source: sasview/src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst @ f80b416e

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalcmagnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since f80b416e was f80b416e, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

Merge branch 'master' into ticket-639-katex

  • Property mode set to 100644
File size: 7.7 KB
RevLine 
[fb7fcec]1.. corfunc_help.rst
2
[da456fb]3.. _Correlation_Function_Analysis:
4
[32c5983]5Correlation Function Analysis
6=============================
[fb7fcec]7
8Description
9-----------
10
[32c5983]11This performs a correlation function analysis of one-dimensional
[d78b5cb]12SAXS/SANS data, or generates a model-independent volume fraction
[1404cce]13profile from the SANS from an adsorbed polymer/surfactant layer.
[fb7fcec]14
[d78b5cb]15A correlation function may be interpreted in terms of an imaginary rod moving
16through the structure of the material. Γ\ :sub:`1D`\ (R) is the probability that
17a rod of length R moving through the material has equal electron/neutron scattering
18length density at either end. Hence a frequently occurring spacing within a structure
[1404cce]19manifests itself as a peak.
20
21A volume fraction profile :math:`\Phi`\ (z) describes how the density of polymer segments/surfactant molecules varies with distance from an (assumed locally flat) interface.
22
23Both functions are returned in *real space*.
24
25The analysis is performed in 3 stages:
[fb7fcec]26
27*  Extrapolation of the scattering curve to :math:`Q = 0` and
28   :math:`Q = \infty`
[1404cce]29*  Smoothed merging of the two extrapolations into the original data
30*  Fourier / Hilbert Transform of the smoothed data to give the correlation
31   function / volume fraction profile, respectively
[d78b5cb]32*  (Optional) Interpretation of the 1D correlation function based on an ideal
[1404cce]33   lamellar morphology
[fb7fcec]34
35.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
36
37Extrapolation
38-------------
39
40To :math:`Q = 0`
[1404cce]41................
[fb7fcec]42
43The data are extrapolated to Q = 0 by fitting a Guinier model to the data
[1404cce]44points in the low-Q range.
45
[fb7fcec]46The equation used is:
47
48.. math::
[1404cce]49    I(Q) = Ae^{Bq^2}
[fb7fcec]50
51The Guinier model assumes that the small angle scattering arises from particles
52and that parameter :math:`B` is related to the radius of gyration of those
53particles. This has dubious applicability to polymer systems. However, the
54correlation function is affected by the Guinier back-extrapolation to the
[1404cce]55greatest extent at large values of R and so only has a
56small effect on the final analysis.
[fb7fcec]57
58To :math:`Q = \infty`
[1404cce]59.....................
[fb7fcec]60
61The data are extrapolated to Q = :math:`\infty` by fitting a Porod model to
[1404cce]62the data points in the high-Q range.
[fb7fcec]63
64The equation used is:
65
66.. math::
[1404cce]67    I(Q) = K Q^{-4}e^{-Q^2\sigma^2} + Bg
[fb7fcec]68
[1404cce]69Where :math:`Bg` is the background, :math:`K` is the Porod
70constant, and :math:`\sigma` (which must be > 0) describes the width of the electron or neutron scattering length density profile at the interface between the crystalline and amorphous
71regions as shown below.
[fb7fcec]72
[6aad2e8]73.. figure:: fig1.png
[fb7fcec]74   :align: center
75
[d78b5cb]76
[fb7fcec]77Smoothing
[1404cce]78---------
[fb7fcec]79
[d78b5cb]80The extrapolated data set consists of the Guinier back-extrapolation from Q~0
[1404cce]81up to the lowest Q value in the original data, then the original scattering data, and the Porod tail-fit beyond this. The joins between the original data and the Guinier/Porod fits are smoothed using the algorithm below to avoid the formation of ripples in the transformed data.
[fb7fcec]82
[2fe78566]83Functions :math:`f(x_i)` and :math:`g(x_i)` where :math:`x_i \in \left\{
84{x_1, x_2, ..., x_n} \right\}`, are smoothed over the range :math:`[a, b]`
85to produce :math:`y(x_i)`, by the following equations:
[fb7fcec]86
87.. math::
88    y(x_i) = h_ig(x_i) + (1-h_i)f(x_i)
89
90where:
91
92.. math::
93    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}}
[41345d7e]94
[d78b5cb]95
[41345d7e]96Transform
97---------
98
99Fourier
[1404cce]100.......
[41345d7e]101
[1404cce]102If "Fourier" is selected for the transform type, the analysis will perform a
[0390040]103discrete cosine transform on the extrapolated data in order to calculate the
[d78b5cb]1041D correlation function:
[1404cce]105
106.. math::
107    \Gamma _{1D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty }I(q) q^{2} cos(qR) dq
108
109where Q\ :sup:`*` is the Scattering Invariant.
110
111The following algorithm is applied:
[41345d7e]112
113.. math::
114    \Gamma(x_k) = 2 \sum_{n=0}^{N-1} x_n \cos{\left[ \frac{\pi}{N}
115    \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots,
116    N-1, N
117
[d78b5cb]118The 3D correlation function is also calculated:
119
120.. math::
121    \Gamma _{3D}(R) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2}
122    \frac{sin(qR)}{qR} dq
123
[41345d7e]124Hilbert
[1404cce]125.......
126
127If "Hilbert" is selected for the transform type, the analysis will perform a
[2fe78566]128Hilbert transform on the extrapolated data in order to calculate the Volume
[41345d7e]129Fraction Profile.
130
[1404cce]131.. note:: This functionality is not yet implemented in SasView.
132
133
[41345d7e]134Interpretation
135--------------
[1404cce]136
137Correlation Function
138....................
139
140Once the correlation function has been calculated it may be interpreted by clicking the "Compute Parameters" button.
141
142The correlation function is interpreted in terms of an ideal lamellar
143morphology, and structural parameters are obtained from it as shown below.
144It should be noted that a small beam size is assumed; ie, no de-smearing is
[41345d7e]145performed.
146
[6aad2e8]147.. figure:: fig2.png
[41345d7e]148   :align: center
149
150The structural parameters obtained are:
151
152*   Long Period :math:`= L_p`
153*   Average Hard Block Thickness :math:`= L_c`
154*   Average Core Thickness :math:`= D_0`
155*   Average Interface Thickness :math:`\text{} = D_{tr}`
156*   Polydispersity :math:`= \Gamma_{\text{min}}/\Gamma_{\text{max}}`
157*   Local Crystallinity :math:`= L_c/L_p`
[0390040]158
[1404cce]159Volume Fraction Profile
160.......................
161
162SasView does not provide any automatic interpretation of volume fraction profiles in the same way that it does for correlation functions. However, a number of structural parameters are obtainable by other means:
163
164*   Surface Coverage :math:`=\theta`
165*   Anchor Separation :math:`= D`
166*   Bound Fraction :math:`= <p>`
167*   Second Moment :math:`= \sigma`
168*   Maximum Extent :math:`= \delta_{\text{h}}`
169*   Adsorbed Amount :math:`= \Gamma`
170
171.. figure:: profile1.png
172   :align: center
[d78b5cb]173
[1404cce]174.. figure:: profile2.png
175   :align: center
[d78b5cb]176
[1404cce]177
178References
179----------
180
181Strobl, G. R.; Schneider, M. *J. Polym. Sci.* (1980), 18, 1343-1359
182
183Koberstein, J.; Stein R. *J. Polym. Sci. Phys. Ed.* (1983), 21, 2181-2200
184
185Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 247-251
186
187Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 257-261
188
189Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 260-270
190
191:ref:`FDR` (PDF format)
192
[0390040]193.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
194
[1404cce]195
[0390040]196Usage
197-----
[f56770ef]198Upon sending data for correlation function analysis, it will be plotted (minus
[d78b5cb]199the background value), along with a *red* bar indicating the *upper end of the
[1404cce]200low-Q range* (used for back-extrapolation), and 2 *purple* bars indicating the range to be used for forward-extrapolation. These bars may be moved my clicking and
201dragging, or by entering appropriate values in the Q range input boxes.
[0390040]202
203.. figure:: tutorial1.png
204   :align: center
205
[1404cce]206Once the Q ranges have been set, click the "Calculate" button to determine the background level. Alternatively, enter your own value into the field. If the box turns yellow this indicates that background subtraction has resulted in some negative intensities.
[0390040]207
[1404cce]208Click the "Extrapolate" button to extrapolate the data and plot the extrapolation in the same figure. The values of the parameters used for the Guinier and Porod models will also be shown in the "Extrapolation Parameters" section of the window.
[0390040]209
210.. figure:: tutorial2.png
211   :align: center
212
[1404cce]213Now select which type of transform you would like to perform, using the radio
[0390040]214buttons:
215
216*   **Fourier** Perform a Fourier Transform to calculate the correlation
[1404cce]217    function
[0390040]218*   **Hilbert** Perform a Hilbert Transform to calculate the volume fraction
[1404cce]219    profile
220
221Click the "Transform" button to perform the selected transform and plot
222the result in a new graph window.
[0390040]223
[1404cce]224If a Fourier Transform was performed, the "Compute Parameters" button can now be clicked to interpret the correlation function as described earlier.
[0390040]225
226 .. figure:: tutorial3.png
227    :align: center
228
[d78b5cb]229
[1404cce]230.. note::
231    This help document was last changed by Steve King, 08Oct2016
Note: See TracBrowser for help on using the repository browser.