1 | <body> |
---|
2 | <h4>Generic Scattering Calculator:</h4> |
---|
3 | Polarization and Magnetic Scattering |
---|
4 | <br> |
---|
5 | <br> |
---|
6 | <ul> |
---|
7 | <li><a href="#theory">Theory:</a></li> |
---|
8 | <li><a href="#gui">GUI</a></li> |
---|
9 | <li><a href="#pdb">PDB Data</a></li> |
---|
10 | </ul> |
---|
11 | <br> |
---|
12 | <br> |
---|
13 | <b>1. <a name="theory">Theory</a> </b> |
---|
14 | <br> |
---|
15 | In general, a particle with a volume V can be described by an ensemble containing N |
---|
16 | 3-dimensional rectangular pixels where each pixels are much smaller than V. |
---|
17 | Assuming that |
---|
18 | all the pixel sizes are same, the elastic scattering intensity |
---|
19 | by the particle |
---|
20 | <p> |
---|
21 | <img src="gen_i.png"/> |
---|
22 | </p> |
---|
23 | <br> |
---|
24 | where β<sub>j</sub> and r<sub>j</sub> are the scattering |
---|
25 | length density and the position |
---|
26 | of the j'th pixel respectively. And the total volume |
---|
27 | <p> |
---|
28 | <img src="v_j.png"/> |
---|
29 | </p> |
---|
30 | <br> |
---|
31 | for β<sub>j</sub> ≠ 0 where v<sub>j</sub> is the volume of the j'th pixel |
---|
32 | (or the j'th natural atomic volume (= atomic mass/natural molar density/Avogadro number) |
---|
33 | for the atomic structures). The total volume V can be corrected by users. |
---|
34 | This correction is useful especially for an atomic structure (taken from a pdb file) to get the right |
---|
35 | normalization. Note that the β<sub>j</sub> displayed in GUI may be incorrect but will not |
---|
36 | affect the scattering computation if the correction of the total volume is made. |
---|
37 | <br> |
---|
38 | The scattering length density (SLD) of each pixel where the SLD is uniform, is a combination of the nuclear and magnetic SLDs |
---|
39 | and depends on the spin states of the neutrons as follows: |
---|
40 | <br> |
---|
41 | <br> |
---|
42 | For magnetic scattering, only the magnetization component, <b>M</b><sub>perp</sub>, |
---|
43 | perpendicular to the scattering vector <b>Q</b> contributes to the the magnetic |
---|
44 | scattering length. (Figure below). |
---|
45 | <p> |
---|
46 | <img src="mag_vector.png"/> |
---|
47 | </p> |
---|
48 | <br> |
---|
49 | The magnetic scattering length density is then |
---|
50 | <p> |
---|
51 | <img src="dm_eq.png"/> |
---|
52 | </p> |
---|
53 | <br> |
---|
54 | where γ = -1.913 the gyromagnetic ratio, μ<sub>B</sub> is the Bohr magneton, |
---|
55 | r<sub>0</sub> is the classical radius of electron, |
---|
56 | and <b>σ</b> is the Pauli spin. |
---|
57 | <br> |
---|
58 | For polarized neutron, the magnetic scattering is depending on the spin states. |
---|
59 | Let's consider that the incident neutrons are polarized parallel (+)/anti-parallel |
---|
60 | (–) to the x' axis (See both Figures above). |
---|
61 | The possible out-coming states then are + and - states for both incident states. |
---|
62 | <br> |
---|
63 | - Non-spin-flips: (+ +) and (- -) |
---|
64 | <br> |
---|
65 | - Spin-flips: (+ -) and (- +) |
---|
66 | <br> |
---|
67 | <p> |
---|
68 | <img src="gen_mag_pic.png"/> |
---|
69 | </p> |
---|
70 | <br> |
---|
71 | <br> |
---|
72 | Now, let's assume that the angles of the <b>Q</b> vector and the spin-axis (x') from x-axis |
---|
73 | are φ and θ<sub>up</sub>, respectively (See Figure above). |
---|
74 | Then, depending upon the polarization (spin) state of neutrons, the scattering length |
---|
75 | densities , including the nuclear scattering length density (β <sub>N</sub>) are given as, for non-spin-flips, |
---|
76 | <p> |
---|
77 | <img src="sld1.png"/> |
---|
78 | </p> |
---|
79 | <br> |
---|
80 | <br> |
---|
81 | for spin-flips, |
---|
82 | <p> |
---|
83 | <img src="sld2.png"/> |
---|
84 | </p> |
---|
85 | <br> |
---|
86 | <br> |
---|
87 | where |
---|
88 | <p> |
---|
89 | <img src="mxp.png"/> |
---|
90 | </p> |
---|
91 | <p> |
---|
92 | <img src="myp.png"/> |
---|
93 | </p> |
---|
94 | <p> |
---|
95 | <img src="mzp.png"/> |
---|
96 | </p> |
---|
97 | <p> |
---|
98 | <img src="mqx.png"/> |
---|
99 | </p> |
---|
100 | <p> |
---|
101 | <img src="mqy.png"/> |
---|
102 | </p> |
---|
103 | <br> |
---|
104 | <br> |
---|
105 | Here, the M<sub>0x</sub>, M<sub>0y</sub> and M<sub>0z</sub> are the x, y and z |
---|
106 | components of the magnetization vector given in the xyz lab frame. |
---|
107 | <br> |
---|
108 | <br> |
---|
109 | <b>2. <a name="gui">GUI</a> </b> |
---|
110 | <br> |
---|
111 | <p> |
---|
112 | <img src="gen_gui_help.png"/> |
---|
113 | </p> |
---|
114 | <br> |
---|
115 | <p> |
---|
116 | After the computation, the result will be listed in the 'Theory' box |
---|
117 | in the data explorer panel on the main window. |
---|
118 | <br> |
---|
119 | The 'Up_frac_in' and 'Up_frac_out' are the ratio, (spin up) /(spin up + spin down) neutrons |
---|
120 | before the sample and at the analyzer, respectively. |
---|
121 | </p> |
---|
122 | <br> |
---|
123 | *Note I: The values of 'Up_frac_in' and 'Up_frac_out' must be in the range between 0 and 1. |
---|
124 | For example, both values are 0.5 for unpolarized neutrons. |
---|
125 | <br> |
---|
126 | *Note II: This computation is totally based on the pixel (or atomic) data fixed |
---|
127 | in the xyz coordinates. Thus no angular orientational averaging is considered. |
---|
128 | <br> |
---|
129 | *Note III: For the nuclear scattering length density, only the real component is taken account. |
---|
130 | <br> |
---|
131 | <br> |
---|
132 | <b>3. <a name="pdb">PDB Data</a> </b> |
---|
133 | <br> |
---|
134 | This Generic scattering calculator also supports some pdb files without considering polarized/magnetic scattering |
---|
135 | so that the related parameters such as Up_*** will be ignored (see the Picture below). The calculation for fixed orientation uses (the first) Equation above resulting |
---|
136 | in a 2D output, whileas the scattering calculation averaged over all the orientations uses the Debye equation providing a 1D output: |
---|
137 | <p> |
---|
138 | <img src="gen_debye_eq.png"/> |
---|
139 | </p> |
---|
140 | <br> |
---|
141 | where v<sub>j</sub>β<sub>j</sub> ≡ b<sub>j</sub> is the scattering length of the j'th atom. |
---|
142 | The resultant outputs will be displayed in the DataExporer for further uses. |
---|
143 | <br> |
---|
144 | <p> |
---|
145 | <img src="pdb_combo.jpg"/> |
---|
146 | </p> |
---|
147 | </body> |
---|