source: sasview/src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst @ fb7fcec

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since fb7fcec was fb7fcec, checked in by lewis, 8 years ago

Add initial documentation for corfunc perspective

  • Property mode set to 100644
File size: 2.7 KB
RevLine 
[fb7fcec]1.. corfunc_help.rst
2
3Correlation Function Perspective
4================================
5
6Description
7-----------
8
9This perspective performs a correlation function analysis of one-dimensional
10SANS data, or generates a model-independent volume fraction profile from a
11one-dimensional SANS pattern of an adsorbed layer.
12
13The correlation function analysis is performed in 3 stages:
14
15*  Extrapolation of the scattering curve to :math:`Q = 0` and
16   :math:`Q = \infty`
17*  Fourier Transform of the extrapolated data to give the correlation function
18*  Interpretation of the 1D correlation function based on an ideal lamellar
19   morphology
20
21.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
22
23Extrapolation
24-------------
25
26To :math:`Q = 0`
27^^^^^^^^^^^^^^^^
28
29The data are extrapolated to Q = 0 by fitting a Guinier model to the data
30points in the lower Q range.
31The equation used is:
32
33.. math::
34    I(Q) = Ae^{Bq^2}
35
36The Guinier model assumes that the small angle scattering arises from particles
37and that parameter :math:`B` is related to the radius of gyration of those
38particles. This has dubious applicability to polymer systems. However, the
39correlation function is affected by the Guinier back-extrapolation to the
40greatest extent at large values of R and so the back-extrapolation only has a
41small effect on the analysis.
42
43To :math:`Q = \infty`
44^^^^^^^^^^^^^^^^^^^^^
45
46The data are extrapolated to Q = :math:`\infty` by fitting a Porod model to
47the data points in the upper Q range.
48
49The equation used is:
50
51.. math::
52    I(Q) = B + KQ^{-4}e^{-Q^2\sigma^2}
53
54Where :math:`B` is the Bonart thermal background, :math:`K` is the Porod
55constant, and :math:`\sigma` describes the electron (or neutron scattering
56length) density profile at the interface between crystalline and amorphous
57regions (see figure 1).
58
59.. figure:: fig1.gif
60   :align: center
61
62   ``Figure 1`` The value of :math:`\sigma` is a measure of the electron
63   density profile at the interface between crystalline and amorphous regions.
64
65Smoothing
66^^^^^^^^^
67
68The extrapolated data set consists of the Guinier back-extrapolation up to the
69highest Q value of the lower Q range, the original scattering data up to the
70highest value in the upper Q range, and the Porod tail-fit beyond this. The
71joins between the original data and the Guinier/Porod fits are smoothed using
72the algorithm below, to avoid the formation of ripples in the transformd data.
73
74Functions :math:`f(x_i)` and :math:`g(x_i)` where :math:`x_i \in \left\{  {x_1, x_2, ..., x_n} \right\}`
75, are smoothed over the range :math:`[a, b]` to produce :math:`y(x_i)`, by the
76following equations:
77
78.. math::
79    y(x_i) = h_ig(x_i) + (1-h_i)f(x_i)
80
81where:
82
83.. math::
84    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}}
Note: See TracBrowser for help on using the repository browser.