
| 588 | #else |
---|
| 589 | ... code for single precision ... |
---|
| 590 | #endif |
---|
| 591 | SAS_DOUBLE: |
---|
| 592 | A replacement for :code:`double` so that the declared variable will |
---|
| 593 | stay double precision; this should generally not be used since some |
---|
| 594 | graphics cards do not support double precision. There is no provision |
---|
| 595 | for forcing a constant to stay double precision. |
---|
| 596 | |
---|
| 597 | The following special functions and scattering calculations are defined in |
---|
| 598 | `sasmodels/models/lib <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib>`_. |
---|
[f237c05] | 599 | These functions have been tuned to be fast and numerically stable down |
---|
| 600 | to $q=0$ even in single precision. In some cases they work around bugs |
---|
[ca1eaeb] | 601 | which appear on some platforms but not others, so use them where needed. |
---|
| 602 | Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py* |
---|
| 603 | file in the order given, otherwise these functions will not be available. |
---|
[f237c05] | 604 | |
---|
[af6de50] | 605 | polevl(x, c, n): |
---|
[ca1eaeb] | 606 | Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's |
---|
[af6de50] | 607 | method so it is faster and more accurate. |
---|
[7f23423] | 608 | |
---|
[ca1eaeb] | 609 | $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients, |
---|
| 610 | sorted from highest to lowest. |
---|
[48cd5b3] | 611 | |
---|
[ca1eaeb] | 612 | :code:`source = ["lib/polevl.c", ...]` (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_) |
---|
[48cd5b3] | 613 | |
---|
| 614 | p1evl(x, c, n): |
---|
[ca1eaeb] | 615 | Evaluation of normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ |
---|
| 616 | using Horner's method so it is faster and more accurate. |
---|
[48cd5b3] | 617 | |
---|
[ca1eaeb] | 618 | $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients, |
---|
| 619 | sorted from highest to lowest. |
---|
[48cd5b3] | 620 | |
---|
[af6de50] | 621 | :code:`source = ["lib/polevl.c", ...]` |
---|
[48cd5b3] | 622 | (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/polevl.c>`_) |
---|
[f237c05] | 623 | |
---|
[48cd5b3] | 624 | sas_gamma(x): |
---|
| 625 | Gamma function $\text{sas_gamma}(x) = \Gamma(x)$. |
---|
[f237c05] | 626 | |
---|
[ca1eaeb] | 627 | The standard math function, tgamma(x) is unstable for $x < 1$ |
---|
| 628 | on some platforms. |
---|
[f237c05] | 629 | |
---|
[af6de50] | 630 | :code:`source = ["lib/sasgamma.c", ...]` |
---|
[48cd5b3] | 631 | (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_gamma.c>`_) |
---|
[f237c05] | 632 | |
---|
[48cd5b3] | 633 | sas_erf(x), sas_erfc(x): |
---|
[af6de50] | 634 | Error function |
---|
[ca1eaeb] | 635 | $\text{sas_erf}(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ |
---|
[af6de50] | 636 | and complementary error function |
---|
[ca1eaeb] | 637 | $\text{sas_erfc}(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. |
---|
[48cd5b3] | 638 | |
---|
[ca1eaeb] | 639 | The standard math functions erf(x) and erfc(x) are slower and broken |
---|
[af6de50] | 640 | on some platforms. |
---|
| 641 | |
---|
| 642 | :code:`source = ["lib/polevl.c", "lib/sas_erf.c", ...]` |
---|
[48cd5b3] | 643 | (`link to error functions' code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_erf.c>`_) |
---|
[af6de50] | 644 | |
---|
[48cd5b3] | 645 | sas_J0(x): |
---|
| 646 | Bessel function of the first kind $\text{sas_J0}(x)=J_0(x)$ where |
---|
[af6de50] | 647 | $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. |
---|
| 648 | |
---|
[ca1eaeb] | 649 | The standard math function j0(x) is not available on all platforms. |
---|
| 650 | |
---|
[af6de50] | 651 | :code:`source = ["lib/polevl.c", "lib/sas_J0.c", ...]` |
---|
[48cd5b3] | 652 | (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J0.c>`_) |
---|
[af6de50] | 653 | |
---|
[48cd5b3] | 654 | sas_J1(x): |
---|
| 655 | Bessel function of the first kind $\text{sas_J1}(x)=J_1(x)$ where |
---|
[af6de50] | 656 | $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. |
---|
| 657 | |
---|
[ca1eaeb] | 658 | The standard math function j1(x) is not available on all platforms. |
---|
| 659 | |
---|
[af6de50] | 660 | :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]` |
---|
[48cd5b3] | 661 | (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_) |
---|
[af6de50] | 662 | |
---|
[48cd5b3] | 663 | sas_JN(n, x): |
---|
[ca1eaeb] | 664 | Bessel function of the first kind and integer order $n$: |
---|
| 665 | $\text{sas_JN}(n, x)=J_n(x)$ where |
---|
[af6de50] | 666 | $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. |
---|
[48cd5b3] | 667 | If $n$ = 0 or 1, it uses sas_J0(x) or sas_J1(x), respectively. |
---|
| 668 | |
---|
[ca1eaeb] | 669 | The standard math function jn(n, x) is not available on all platforms. |
---|
| 670 | |
---|
[af6de50] | 671 | :code:`source = ["lib/polevl.c", "lib/sas_J0.c", "lib/sas_J1.c", "lib/sas_JN.c", ...]` |
---|
[48cd5b3] | 672 | (`link to Bessel function's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_JN.c>`_) |
---|
[af6de50] | 673 | |
---|
[ca6cbc1c] | 674 | sas_Si(x): |
---|
[af6de50] | 675 | Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. |
---|
| 676 | |
---|
[48cd5b3] | 677 | This function uses Taylor series for small and large arguments: |
---|
| 678 | |
---|
| 679 | For large arguments, |
---|
| 680 | |
---|
| 681 | .. math:: |
---|
[af6de50] | 682 | |
---|
[ca1eaeb] | 683 | \text{Si}(x) \sim \frac{\pi}{2} |
---|
| 684 | - \frac{\cos(x)}{x}\left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right) |
---|
| 685 | - \frac{\sin(x)}{x}\left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) |
---|
[48cd5b3] | 686 | |
---|
| 687 | For small arguments, |
---|
| 688 | |
---|
| 689 | .. math:: |
---|
| 690 | |
---|
[ca1eaeb] | 691 | \text{Si}(x) \sim x |
---|
| 692 | - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!} |
---|
[48cd5b3] | 693 | + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!} |
---|
| 694 | |
---|
| 695 | :code:`source = ["lib/Si.c", ...]` |
---|
| 696 | (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/Si.c>`_) |
---|
| 697 | |
---|
[ca6cbc1c] | 698 | sas_3j1x_x(x): |
---|
[af6de50] | 699 | Spherical Bessel form |
---|
[ca1eaeb] | 700 | $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, |
---|
| 701 | with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical |
---|
| 702 | Bessel function of the first kind and first order. |
---|
[48cd5b3] | 703 | |
---|
| 704 | This function uses a Taylor series for small $x$ for numerical accuracy. |
---|
[af6de50] | 705 | |
---|
[ca6cbc1c] | 706 | :code:`source = ["lib/sas_3j1x_x.c", ...]` |
---|
| 707 | (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_3j1x_x.c>`_) |
---|
[af6de50] | 708 | |
---|
[48cd5b3] | 709 | |
---|
[ca6cbc1c] | 710 | sas_2J1x_x(x): |
---|
[ca1eaeb] | 711 | Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value |
---|
| 712 | of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind |
---|
| 713 | and first order. |
---|
[af6de50] | 714 | |
---|
[20cfa23] | 715 | :code:`source = ["lib/polevl.c", "lib/sas_J1.c", ...]` |
---|
[48cd5b3] | 716 | (`link to Bessel form's code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/sas_J1.c>`_) |
---|
| 717 | |
---|
[af6de50] | 718 | |
---|
[48cd5b3] | 719 | Gauss76Z[i], Gauss76Wt[i]: |
---|
| 720 | Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, |
---|
[ca1eaeb] | 721 | computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. |
---|
[af6de50] | 722 | |
---|
[48cd5b3] | 723 | Similar arrays are available in :code:`gauss20.c` for 20-point |
---|
| 724 | quadrature and in :code:`gauss150.c` for 150-point quadrature. |
---|
| 725 | |
---|
| 726 | :code:`source = ["lib/gauss76.c", ...]` |
---|
| 727 | (`link to code <https://github.com/SasView/sasmodels/tree/master/sasmodels/models/lib/gauss76.c>`_) |
---|
| 728 | |
---|
| 729 | |
---|
[af6de50] | 730 | |
---|
| 731 | Problems with C models |
---|
| 732 | ...................... |
---|
| 733 | |
---|
| 734 | The graphics processor (GPU) in your computer is a specialized computer tuned |
---|
| 735 | for certain kinds of problems. This leads to strange restrictions that you |
---|
| 736 | need to be aware of. Your code may work fine on some platforms or for some |
---|
| 737 | models, but then return bad values on other platforms. Some examples of |
---|
| 738 | particular problems: |
---|
| 739 | |
---|
[907186d] | 740 | **(1) Code is too complex, or uses too much memory.** GPU devices only have a |
---|
[af6de50] | 741 | limited amount of memory available for each processor. If you run programs |
---|
| 742 | which take too much memory, then rather than running multiple values in parallel |
---|
| 743 | as it usually does, the GPU may only run a single version of the code at a |
---|
| 744 | time, making it slower than running on the CPU. It may fail to run on |
---|
| 745 | some platforms, or worse, cause the screen to go blank or the system to reboot. |
---|
[05829fb] | 746 | |
---|
[907186d] | 747 | **(2) Code takes too long.** Because GPU devices are used for the computer |
---|
[af6de50] | 748 | display, the OpenCL drivers are very careful about the amount of time they |
---|
| 749 | will allow any code to run. For example, on OS X, the model will stop running |
---|
[907186d] | 750 | after 5 seconds regardless of whether the computation is complete. You may end up |
---|
| 751 | with only some of your 2D array defined, with the rest containing random |
---|
[af6de50] | 752 | data. Or it may cause the screen to go blank or the system to reboot. |
---|
[05829fb] | 753 | |
---|
[907186d] | 754 | **(3) Memory is not aligned**. The GPU hardware is specialized to operate on |
---|
| 755 | multiple values simultaneously. To keep the GPU simple the values in memory |
---|
[af6de50] | 756 | must be aligned with the different GPU compute engines. Not following these |
---|
| 757 | rules can lead to unexpected values being loaded into memory, and wrong answers |
---|
| 758 | computed. The conclusion from a very long and strange debugging session was |
---|
| 759 | that any arrays that you declare in your model should be a multiple of four. |
---|
[907186d] | 760 | For example:: |
---|
[05829fb] | 761 | |
---|
[af6de50] | 762 | double Iq(q, p1, p2, ...) |
---|
| 763 | { |
---|
| 764 | double vector[8]; // Only going to use seven slots, but declare 8 |
---|
| 765 | ... |
---|
| 766 | } |
---|
[05829fb] | 767 | |
---|
[af6de50] | 768 | The first step when your model is behaving strangely is to set **single=False**. |
---|
[907186d] | 769 | This automatically restricts the model to only run on the CPU, or on high-end |
---|
| 770 | GPU cards. There can still be problems even on high-end cards, so you can force |
---|
[af6de50] | 771 | the model off the GPU by setting **opencl=False**. This runs the model |
---|
| 772 | as a normal C program without any GPU restrictions so you know that |
---|
| 773 | strange results are probably from your code rather than the environment. Once |
---|
| 774 | the code is debugged, you can compare your output to the output on the GPU. |
---|
| 775 | |
---|
| 776 | Although it can be difficult to get your model to work on the GPU, the reward |
---|
| 777 | can be a model that runs 1000x faster on a good card. Even your laptop may |
---|
| 778 | show a 50x improvement or more over the equivalent pure python model. |
---|
[f237c05] | 779 | |
---|
| 780 | External C Models |
---|
| 781 | ................. |
---|
| 782 | |
---|
| 783 | External C models are very much like embedded C models, except that |
---|
| 784 | *Iq*, *Iqxy* and *form_volume* are defined in an external source file |
---|
[af6de50] | 785 | loaded using the *source=[...]* statement. You need to supply the function |
---|
[f237c05] | 786 | declarations for each of these that you need instead of building them |
---|
| 787 | automatically from the parameter table. |
---|
| 788 | |
---|
| 789 | |
---|
| 790 | .. _Form_Factors: |
---|
| 791 | |
---|
| 792 | Form Factors |
---|
| 793 | ............ |
---|
| 794 | |
---|
| 795 | Away from the dilute limit you can estimate scattering including |
---|
| 796 | particle-particle interactions using $I(q) = P(q)*S(q)$ where $P(q)$ |
---|
| 797 | is the form factor and $S(q)$ is the structure factor. The simplest |
---|
| 798 | structure factor is the *hardsphere* interaction, which |
---|
| 799 | uses the effective radius of the form factor as an input to the structure |
---|
| 800 | factor model. The effective radius is the average radius of the |
---|
| 801 | form averaged over all the polydispersity values. |
---|
| 802 | |
---|
[31d7803] | 803 | :: |
---|
| 804 | |
---|
| 805 | def ER(radius, thickness): |
---|
| 806 | """Effective radius of a core-shell sphere.""" |
---|
| 807 | return radius + thickness |
---|
| 808 | |
---|
| 809 | Now consider the *core_shell_sphere*, which has a simple effective radius |
---|
[f237c05] | 810 | equal to the radius of the core plus the thickness of the shell, as |
---|
| 811 | shown above. Given polydispersity over *(r1, r2, ..., rm)* in radius and |
---|
| 812 | *(t1, t2, ..., tn)* in thickness, *ER* is called with a mesh |
---|
| 813 | grid covering all possible combinations of radius and thickness. |
---|
| 814 | That is, *radius* is *(r1, r2, ..., rm, r1, r2, ..., rm, ...)* |
---|
| 815 | and *thickness* is *(t1, t1, ... t1, t2, t2, ..., t2, ...)*. |
---|
| 816 | The *ER* function returns one effective radius for each combination. |
---|
| 817 | The effective radius calculator weights each of these according to |
---|
| 818 | the polydispersity distributions and calls the structure factor |
---|
| 819 | with the average *ER*. |
---|
| 820 | |
---|
| 821 | :: |
---|
| 822 | |
---|
| 823 | def VR(radius, thickness): |
---|
| 824 | """Sphere and shell volumes for a core-shell sphere.""" |
---|
| 825 | whole = 4.0/3.0 * pi * (radius + thickness)**3 |
---|
| 826 | core = 4.0/3.0 * pi * radius**3 |
---|
| 827 | return whole, whole - core |
---|
| 828 | |
---|
| 829 | Core-shell type models have an additional volume ratio which scales |
---|
| 830 | the structure factor. The *VR* function returns the volume of |
---|
| 831 | the whole sphere and the volume of the shell. Like *ER*, there is |
---|
| 832 | one return value for each point in the mesh grid. |
---|
| 833 | |
---|
[31d7803] | 834 | *NOTE: we may be removing or modifying this feature soon. As of the |
---|
| 835 | time of writing, core-shell sphere returns (1., 1.) for VR, giving a volume |
---|
| 836 | ratio of 1.0.* |
---|
[f237c05] | 837 | |
---|
| 838 | Unit Tests |
---|
| 839 | .......... |
---|
| 840 | |
---|
| 841 | THESE ARE VERY IMPORTANT. Include at least one test for each model and |
---|
| 842 | PLEASE make sure that the answer value is correct (i.e. not a random number). |
---|
| 843 | |
---|
| 844 | :: |
---|
| 845 | |
---|
| 846 | tests = [ |
---|
| 847 | [{}, 0.2, 0.726362], |
---|
| 848 | [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1., |
---|
| 849 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
| 850 | 0.2, 0.228843], |
---|
| 851 | [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "ER", 120.], |
---|
| 852 | [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, "VR", 1.], |
---|
| 853 | ] |
---|
| 854 | |
---|
| 855 | |
---|
| 856 | **tests=[[{parameters}, q, result], ...]** is a list of lists. |
---|
| 857 | Each list is one test and contains, in order: |
---|
| 858 | |
---|
| 859 | - a dictionary of parameter values. This can be {} using the default |
---|
| 860 | parameters, or filled with some parameters that will be different |
---|
[cbbb6a4] | 861 | from the default, such as {ââ¬Ëradiusââ¬â¢:10.0, ââ¬Ësldââ¬â¢:4}. Unlisted parameters |
---|
[f237c05] | 862 | will be given the default values. |
---|
| 863 | - the input $q$ value or tuple of $(q_x, q_y)$ values. |
---|
| 864 | - the output $I(q)$ or $I(q_x,q_y)$ expected of the model for the parameters |
---|
| 865 | and input value given. |
---|
| 866 | - input and output values can themselves be lists if you have several |
---|
| 867 | $q$ values to test for the same model parameters. |
---|
| 868 | - for testing *ER* and *VR*, give the inputs as "ER" and "VR" respectively; |
---|
| 869 | the output for *VR* should be the sphere/shell ratio, not the individual |
---|
| 870 | sphere and shell values. |
---|
| 871 | |
---|
| 872 | .. _Test_Your_New_Model: |
---|
| 873 | |
---|
| 874 | Test Your New Model |
---|
| 875 | ^^^^^^^^^^^^^^^^^^^ |
---|
| 876 | |
---|
[3e1c9e5] | 877 | Minimal Testing |
---|
| 878 | ............... |
---|
[e925f61] | 879 | |
---|
[3e1c9e5] | 880 | Either open the :ref:`Python_shell` (*Tools* > *Python Shell/Editor*) or the :ref:`Advanced_Plugin_Editor` (*Fitting* > *Plugin Model Operations* > *Advanced |
---|
| 881 | Plugin Editor*), load your model, and then select *Run > Check Model* from the |
---|
| 882 | menu bar. |
---|
[05829fb] | 883 | |
---|
[3e1c9e5] | 884 | An *Info* box will appear with the results of the compilation and a check that |
---|
| 885 | the model runs. |
---|
[e925f61] | 886 | |
---|
[3e1c9e5] | 887 | Recommended Testing |
---|
| 888 | ................... |
---|
[f237c05] | 889 | |
---|
| 890 | If the model compiles and runs, you can next run the unit tests that |
---|
[31d7803] | 891 | you have added using the **test =** values. Switch to the *Shell* tab |
---|
[f237c05] | 892 | and type the following:: |
---|
| 893 | |
---|
| 894 | from sasmodels.model_test import run_one |
---|
| 895 | run_one("~/.sasview/plugin_models/model.py") |
---|
| 896 | |
---|
| 897 | This should print:: |
---|
| 898 | |
---|
| 899 | test_model_python (sasmodels.model_test.ModelTestCase) ... ok |
---|
| 900 | |
---|
| 901 | To check whether single precision is good enough, type the following:: |
---|
| 902 | |
---|
| 903 | from sasmodels.compare import main |
---|
| 904 | main("~/.sasview/plugin_models/model.py") |
---|
| 905 | |
---|
| 906 | This will pop up a plot showing the difference between single precision |
---|
| 907 | and double precision on a range of $q$ values. |
---|
| 908 | |
---|
| 909 | :: |
---|
| 910 | |
---|
| 911 | demo = dict(scale=1, background=0, |
---|
| 912 | sld=6, sld_solvent=1, |
---|
| 913 | radius=120, |
---|
| 914 | radius_pd=.2, radius_pd_n=45) |
---|
| 915 | |
---|
| 916 | **demo={'par': value, ...}** in the model file sets the default values for |
---|
| 917 | the comparison. You can include polydispersity parameters such as |
---|
| 918 | *radius_pd=0.2, radius_pd_n=45* which would otherwise be zero. |
---|
| 919 | |
---|
| 920 | The options to compare are quite extensive; type the following for help:: |
---|
| 921 | |
---|
| 922 | main() |
---|
| 923 | |
---|
| 924 | Options will need to be passed as separate strings. |
---|
| 925 | For example to run your model with a random set of parameters:: |
---|
| 926 | |
---|
| 927 | main("-random", "-pars", "~/.sasview/plugin_models/model.py") |
---|
| 928 | |
---|
| 929 | For the random models, |
---|
| 930 | |
---|
[31d7803] | 931 | - *sld* will be in the range (-0.5,10.5), |
---|
| 932 | - angles (*theta, phi, psi*) will be in the range (-180,180), |
---|
| 933 | - angular dispersion will be in the range (0,45), |
---|
| 934 | - polydispersity will be in the range (0,1) |
---|
| 935 | - other values will be in the range (0, 2\ *v*), where *v* is the value of the parameter in demo. |
---|
[f237c05] | 936 | |
---|
[31d7803] | 937 | Dispersion parameters *n*\, *sigma* and *type* will be unchanged from demo so that |
---|
[f237c05] | 938 | run times are predictable. |
---|
| 939 | |
---|
| 940 | If your model has 2D orientational calculation, then you should also |
---|
| 941 | test with:: |
---|
| 942 | |
---|
| 943 | main("-2d", "~/.sasview/plugin_models/model.py") |
---|
| 944 | |
---|
| 945 | |
---|
[e925f61] | 946 | Clean Lint - (Developer Version Only) |
---|
| 947 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
[f237c05] | 948 | |
---|
[e925f61] | 949 | **NB: For now we are not providing pylint with the installer version of SasView; |
---|
| 950 | so unless you have a SasView build environment available, you can ignore this section!** |
---|
[f237c05] | 951 | |
---|
| 952 | Run the lint check with:: |
---|
| 953 | |
---|
| 954 | python -m pylint --rcfile=extra/pylint.rc ~/.sasview/plugin_models/model.py |
---|
| 955 | |
---|
| 956 | We are not aiming for zero lint just yet, only keeping it to a minimum. |
---|
| 957 | For now, don't worry too much about *invalid-name*. If you really want a |
---|
| 958 | variable name *Rg* for example because $R_g$ is the right name for the model |
---|
| 959 | parameter then ignore the lint errors. Also, ignore *missing-docstring* |
---|
| 960 | for standard model functions *Iq*, *Iqxy*, etc. |
---|
| 961 | |
---|
[31d7803] | 962 | We will have delinting sessions at the SasView Code Camps, where we can |
---|
[f237c05] | 963 | decide on standards for model files, parameter names, etc. |
---|
| 964 | |
---|
[31d7803] | 965 | For now, you can tell pylint to ignore things. For example, to align your |
---|
[f237c05] | 966 | parameters in blocks:: |
---|
| 967 | |
---|
| 968 | # pylint: disable=bad-whitespace,line-too-long |
---|
| 969 | # ["name", "units", default, [lower, upper], "type", "description"], |
---|
| 970 | parameters = [ |
---|
| 971 | ["contrast_factor", "barns", 10.0, [-inf, inf], "", "Contrast factor of the polymer"], |
---|
| 972 | ["bjerrum_length", "Ang", 7.1, [0, inf], "", "Bjerrum length"], |
---|
| 973 | ["virial_param", "1/Ang^2", 12.0, [-inf, inf], "", "Virial parameter"], |
---|
| 974 | ["monomer_length", "Ang", 10.0, [0, inf], "", "Monomer length"], |
---|
| 975 | ["salt_concentration", "mol/L", 0.0, [-inf, inf], "", "Concentration of monovalent salt"], |
---|
| 976 | ["ionization_degree", "", 0.05, [0, inf], "", "Degree of ionization"], |
---|
| 977 | ["polymer_concentration", "mol/L", 0.7, [0, inf], "", "Polymer molar concentration"], |
---|
| 978 | ] |
---|
| 979 | # pylint: enable=bad-whitespace,line-too-long |
---|
| 980 | |
---|
| 981 | Don't put in too many pylint statements, though, since they make the code ugly. |
---|
| 982 | |
---|
[e925f61] | 983 | Check The Docs - (Developer Version Only) |
---|
| 984 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
[f237c05] | 985 | |
---|
| 986 | You can get a rough idea of how the documentation will look using the |
---|
| 987 | following:: |
---|
| 988 | |
---|
| 989 | from sasmodels.generate import view_html |
---|
| 990 | view_html('~/.sasview/plugin_models/model.py') |
---|
| 991 | |
---|
| 992 | This does not use the same styling as the SasView docs, but it will allow |
---|
| 993 | you to check that your ReStructuredText and LaTeX formatting. Here are |
---|
| 994 | some tools to help with the inevitable syntax errors: |
---|
| 995 | |
---|
| 996 | - `Sphinx cheat sheet <http://matplotlib.org/sampledoc/cheatsheet.html>`_ |
---|
| 997 | - `Sphinx Documentation <http://www.sphinx-doc.org/en/stable/>`_ |
---|
| 998 | - `MathJax <http://www.mathjax.org/>`_ |
---|
| 999 | - `amsmath <http://www.ams.org/publications/authors/tex/amslatex>`_ |
---|
| 1000 | |
---|
[31d7803] | 1001 | There is also a neat online WYSIWYG ReStructuredText editor at http://rst.ninjs.org\ . |
---|
| 1002 | |
---|
[e925f61] | 1003 | Share Your Model! |
---|
| 1004 | ^^^^^^^^^^^^^^^^^ |
---|
[f237c05] | 1005 | |
---|
| 1006 | Once compare and the unit test(s) pass properly and everything is done, |
---|
| 1007 | consider adding your model to the |
---|
[e925f61] | 1008 | `Model Marketplace <http://marketplace.sasview.org/>`_ so that others may use it! |
---|
[3e1c9e5] | 1009 | |
---|
| 1010 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[f237c05] | 1011 | |
---|
[907186d] | 1012 | .. note:: This help document was last changed by Steve King, 25Oct2016 |
---|