source: sasview/src/sas/sasgui/perspectives/corfunc/media/corfunc_help.rst @ 4d06668

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1249
Last change on this file since 4d06668 was 4d06668, checked in by smk78, 5 years ago

Added note about Lorentz-correction to corfunc_help.rst Fixes #1225

  • Property mode set to 100644
File size: 11.1 KB
RevLine 
[fb7fcec]1.. corfunc_help.rst
2
[da456fb]3.. _Correlation_Function_Analysis:
4
[32c5983]5Correlation Function Analysis
6=============================
[fb7fcec]7
8Description
9-----------
10
[ad476d1]11This currently performs correlation function analysis on SAXS/SANS data,
12but in the the future is also planned to generate model-independent volume
13fraction profiles from the SANS from adsorbed polymer/surfactant layers.
14The two types of analyses differ in the mathematical transform that is
15applied to the data (Fourier vs Hilbert). However, both functions are
16returned in *real space*.
[fb7fcec]17
[d78b5cb]18A correlation function may be interpreted in terms of an imaginary rod moving
[ad476d1]19through the structure of the material. Γ(x) is the probability that a rod of
20length x has equal electron/neutron scattering length density at either end.
21Hence a frequently occurring spacing within a structure will manifest itself
22as a peak in Γ(x). *SasView* will return both the one-dimensional ( Γ\ :sub:`1`\ (x) )
23and three-dimensional ( Γ\ :sub:`3`\ (x) ) correlation functions, the difference
24being that the former is only averaged in the plane of the scattering vector.
25
26A volume fraction profile :math:`\Phi`\ (z) describes how the density of polymer
27segments/surfactant molecules varies with distance, z, normal to an (assumed
28locally flat) interface. The form of :math:`\Phi`\ (z) can provide information
29about the arrangement of polymer/surfactant molecules at the interface. The width
30of the profile provides measures of the layer thickness, and the area under
31the profile is related to the amount of material that is adsorbed.
32
[4d06668]33.. note::
34    These transforms assume that the data has been measured on a pinhole-
35    collimated instrument or, if not, that the data has been Lorentz-
36    corrected beforehand.
37
[ad476d1]38Both analyses are performed in 3 stages:
39
[490f790]40*  Extrapolation of the scattering curve to :math:`q = 0` and toward
41   :math:`q = \infty`
[1404cce]42*  Smoothed merging of the two extrapolations into the original data
43*  Fourier / Hilbert Transform of the smoothed data to give the correlation
[ad476d1]44   function or volume fraction profile, respectively
45*  (Optional) Interpretation of Γ\ :sub:`1`\ (x) assuming the sample conforms
46   to an ideal lamellar morphology
[fb7fcec]47
48.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
49
[ad476d1]50
[fb7fcec]51Extrapolation
52-------------
53
[490f790]54To :math:`q = 0`
[1404cce]55................
[fb7fcec]56
[ad476d1]57The data are extrapolated to q = 0 by fitting a Guinier function to the data
58points in the low-q range.
[1404cce]59
[fb7fcec]60The equation used is:
61
62.. math::
[ad476d1]63    I(q) = A e^{Bq^2}
[fb7fcec]64
[ad476d1]65Where the parameter :math:`B` is related to the effective radius-of-gyration of
66a spherical object having the same small-angle scattering in this region.
67       
68Note that as q tends to zero this function tends to a limiting value and is
69therefore less appropriate for use in systems where the form factor does not
70do likewise. However, because of the transform, the correlation functions are
71most affected by the Guinier back-extrapolation at *large* values of x where
72the impact on any extrapolated parameters will be least significant.
[fb7fcec]73
[490f790]74To :math:`q = \infty`
[1404cce]75.....................
[fb7fcec]76
[ad476d1]77The data are extrapolated towards q = :math:`\infty` by fitting a Porod model to
78the data points in the high-q range and then computing the extrapolation to 100
79times the maximum q value in the experimental dataset. This should be more than
80sufficient to ensure that on transformation any truncation artefacts introduced
81are at such small values of x that they can be safely ignored.
[fb7fcec]82
83The equation used is:
84
85.. math::
[ad476d1]86    I(q) = K q^{-4}e^{-q^2\sigma^2} + Bg
[fb7fcec]87
[ad476d1]88Where :math:`Bg` is the background, :math:`K` is the Porod constant, and :math:`\sigma` (which
89must be > 0) describes the width of the electron/neutron scattering length density
90profile at the interface between the crystalline and amorphous regions as shown below.
[fb7fcec]91
[6aad2e8]92.. figure:: fig1.png
[fb7fcec]93   :align: center
94
[d78b5cb]95
[fb7fcec]96Smoothing
[1404cce]97---------
[fb7fcec]98
[ad476d1]99The extrapolated data set consists of the Guinier back-extrapolation from q ~ 0
100up to the lowest q value in the original data, then the original scattering data,
101and then the Porod tail-fit beyond this. The joins between the original data and
102the Guinier/Porod extrapolations are smoothed using the algorithm below to try
103and avoid the formation of truncation ripples in the transformed data:
[fb7fcec]104
[2fe78566]105Functions :math:`f(x_i)` and :math:`g(x_i)` where :math:`x_i \in \left\{
106{x_1, x_2, ..., x_n} \right\}`, are smoothed over the range :math:`[a, b]`
107to produce :math:`y(x_i)`, by the following equations:
[fb7fcec]108
109.. math::
110    y(x_i) = h_ig(x_i) + (1-h_i)f(x_i)
111
112where:
113
114.. math::
115    h_i = \frac{1}{1 + \frac{(x_i-b)^2}{(x_i-a)^2}}
[41345d7e]116
[d78b5cb]117
[ad476d1]118Transformation
119--------------
[41345d7e]120
121Fourier
[1404cce]122.......
[41345d7e]123
[ad476d1]124If "Fourier" is selected for the transform type, *SasView* will perform a
[0390040]125discrete cosine transform on the extrapolated data in order to calculate the
[ad476d1]1261D correlation function as:
[1404cce]127
128.. math::
[ad476d1]129    \Gamma _{1}(x) = \frac{1}{Q^{*}} \int_{0}^{\infty }I(q) q^{2} cos(qx) dq
[1404cce]130
[ad476d1]131where Q\ :sup:`*` is the Scattering (also called Porod) Invariant.
[1404cce]132
133The following algorithm is applied:
[41345d7e]134
135.. math::
136    \Gamma(x_k) = 2 \sum_{n=0}^{N-1} x_n \cos{\left[ \frac{\pi}{N}
[4b4b746]137    \left(n + \frac{1}{2} \right) k \right] } \text{ for } k = 0, 1, \ldots,
[41345d7e]138    N-1, N
139
[ad476d1]140The 3D correlation function is calculated as:
[d78b5cb]141
142.. math::
[ad476d1]143    \Gamma _{3}(x) = \frac{1}{Q^{*}} \int_{0}^{\infty}I(q) q^{2}
144    \frac{sin(qx)}{qx} dq
145
146.. note:: It is always advisable to inspect Γ\ :sub:`1`\ (x) and Γ\ :sub:`3`\ (x)
147    for artefacts arising from the extrapolation and transformation processes:
148       
149        - do they tend to zero as x tends to :math:`\infty`?
150        - do they smoothly curve onto the ordinate at x = 0? (if not check the value
151          of :math:`\sigma` is sensible)
[490f790]152        - are there ripples at x values corresponding to (2 :math:`\pi` over) the two
[ad476d1]153          q values at which the extrapolated and experimental data are merged?
[490f790]154        - are there any artefacts at x values corresponding to 2 :math:`\pi` / q\ :sub:`max` in
[ad476d1]155          the experimental data?
156        - and lastly, do the significant features/peaks in the correlation functions
157          actually correspond to anticpated spacings in the sample?!!!
158
159Finally, the program calculates the interface distribution function (IDF) g\ :sub:`1`\ (x) as
160the discrete cosine transform of:
161
162.. math::
163    -q^{4} I(q)
164
[490f790]165The IDF is proportional to the second derivative of Γ\ :sub:`1`\ (x) and represents a
166superposition of thickness distributions from all the contributing lamellae.
[d78b5cb]167
[41345d7e]168Hilbert
[1404cce]169.......
[ad476d1]170       
[1404cce]171If "Hilbert" is selected for the transform type, the analysis will perform a
[2fe78566]172Hilbert transform on the extrapolated data in order to calculate the Volume
[41345d7e]173Fraction Profile.
174
[ad476d1]175.. note:: The Hilbert transform functionality is not yet implemented in SasView.
[1404cce]176
177
[41345d7e]178Interpretation
179--------------
[1404cce]180
181Correlation Function
182....................
183
[ad476d1]184Once the correlation functions have been calculated *SasView* can be asked to
185try and interpret Γ\ :sub:`1`\ (x) in terms of an ideal lamellar morphology
186as shown below.
[41345d7e]187
[6aad2e8]188.. figure:: fig2.png
[41345d7e]189   :align: center
190
[ad476d1]191The structural parameters extracted are:
[41345d7e]192
193*   Long Period :math:`= L_p`
194*   Average Hard Block Thickness :math:`= L_c`
195*   Average Core Thickness :math:`= D_0`
[501712f]196*   Average Interface Thickness :math:`= D_{tr}`
[8cc9048]197*   Polydispersity :math:`= \Gamma_{\mathrm{min}}/\Gamma_{\mathrm{max}}`
[41345d7e]198*   Local Crystallinity :math:`= L_c/L_p`
[0390040]199
[490f790]200.. warning:: If the sample does not possess lamellar morphology then "Compute
201    Parameters" will return garbage!
202       
203
[1404cce]204Volume Fraction Profile
205.......................
206
[ad476d1]207SasView does not provide any automatic interpretation of volume fraction profiles
208in the same way that it does for correlation functions. However, a number of
209structural parameters are obtainable by other means:
[1404cce]210
211*   Surface Coverage :math:`=\theta`
212*   Anchor Separation :math:`= D`
213*   Bound Fraction :math:`= <p>`
214*   Second Moment :math:`= \sigma`
[8cc9048]215*   Maximum Extent :math:`= \delta_{\mathrm{h}}`
[1404cce]216*   Adsorbed Amount :math:`= \Gamma`
217
218.. figure:: profile1.png
219   :align: center
[d78b5cb]220
[1404cce]221.. figure:: profile2.png
222   :align: center
[d78b5cb]223
[ad476d1]224The reader is directed to the references for information on these parameters.
[1404cce]225
[490f790]226
[1404cce]227References
228----------
229
[ad476d1]230Correlation Function
231....................
232
[1404cce]233Strobl, G. R.; Schneider, M. *J. Polym. Sci.* (1980), 18, 1343-1359
234
235Koberstein, J.; Stein R. *J. Polym. Sci. Phys. Ed.* (1983), 21, 2181-2200
236
237Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 247-251
238
239Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 257-261
240
241Baltá Calleja, F. J.; Vonk, C. G. *X-ray Scattering of Synthetic Poylmers*, Elsevier. Amsterdam (1989), 260-270
242
[ad476d1]243Göschel, U.; Urban, G. *Polymer* (1995), 36, 3633-3639
244
245Stribeck, N. *X-Ray Scattering of Soft Matter*, Springer. Berlin (2007), 138-161
246
[1404cce]247:ref:`FDR` (PDF format)
248
[ad476d1]249Volume Fraction Profile
250.......................
251
252Washington, C.; King, S. M. *J. Phys. Chem.*, (1996), 100, 7603-7609
253
254Cosgrove, T.; King, S. M.; Griffiths, P. C. *Colloid-Polymer Interactions: From Fundamentals to Practice*, Wiley. New York (1999), 193-204
255
256King, S. M.; Griffiths, P. C.; Cosgrove, T. *Applications of Neutron Scattering to Soft Condensed Matter*, Gordon & Breach. Amsterdam (2000), 77-105
257
258King, S.; Griffiths, P.; Hone, J.; Cosgrove, T. *Macromol. Symp.* (2002), 190, 33-42
259
[0390040]260.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
261
[1404cce]262
[0390040]263Usage
264-----
[f56770ef]265Upon sending data for correlation function analysis, it will be plotted (minus
[d78b5cb]266the background value), along with a *red* bar indicating the *upper end of the
[ad476d1]267low-Q range* (used for Guinier back-extrapolation), and 2 *purple* bars indicating
268the range to be used for Porod forward-extrapolation. These bars may be moved by
269grabbing and dragging, or by entering appropriate values in the Q range input boxes.
[0390040]270
271.. figure:: tutorial1.png
272   :align: center
273
[ad476d1]274Once the Q ranges have been set, click the "Calculate Bg" button to determine the
275background level. Alternatively, enter your own value into the box. If the box turns
[490f790]276yellow this indicates that background subtraction has created some negative intensities.
277This may still be fine provided the peak intensity is very much greater than the
278background level. The important point is that the extrapolated dataset must approach
279zero at high-q.
[0390040]280
[ad476d1]281Now click the "Extrapolate" button to extrapolate the data. The graph window will update
282to show the extrapolated data, and the values of the parameters used for the Guinier and
283Porod extrapolations will appear in the "Extrapolation Parameters" section of the SasView
284GUI.
[0390040]285
286.. figure:: tutorial2.png
287   :align: center
288
[1404cce]289Now select which type of transform you would like to perform, using the radio
[0390040]290buttons:
291
[ad476d1]292*   **Fourier**: to perform a Fourier Transform to calculate the correlation
293    functions
294*   **Hilbert**: to perform a Hilbert Transform to calculate the volume fraction
[1404cce]295    profile
296
[ad476d1]297and click the "Transform" button to perform the selected transform and plot
298the results.
[0390040]299
300 .. figure:: tutorial3.png
301    :align: center
302
[ad476d1]303If a Fourier Transform was performed, the "Compute Parameters" button can now be
304clicked to interpret the correlation function as described earlier. The parameters
305will appear in the "Output Parameters" section of the SasView GUI.
306
307 .. figure:: tutorial4.png
308    :align: center
309
[d78b5cb]310
[1404cce]311.. note::
[490f790]312    This help document was last changed by Steve King, 28Sep2017
Note: See TracBrowser for help on using the repository browser.