[959eb01] | 1 | """ |
---|
| 2 | Inferface containing information to store data, model, range of data, etc... |
---|
[20fa5fe] | 3 | and retrieve this information. This is an inferface |
---|
[959eb01] | 4 | for a fitProblem i.e relationship between data and model. |
---|
| 5 | """ |
---|
| 6 | ################################################################################ |
---|
| 7 | #This software was developed by the University of Tennessee as part of the |
---|
| 8 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 9 | #project funded by the US National Science Foundation. |
---|
| 10 | # |
---|
| 11 | #See the license text in license.txt |
---|
| 12 | # |
---|
| 13 | #copyright 2009, University of Tennessee |
---|
| 14 | ################################################################################ |
---|
| 15 | import copy |
---|
[50fcb09] | 16 | |
---|
| 17 | from sas.sascalc.fit.qsmearing import smear_selection |
---|
[959eb01] | 18 | |
---|
[251ef684] | 19 | class FitProblem(object): |
---|
[959eb01] | 20 | """ |
---|
[251ef684] | 21 | Define the relationship between data and model, including range, weights, |
---|
| 22 | etc. |
---|
[959eb01] | 23 | """ |
---|
[251ef684] | 24 | def __init__(self): |
---|
| 25 | """ |
---|
| 26 | contains information about data and model to fit |
---|
| 27 | """ |
---|
| 28 | ## data used for fitting |
---|
| 29 | self.fit_data = None |
---|
| 30 | self.theory_data = None |
---|
| 31 | self.residuals = None |
---|
| 32 | # original data: should not be modified |
---|
| 33 | self.original_data = None |
---|
| 34 | ## the current model |
---|
| 35 | self.model = None |
---|
| 36 | ## if 1 this fit problem will be selected to fit , if 0 |
---|
| 37 | ## it will not be selected for fit |
---|
| 38 | self.schedule = 0 |
---|
| 39 | ##list containing parameter name and value |
---|
| 40 | self.list_param = [] |
---|
| 41 | self.list_param2fit = [] |
---|
| 42 | ## smear object to smear or not data1D |
---|
| 43 | self.smearer_computed = False |
---|
| 44 | self.smearer_enable = False |
---|
| 45 | self.smearer_computer_value = None |
---|
| 46 | ## fitting range |
---|
| 47 | self.qmin = None |
---|
| 48 | self.qmax = None |
---|
| 49 | # fit weight |
---|
| 50 | self.weight = None |
---|
| 51 | self.result = None |
---|
| 52 | self.fit_tab_caption = None |
---|
| 53 | self.name_per_page = None |
---|
| 54 | |
---|
[959eb01] | 55 | def enable_smearing(self, flag=False): |
---|
| 56 | """ |
---|
| 57 | :param flag: bool.When flag is 1 get the computer smear value. When |
---|
[20fa5fe] | 58 | flag is 0 ignore smear value. |
---|
[959eb01] | 59 | """ |
---|
[251ef684] | 60 | self.smearer_enable = flag |
---|
| 61 | |
---|
| 62 | def set_smearer(self, smearer): |
---|
| 63 | """ |
---|
| 64 | save reference of smear object on fitdata |
---|
| 65 | |
---|
| 66 | :param smear: smear object from DataLoader |
---|
| 67 | |
---|
| 68 | """ |
---|
| 69 | self.smearer_computer_value = smearer |
---|
[959eb01] | 70 | |
---|
| 71 | def get_smearer(self): |
---|
| 72 | """ |
---|
| 73 | return smear object |
---|
| 74 | """ |
---|
[251ef684] | 75 | if not self.smearer_enable: |
---|
| 76 | return None |
---|
| 77 | if not self.smearer_computed: |
---|
| 78 | #smeari_selection should be call only once per fitproblem |
---|
| 79 | self.smearer_computer_value = smear_selection(self.fit_data, |
---|
| 80 | self.model) |
---|
| 81 | self.smearer_computed = True |
---|
| 82 | return self.smearer_computer_value |
---|
| 83 | |
---|
[959eb01] | 84 | def save_model_name(self, name): |
---|
| 85 | """ |
---|
| 86 | """ |
---|
[251ef684] | 87 | self.name_per_page = name |
---|
[959eb01] | 88 | |
---|
| 89 | def get_name(self): |
---|
| 90 | """ |
---|
| 91 | """ |
---|
[251ef684] | 92 | return self.name_per_page |
---|
[959eb01] | 93 | |
---|
| 94 | def set_model(self, model): |
---|
| 95 | """ |
---|
| 96 | associates each model with its new created name |
---|
| 97 | :param model: model selected |
---|
| 98 | :param name: name created for model |
---|
| 99 | """ |
---|
[251ef684] | 100 | self.model = model |
---|
| 101 | self.smearer_computer_value = smear_selection(self.fit_data, |
---|
| 102 | self.model) |
---|
| 103 | self.smearer_computed = True |
---|
[959eb01] | 104 | |
---|
| 105 | def get_model(self): |
---|
| 106 | """ |
---|
| 107 | :return: saved model |
---|
| 108 | """ |
---|
[251ef684] | 109 | return self.model |
---|
[959eb01] | 110 | |
---|
| 111 | def set_residuals(self, residuals): |
---|
| 112 | """ |
---|
| 113 | save a copy of residual |
---|
| 114 | :param data: data selected |
---|
| 115 | """ |
---|
[251ef684] | 116 | self.residuals = residuals |
---|
[959eb01] | 117 | |
---|
| 118 | def get_residuals(self): |
---|
| 119 | """ |
---|
| 120 | :return: residuals |
---|
| 121 | """ |
---|
[251ef684] | 122 | return self.residuals |
---|
[959eb01] | 123 | |
---|
| 124 | def set_theory_data(self, data): |
---|
| 125 | """ |
---|
| 126 | save a copy of the data select to fit |
---|
[251ef684] | 127 | |
---|
[959eb01] | 128 | :param data: data selected |
---|
[251ef684] | 129 | |
---|
[959eb01] | 130 | """ |
---|
[251ef684] | 131 | self.theory_data = copy.deepcopy(data) |
---|
[959eb01] | 132 | |
---|
| 133 | def get_theory_data(self): |
---|
| 134 | """ |
---|
[251ef684] | 135 | :return: theory generated with the current model and data of this class |
---|
[959eb01] | 136 | """ |
---|
[251ef684] | 137 | return self.theory_data |
---|
[959eb01] | 138 | |
---|
| 139 | def set_fit_data(self, data): |
---|
| 140 | """ |
---|
[251ef684] | 141 | Store data associated with this class |
---|
[959eb01] | 142 | :param data: list of data selected |
---|
| 143 | """ |
---|
[251ef684] | 144 | self.original_data = None |
---|
| 145 | self.fit_data = None |
---|
| 146 | # original data: should not be modified |
---|
| 147 | self.original_data = data |
---|
| 148 | # fit data: used for fit and can be modified for convenience |
---|
| 149 | self.fit_data = copy.deepcopy(data) |
---|
| 150 | self.smearer_computer_value = smear_selection(self.fit_data, self.model) |
---|
| 151 | self.smearer_computed = True |
---|
| 152 | self.result = None |
---|
[959eb01] | 153 | |
---|
| 154 | def get_fit_data(self): |
---|
| 155 | """ |
---|
[251ef684] | 156 | :return: data associate with this class |
---|
[959eb01] | 157 | """ |
---|
[251ef684] | 158 | return self.fit_data |
---|
[959eb01] | 159 | |
---|
[251ef684] | 160 | def get_origin_data(self): |
---|
[959eb01] | 161 | """ |
---|
| 162 | """ |
---|
[251ef684] | 163 | return self.original_data |
---|
| 164 | |
---|
| 165 | def set_weight(self, is2d, flag=None): |
---|
| 166 | """ |
---|
| 167 | Received flag and compute error on data. |
---|
| 168 | :param flag: flag to transform error of data. |
---|
| 169 | :param is2d: flag to distinguish 1D to 2D Data |
---|
| 170 | """ |
---|
| 171 | from sas.sasgui.perspectives.fitting.utils import get_weight |
---|
| 172 | # send original data for weighting |
---|
| 173 | self.weight = get_weight(data=self.original_data, is2d=is2d, flag=flag) |
---|
| 174 | if is2d: |
---|
| 175 | self.fit_data.err_data = self.weight |
---|
| 176 | else: |
---|
| 177 | self.fit_data.dy = self.weight |
---|
| 178 | |
---|
| 179 | def get_weight(self): |
---|
| 180 | """ |
---|
| 181 | returns weight array |
---|
| 182 | """ |
---|
| 183 | return self.weight |
---|
[959eb01] | 184 | |
---|
| 185 | def set_param2fit(self, list): |
---|
| 186 | """ |
---|
| 187 | Store param names to fit (checked) |
---|
| 188 | :param list: list of the param names |
---|
| 189 | """ |
---|
[251ef684] | 190 | self.list_param2fit = list |
---|
[959eb01] | 191 | |
---|
| 192 | def get_param2fit(self): |
---|
| 193 | """ |
---|
| 194 | return the list param names to fit |
---|
| 195 | """ |
---|
[251ef684] | 196 | return self.list_param2fit |
---|
| 197 | |
---|
| 198 | def set_model_param(self, name, value=None): |
---|
| 199 | """ |
---|
| 200 | Store the name and value of a parameter of this fitproblem's model |
---|
| 201 | :param name: name of the given parameter |
---|
| 202 | :param value: value of that parameter |
---|
| 203 | """ |
---|
| 204 | self.list_param.append([name, value]) |
---|
[959eb01] | 205 | |
---|
| 206 | def get_model_param(self): |
---|
| 207 | """ |
---|
| 208 | return list of couple of parameter name and value |
---|
| 209 | """ |
---|
[251ef684] | 210 | return self.list_param |
---|
[959eb01] | 211 | |
---|
| 212 | def schedule_tofit(self, schedule=0): |
---|
| 213 | """ |
---|
| 214 | set schedule to true to decide if this fit must be performed |
---|
| 215 | """ |
---|
[251ef684] | 216 | self.schedule = schedule |
---|
[959eb01] | 217 | |
---|
| 218 | def get_scheduled(self): |
---|
| 219 | """ |
---|
| 220 | return true or false if a problem as being schedule for fitting |
---|
| 221 | """ |
---|
[251ef684] | 222 | return self.schedule |
---|
[959eb01] | 223 | |
---|
| 224 | def set_range(self, qmin=None, qmax=None): |
---|
| 225 | """ |
---|
| 226 | set fitting range |
---|
[251ef684] | 227 | :param qmin: minimum value to consider for the fit range |
---|
| 228 | :param qmax: maximum value to consider for the fit range |
---|
[959eb01] | 229 | """ |
---|
[251ef684] | 230 | self.qmin = qmin |
---|
| 231 | self.qmax = qmax |
---|
[959eb01] | 232 | |
---|
| 233 | def get_range(self): |
---|
| 234 | """ |
---|
| 235 | :return: fitting range |
---|
| 236 | |
---|
| 237 | """ |
---|
[251ef684] | 238 | return self.qmin, self.qmax |
---|
[959eb01] | 239 | |
---|
| 240 | def clear_model_param(self): |
---|
| 241 | """ |
---|
| 242 | clear constraint info |
---|
| 243 | """ |
---|
[251ef684] | 244 | self.list_param = [] |
---|
[959eb01] | 245 | |
---|
| 246 | def set_fit_tab_caption(self, caption): |
---|
| 247 | """ |
---|
| 248 | """ |
---|
[251ef684] | 249 | self.fit_tab_caption = str(caption) |
---|
[959eb01] | 250 | |
---|
| 251 | def get_fit_tab_caption(self): |
---|
| 252 | """ |
---|
| 253 | """ |
---|
[251ef684] | 254 | return self.fit_tab_caption |
---|
[959eb01] | 255 | |
---|
| 256 | def set_graph_id(self, id): |
---|
| 257 | """ |
---|
| 258 | Set graph id (from data_group_id at the time the graph produced) |
---|
| 259 | """ |
---|
[251ef684] | 260 | self.graph_id = id |
---|
[959eb01] | 261 | |
---|
| 262 | def get_graph_id(self): |
---|
| 263 | """ |
---|
| 264 | Get graph_id |
---|
| 265 | """ |
---|
[251ef684] | 266 | return self.graph_id |
---|
[959eb01] | 267 | |
---|
| 268 | def set_result(self, result): |
---|
| 269 | """ |
---|
| 270 | """ |
---|
[251ef684] | 271 | self.result = result |
---|
[959eb01] | 272 | |
---|
| 273 | def get_result(self): |
---|
| 274 | """ |
---|
| 275 | get result |
---|
| 276 | """ |
---|
[251ef684] | 277 | return self.result |
---|
[959eb01] | 278 | |
---|
| 279 | |
---|
[251ef684] | 280 | class FitProblemDictionary(dict): |
---|
[959eb01] | 281 | """ |
---|
| 282 | This module implements a dictionary of fitproblem objects |
---|
| 283 | """ |
---|
| 284 | def __init__(self): |
---|
| 285 | dict.__init__(self) |
---|
| 286 | ## the current model |
---|
| 287 | self.model = None |
---|
| 288 | ## if 1 this fit problem will be selected to fit , if 0 |
---|
| 289 | ## it will not be selected for fit |
---|
| 290 | self.schedule = 0 |
---|
| 291 | ##list containing parameter name and value |
---|
| 292 | self.list_param = [] |
---|
| 293 | ## fitting range |
---|
| 294 | self.qmin = None |
---|
| 295 | self.qmax = None |
---|
| 296 | self.graph_id = None |
---|
| 297 | self._smear_on = False |
---|
| 298 | self.scheduled = 0 |
---|
| 299 | self.fit_tab_caption = '' |
---|
| 300 | self.nbr_residuals_computed = 0 |
---|
| 301 | self.batch_inputs = {} |
---|
| 302 | self.batch_outputs = {} |
---|
| 303 | |
---|
| 304 | def enable_smearing(self, flag=False, fid=None): |
---|
| 305 | """ |
---|
| 306 | :param flag: bool.When flag is 1 get the computer smear value. When |
---|
[20fa5fe] | 307 | flag is 0 ignore smear value. |
---|
[959eb01] | 308 | """ |
---|
| 309 | self._smear_on = flag |
---|
| 310 | if fid is None: |
---|
[251ef684] | 311 | for value in self.values(): |
---|
[959eb01] | 312 | value.enable_smearing(flag) |
---|
[251ef684] | 313 | elif fid in self: |
---|
| 314 | self[fid].enable_smearing(flag) |
---|
[959eb01] | 315 | |
---|
| 316 | def set_smearer(self, smearer, fid=None): |
---|
| 317 | """ |
---|
| 318 | save reference of smear object on fitdata |
---|
| 319 | :param smear: smear object from DataLoader |
---|
| 320 | """ |
---|
| 321 | if fid is None: |
---|
[251ef684] | 322 | for value in self.values(): |
---|
[959eb01] | 323 | value.set_smearer(smearer) |
---|
[251ef684] | 324 | elif fid in self: |
---|
| 325 | self[fid].set_smearer(smearer) |
---|
[959eb01] | 326 | |
---|
| 327 | def get_smearer(self, fid=None): |
---|
| 328 | """ |
---|
| 329 | return smear object |
---|
| 330 | """ |
---|
[251ef684] | 331 | if fid in self: |
---|
[959eb01] | 332 | return self[fid].get_smearer() |
---|
| 333 | |
---|
| 334 | def save_model_name(self, name, fid=None): |
---|
| 335 | """ |
---|
| 336 | """ |
---|
| 337 | if fid is None: |
---|
[251ef684] | 338 | for value in self.values(): |
---|
[959eb01] | 339 | value.save_model_name(name) |
---|
[251ef684] | 340 | elif fid in self: |
---|
| 341 | self[fid].save_model_name(name) |
---|
[959eb01] | 342 | |
---|
| 343 | def get_name(self, fid=None): |
---|
| 344 | """ |
---|
| 345 | """ |
---|
| 346 | result = [] |
---|
| 347 | if fid is None: |
---|
[251ef684] | 348 | for value in self.values(): |
---|
[959eb01] | 349 | result.append(value.get_name()) |
---|
[251ef684] | 350 | elif fid in self: |
---|
| 351 | result.append(self[fid].get_name()) |
---|
[959eb01] | 352 | return result |
---|
| 353 | |
---|
| 354 | def set_model(self, model, fid=None): |
---|
| 355 | """ |
---|
| 356 | associates each model with its new created name |
---|
| 357 | :param model: model selected |
---|
| 358 | :param name: name created for model |
---|
| 359 | """ |
---|
| 360 | self.model = model |
---|
| 361 | if fid is None: |
---|
[251ef684] | 362 | for value in self.values(): |
---|
[959eb01] | 363 | value.set_model(self.model) |
---|
[251ef684] | 364 | elif fid in self: |
---|
| 365 | self[fid].set_model(self.model) |
---|
[959eb01] | 366 | |
---|
| 367 | def get_model(self, fid): |
---|
| 368 | """ |
---|
| 369 | :return: saved model |
---|
| 370 | """ |
---|
[251ef684] | 371 | if fid in self: |
---|
[959eb01] | 372 | return self[fid].get_model() |
---|
| 373 | |
---|
| 374 | def set_fit_tab_caption(self, caption): |
---|
| 375 | """ |
---|
| 376 | store the caption of the page associated with object |
---|
| 377 | """ |
---|
| 378 | self.fit_tab_caption = caption |
---|
| 379 | |
---|
| 380 | def get_fit_tab_caption(self): |
---|
| 381 | """ |
---|
| 382 | Return the caption of the page associated with object |
---|
| 383 | """ |
---|
| 384 | return self.fit_tab_caption |
---|
| 385 | |
---|
| 386 | def set_residuals(self, residuals, fid): |
---|
| 387 | """ |
---|
| 388 | save a copy of residual |
---|
| 389 | :param data: data selected |
---|
| 390 | """ |
---|
[251ef684] | 391 | if fid in self: |
---|
[959eb01] | 392 | self[fid].set_residuals(residuals) |
---|
| 393 | |
---|
| 394 | def get_residuals(self, fid): |
---|
| 395 | """ |
---|
| 396 | :return: residuals |
---|
| 397 | """ |
---|
[251ef684] | 398 | if fid in self: |
---|
[959eb01] | 399 | return self[fid].get_residuals() |
---|
| 400 | |
---|
| 401 | def set_theory_data(self, fid, data=None): |
---|
| 402 | """ |
---|
| 403 | save a copy of the data select to fit |
---|
| 404 | :param data: data selected |
---|
| 405 | """ |
---|
[251ef684] | 406 | if fid in self: |
---|
[959eb01] | 407 | self[fid].set_theory_data(data) |
---|
| 408 | |
---|
| 409 | def get_theory_data(self, fid): |
---|
| 410 | """ |
---|
| 411 | :return: list of data dList |
---|
| 412 | """ |
---|
[251ef684] | 413 | if fid in self: |
---|
[959eb01] | 414 | return self[fid].get_theory_data() |
---|
| 415 | |
---|
| 416 | def add_data(self, data): |
---|
| 417 | """ |
---|
| 418 | Add data to the current dictionary of fitproblem. if data id does not |
---|
| 419 | exist create a new fit problem. |
---|
| 420 | :note: only data changes in the fit problem |
---|
| 421 | """ |
---|
[251ef684] | 422 | if data.id not in self: |
---|
[959eb01] | 423 | self[data.id] = FitProblem() |
---|
| 424 | self[data.id].set_fit_data(data) |
---|
| 425 | |
---|
| 426 | def set_fit_data(self, data): |
---|
| 427 | """ |
---|
| 428 | save a copy of the data select to fit |
---|
| 429 | :param data: data selected |
---|
| 430 | |
---|
| 431 | """ |
---|
| 432 | self.clear() |
---|
| 433 | if data is None: |
---|
| 434 | data = [] |
---|
| 435 | for d in data: |
---|
[251ef684] | 436 | if d is not None: |
---|
| 437 | if d.id not in self: |
---|
[959eb01] | 438 | self[d.id] = FitProblem() |
---|
| 439 | self[d.id].set_fit_data(d) |
---|
| 440 | self[d.id].set_model(self.model) |
---|
| 441 | self[d.id].set_range(self.qmin, self.qmax) |
---|
| 442 | |
---|
| 443 | def get_fit_data(self, fid): |
---|
| 444 | """ |
---|
| 445 | return data for the given fitproblem id |
---|
| 446 | :param fid: key representing a fitproblem, usually extract from data id |
---|
| 447 | """ |
---|
[251ef684] | 448 | if fid in self: |
---|
[959eb01] | 449 | return self[fid].get_fit_data() |
---|
| 450 | |
---|
| 451 | def set_model_param(self, name, value=None, fid=None): |
---|
| 452 | """ |
---|
| 453 | Store the name and value of a parameter of this fitproblem's model |
---|
| 454 | :param name: name of the given parameter |
---|
| 455 | :param value: value of that parameter |
---|
| 456 | """ |
---|
| 457 | if fid is None: |
---|
[251ef684] | 458 | for value in self.values(): |
---|
[959eb01] | 459 | value.set_model_param(name, value) |
---|
[251ef684] | 460 | elif fid in self: |
---|
| 461 | self[fid].set_model_param(name, value) |
---|
[959eb01] | 462 | |
---|
| 463 | def get_model_param(self, fid): |
---|
| 464 | """ |
---|
| 465 | return list of couple of parameter name and value |
---|
| 466 | """ |
---|
[251ef684] | 467 | if fid in self: |
---|
[959eb01] | 468 | return self[fid].get_model_param() |
---|
| 469 | |
---|
| 470 | def set_param2fit(self, list): |
---|
| 471 | """ |
---|
| 472 | Store param names to fit (checked) |
---|
| 473 | :param list: list of the param names |
---|
| 474 | """ |
---|
| 475 | self.list_param2fit = list |
---|
| 476 | |
---|
| 477 | def get_param2fit(self): |
---|
| 478 | """ |
---|
| 479 | return the list param names to fit |
---|
| 480 | """ |
---|
| 481 | return self.list_param2fit |
---|
| 482 | |
---|
| 483 | def schedule_tofit(self, schedule=0): |
---|
| 484 | """ |
---|
| 485 | set schedule to true to decide if this fit must be performed |
---|
| 486 | """ |
---|
| 487 | self.scheduled = schedule |
---|
[251ef684] | 488 | for value in self.values(): |
---|
[959eb01] | 489 | value.schedule_tofit(schedule) |
---|
| 490 | |
---|
| 491 | def get_scheduled(self): |
---|
| 492 | """ |
---|
| 493 | return true or false if a problem as being schedule for fitting |
---|
| 494 | """ |
---|
| 495 | return self.scheduled |
---|
| 496 | |
---|
| 497 | def set_range(self, qmin=None, qmax=None, fid=None): |
---|
| 498 | """ |
---|
| 499 | set fitting range |
---|
| 500 | """ |
---|
| 501 | self.qmin = qmin |
---|
| 502 | self.qmax = qmax |
---|
| 503 | if fid is None: |
---|
[251ef684] | 504 | for value in self.values(): |
---|
[959eb01] | 505 | value.set_range(self.qmin, self.qmax) |
---|
[251ef684] | 506 | elif fid in self: |
---|
| 507 | self[fid].value.set_range(self.qmin, self.qmax) |
---|
[959eb01] | 508 | |
---|
| 509 | def get_range(self, fid): |
---|
| 510 | """ |
---|
| 511 | :return: fitting range |
---|
| 512 | """ |
---|
[251ef684] | 513 | if fid in self: |
---|
[959eb01] | 514 | return self[fid].get_range() |
---|
| 515 | |
---|
| 516 | def set_weight(self, is2d, flag=None, fid=None): |
---|
| 517 | """ |
---|
| 518 | fit weight |
---|
| 519 | """ |
---|
| 520 | if fid is None: |
---|
[251ef684] | 521 | for value in self.values(): |
---|
[959eb01] | 522 | value.set_weight(flag=flag, is2d=is2d) |
---|
[251ef684] | 523 | elif fid in self: |
---|
| 524 | self[fid].set_weight(flag=flag, is2d=is2d) |
---|
[959eb01] | 525 | |
---|
| 526 | def get_weight(self, fid=None): |
---|
| 527 | """ |
---|
| 528 | return fit weight |
---|
| 529 | """ |
---|
[251ef684] | 530 | if fid in self: |
---|
[959eb01] | 531 | return self[fid].get_weight() |
---|
| 532 | |
---|
| 533 | def clear_model_param(self, fid=None): |
---|
| 534 | """ |
---|
| 535 | clear constraint info |
---|
| 536 | """ |
---|
| 537 | if fid is None: |
---|
[251ef684] | 538 | for value in self.values(): |
---|
[959eb01] | 539 | value.clear_model_param() |
---|
[251ef684] | 540 | elif fid in self: |
---|
| 541 | self[fid].clear_model_param() |
---|
[959eb01] | 542 | |
---|
| 543 | def get_fit_problem(self): |
---|
| 544 | """ |
---|
| 545 | return fitproblem contained in this dictionary |
---|
| 546 | """ |
---|
[5251ec6] | 547 | return list(self.values()) |
---|
[959eb01] | 548 | |
---|
| 549 | def set_result(self, result, fid): |
---|
| 550 | """ |
---|
| 551 | """ |
---|
[251ef684] | 552 | if fid in self: |
---|
[959eb01] | 553 | self[fid].set_result(result) |
---|
| 554 | |
---|
| 555 | def set_batch_result(self, batch_inputs, batch_outputs): |
---|
| 556 | """ |
---|
| 557 | set a list of result |
---|
| 558 | """ |
---|
| 559 | self.batch_inputs = batch_inputs |
---|
| 560 | self.batch_outputs = batch_outputs |
---|
| 561 | |
---|
| 562 | def get_result(self, fid): |
---|
| 563 | """ |
---|
| 564 | get result |
---|
| 565 | """ |
---|
[251ef684] | 566 | if fid in self: |
---|
[959eb01] | 567 | return self[fid].get_result() |
---|
| 568 | |
---|
| 569 | def get_batch_result(self): |
---|
| 570 | """ |
---|
| 571 | get result |
---|
| 572 | """ |
---|
| 573 | return self.batch_inputs, self.batch_outputs |
---|
| 574 | |
---|
| 575 | def set_graph_id(self, id): |
---|
| 576 | """ |
---|
| 577 | Set graph id (from data_group_id at the time the graph produced) |
---|
| 578 | """ |
---|
| 579 | self.graph_id = id |
---|
| 580 | |
---|
| 581 | def get_graph_id(self): |
---|
| 582 | """ |
---|
| 583 | Get graph_id |
---|
| 584 | """ |
---|
| 585 | return self.graph_id |
---|