1 | /** \file points_model.cc */ |
---|
2 | |
---|
3 | #include <vector> |
---|
4 | #include <algorithm> |
---|
5 | #include <fstream> |
---|
6 | #include <stdio.h> |
---|
7 | //#include <exception> |
---|
8 | #include <stdexcept> |
---|
9 | #include "points_model.h" |
---|
10 | #include "Point3D.h" |
---|
11 | |
---|
12 | PointsModel::PointsModel() |
---|
13 | { |
---|
14 | r_grids_num_ = 2000; |
---|
15 | rmax_ = 0; |
---|
16 | cormax_ = 0; |
---|
17 | rstep_ = 0; |
---|
18 | } |
---|
19 | |
---|
20 | void PointsModel::CalculateIQ(IQ *iq) |
---|
21 | { |
---|
22 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
23 | int nIpoints = iq->GetNumI(); |
---|
24 | double qstep = (iq->GetQmax()) / (nIpoints-1); |
---|
25 | vector<double> fint(nIpoints, 0); |
---|
26 | |
---|
27 | //I(0) is calculated seperately |
---|
28 | int num_rstep = pr_.dim1(); |
---|
29 | |
---|
30 | for (int k = 1; k<nIpoints; k++){ |
---|
31 | |
---|
32 | double q = k * qstep; |
---|
33 | |
---|
34 | double r =0; |
---|
35 | double debeye = 0; |
---|
36 | double fadd =0; |
---|
37 | |
---|
38 | |
---|
39 | for (int i = 1; i < num_rstep; ++i){ |
---|
40 | r = i*rstep_; //r should start from 1* rstep |
---|
41 | double qr = q*r; |
---|
42 | debeye = sin(qr)/qr; |
---|
43 | fadd = pr_[i][1]*debeye; |
---|
44 | fint[k] = fint[k] + fadd; |
---|
45 | } |
---|
46 | } |
---|
47 | |
---|
48 | //I(0) |
---|
49 | double Izero = 0; |
---|
50 | for (int i = 0; i < num_rstep; ++i) |
---|
51 | Izero += pr_[i][1]; |
---|
52 | fint[0] = Izero; |
---|
53 | |
---|
54 | //assign I(Q) with normalization |
---|
55 | for(int j = 0; j < nIpoints; ++j){ |
---|
56 | (*iq).iq_data[j][0] = j * qstep; |
---|
57 | (*iq).iq_data[j][1] = fint[j]; |
---|
58 | // remove normalization Izero; |
---|
59 | } |
---|
60 | } |
---|
61 | |
---|
62 | //return I with a single q value |
---|
63 | double PointsModel::CalculateIQ(double q) |
---|
64 | { |
---|
65 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
66 | int num_rstep = pr_.dim1(); |
---|
67 | |
---|
68 | double r =0; |
---|
69 | double debeye = 0; |
---|
70 | double fadd = 0; |
---|
71 | double Irelative = 0; |
---|
72 | |
---|
73 | //I(0) is calculated seperately |
---|
74 | if (q == 0){ |
---|
75 | //I(0) |
---|
76 | double Izero = 0; |
---|
77 | for (int i = 0; i < num_rstep; ++i) |
---|
78 | Izero += pr_[i][1]; |
---|
79 | Irelative = Izero; |
---|
80 | } |
---|
81 | else { |
---|
82 | for (int i = 1; i < num_rstep; ++i){ |
---|
83 | r = i*rstep_; //r should start from 1* rstep |
---|
84 | double qr = q*r; |
---|
85 | debeye = sin(qr)/qr; |
---|
86 | fadd = pr_[i][1]*debeye; |
---|
87 | Irelative = Irelative + fadd; |
---|
88 | } |
---|
89 | } |
---|
90 | return Irelative; |
---|
91 | } |
---|
92 | |
---|
93 | double PointsModel::CalculateIQError(double q) |
---|
94 | { |
---|
95 | //fourier transform of the returned Array2D<double> from ddFunction() |
---|
96 | int num_rstep = pr_.dim1(); |
---|
97 | |
---|
98 | double r =0; |
---|
99 | double debeye = 0; |
---|
100 | double fadd = 0; |
---|
101 | double Irelative = 0; |
---|
102 | |
---|
103 | //I(0) is calculated seperately |
---|
104 | for (int i = 1; i < num_rstep; ++i){ |
---|
105 | r = i*rstep_; //r should start from 1* rstep |
---|
106 | double qr = q*r; |
---|
107 | debeye = sin(qr)/qr; |
---|
108 | fadd = fabs(pr_[i][2])*debeye*debeye |
---|
109 | + rstep_*rstep_/4.0/r/r*(cos(qr)*cos(qr) + debeye*debeye); |
---|
110 | Irelative = Irelative + fadd; |
---|
111 | } |
---|
112 | return sqrt(Irelative); |
---|
113 | } |
---|
114 | |
---|
115 | //pass in a vector of points, and calculate the P(r) |
---|
116 | double PointsModel::DistDistribution(const vector<Point3D> &vp) |
---|
117 | { |
---|
118 | //get r axis:0,rstep,2rstep,3rstep......d_bound |
---|
119 | int sizeofpr = r_grids_num_ + 1; //+1 just for overflow prevention |
---|
120 | |
---|
121 | double d_bound = GetDimBound(); |
---|
122 | rstep_ = CalculateRstep(r_grids_num_,d_bound); |
---|
123 | |
---|
124 | Array2D<double> pr(sizeofpr, 3); //third column is left for error for the future |
---|
125 | pr = 0; |
---|
126 | |
---|
127 | for (int i = 1; i != sizeofpr; ++i) |
---|
128 | pr[i][0] = pr[i-1][0] + rstep_ ; //column 1: distance |
---|
129 | |
---|
130 | int size = vp.size(); |
---|
131 | |
---|
132 | for (int i1 = 0; i1 < size - 1; ++i1) { |
---|
133 | for (int i2 = i1 + 1; i2 < size; ++i2) { |
---|
134 | //dist_.push_back(vp[i1].distanceToPoint(vp[i2])); |
---|
135 | //product_sld_.push_back(vp[i1].getSLD() * vp[i2].getSLD()); |
---|
136 | double a_dist = vp[i1].distanceToPoint(vp[i2]); |
---|
137 | double its_sld = vp[i1].getSLD() * vp[i2].getSLD(); |
---|
138 | |
---|
139 | //save maximum distance |
---|
140 | if (a_dist>rmax_) { |
---|
141 | rmax_ = a_dist; |
---|
142 | } |
---|
143 | //insert into pr array |
---|
144 | int l = int(floor(a_dist/rstep_)); |
---|
145 | |
---|
146 | //cout << "i1,i2,l,a_dist"<<vp[i1]<<" "<<vp[i2]<<" "<<l<<" "<<a_dist<<endl; |
---|
147 | //overflow check |
---|
148 | if (l >= sizeofpr) { |
---|
149 | cerr << "one distance is out of range: " << l <<endl; |
---|
150 | //throw "Out of range"; |
---|
151 | } |
---|
152 | else { |
---|
153 | pr[l][1] += its_sld; //column 2 intermediate: sum of SLD of the points with specific distance |
---|
154 | // Estimate uncertainty (squared) |
---|
155 | pr[l][2] += its_sld*its_sld; |
---|
156 | //keep maxium Pr absolute number, in order to normalize |
---|
157 | //if (pr[l][1] > cormax_) cormax_ = pr[l][1]; |
---|
158 | } |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | //normalize Pr |
---|
163 | for (int j = 0; j != sizeofpr; ++j){ //final column2 for P(r) |
---|
164 | //pr[j][1] = pr[j][1]/cormax_; |
---|
165 | |
---|
166 | // 'Size' is the number of space points, without double counting (excluding |
---|
167 | // overlapping regions between shapes). The volume of the combined shape |
---|
168 | // is given by V = size * (sum of all sub-volumes) / (Total number of points) |
---|
169 | // V = size / (lores_density) |
---|
170 | |
---|
171 | // - To transform the integral to a sum, we need to give a weight |
---|
172 | // to each entry equal to the average space volume of a point (w = V/N = 1/lores_density). |
---|
173 | // The final output, I(q), should therefore be multiplied by V*V/N*N. |
---|
174 | // Since we will be interested in P(r)/V, we only need to multiply by 1/N*(V/N) = 1/N/lores_density. |
---|
175 | // We don't have access to lores_density from this class; we will therefore apply |
---|
176 | // this correction externally. |
---|
177 | // |
---|
178 | // - Since the loop goes through half the points, multiply by 2. |
---|
179 | // TODO: have access to lores_density from this class. |
---|
180 | // |
---|
181 | pr[j][1] = 2.0*pr[j][1]/size; |
---|
182 | pr[j][2] = 4.0*pr[j][2]/size/size; |
---|
183 | } |
---|
184 | pr_ = pr; |
---|
185 | |
---|
186 | return rmax_; |
---|
187 | } |
---|
188 | |
---|
189 | Array2D<double> PointsModel::GetPr() |
---|
190 | { |
---|
191 | return pr_; |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | double PointsModel::CalculateRstep(int num_grids, double rmax) |
---|
196 | { |
---|
197 | assert(num_grids > 0); |
---|
198 | |
---|
199 | double rstep; |
---|
200 | rstep = rmax / num_grids; |
---|
201 | |
---|
202 | return rstep; |
---|
203 | } |
---|
204 | |
---|
205 | void PointsModel::OutputPR(const string &fpr){ |
---|
206 | ofstream outfile(fpr.c_str()); |
---|
207 | if (!outfile) { |
---|
208 | cerr << "error: unable to open output file: " |
---|
209 | << outfile << endl; |
---|
210 | exit(1); |
---|
211 | } |
---|
212 | |
---|
213 | double sum = 0.0; |
---|
214 | double r_stepsize = 1.0; |
---|
215 | if (pr_.dim1()>2) r_stepsize = pr_[1][0] - pr_[0][0]; |
---|
216 | |
---|
217 | for (int i = 0; i < pr_.dim1(); ++i){ |
---|
218 | sum += pr_[i][1]*r_stepsize; |
---|
219 | } |
---|
220 | |
---|
221 | for (int i = 0; i < pr_.dim1(); ++i){ |
---|
222 | if (pr_[i][1]==0) continue; |
---|
223 | outfile << pr_[i][0] << " " << (pr_[i][1]/sum) << endl; |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | void PointsModel::OutputPDB(const vector<Point3D> &vp,const char *fpr){ |
---|
228 | FILE *outfile=NULL; |
---|
229 | outfile = fopen(fpr,"w+"); |
---|
230 | if (!outfile) { |
---|
231 | cerr << "error: unable to open output file: " |
---|
232 | << outfile << endl; |
---|
233 | exit(1); |
---|
234 | } |
---|
235 | int size = vp.size(); |
---|
236 | int index = 0; |
---|
237 | for (int i = 0; i < size; ++i){ |
---|
238 | ++index; |
---|
239 | fprintf(outfile,"ATOM%7d C%24.3lf%8.3lf%8.3lf%6.3lf\n", \ |
---|
240 | index,vp[i].getX(),vp[i].getY(),vp[i].getZ(),vp[i].getSLD()); |
---|
241 | } |
---|
242 | fclose(outfile); |
---|
243 | } |
---|
244 | |
---|
245 | PointsModel::~PointsModel() |
---|
246 | { |
---|
247 | } |
---|
248 | |
---|
249 | void PointsModel::DistDistributionXY(const vector<Point3D> &vp) |
---|
250 | { |
---|
251 | //the max box get from 3D should be more than enough for 2D,but doesn't hurt |
---|
252 | double d_bound = GetDimBound(); |
---|
253 | |
---|
254 | //using 1A for rstep, so the total bins is the max distance for the object |
---|
255 | int sizeofpr = ceil(d_bound) + 1; //+1 just for overflow prevention |
---|
256 | rstep_ = 1; |
---|
257 | |
---|
258 | Array2D<double> pr_xy(sizeofpr,sizeofpr); //2D histogram |
---|
259 | |
---|
260 | //the max frequency in the correlation histogram |
---|
261 | double cormax_xy_ = 0; |
---|
262 | |
---|
263 | //initialization |
---|
264 | pr_xy = 0; |
---|
265 | |
---|
266 | for (int i = 1; i != sizeofpr; ++i){ |
---|
267 | pr_xy[i][0] = pr_xy[i-1][0] + rstep_ ; //column 1: distance |
---|
268 | } |
---|
269 | |
---|
270 | int size = vp.size(); |
---|
271 | |
---|
272 | for (int i1 = 0; i1 < size - 1; ++i1) { |
---|
273 | for (int i2 = i1 + 1; i2 < size; ++i2) { |
---|
274 | int jx = int(floor(fabs(vp[i1].getX()-vp[i2].getX())/rstep_)); |
---|
275 | int jy = int(floor(fabs(vp[i1].getY()-vp[i2].getY())/rstep_)); |
---|
276 | //the sld for the pair of points |
---|
277 | double its_sld = vp[i1].getSLD()*vp[i2].getSLD(); |
---|
278 | |
---|
279 | //overflow check |
---|
280 | if ((jx >= sizeofpr) || (jy >= sizeofpr)) |
---|
281 | { |
---|
282 | cerr << "one distance is out of range: " <<endl; |
---|
283 | //throw "Out of range"; |
---|
284 | } |
---|
285 | else{ |
---|
286 | pr_xy[jx][jy] += its_sld; |
---|
287 | if (pr_xy[jx][jy] > cormax_xy_ ) cormax_xy_ = pr_xy[jx][jy]; |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | |
---|
292 | //normalize Pr_xy |
---|
293 | for (int m = 0; m != sizeofpr; ++m){ //final column2 for P(r) |
---|
294 | for (int n = 0; n != sizeofpr; ++n){ |
---|
295 | pr_xy[m][n] = pr_xy[m][n]/cormax_xy_; |
---|
296 | //cout << "m n:"<<m<<" "<<n<<" "<<pr_xy[m][n]<<endl; |
---|
297 | } |
---|
298 | } |
---|
299 | |
---|
300 | pr_xy_ = pr_xy; |
---|
301 | } |
---|
302 | |
---|
303 | void PointsModel::OutputPR_XY(const std::string &fpr) |
---|
304 | { |
---|
305 | ofstream outfile(fpr.c_str()); |
---|
306 | if (!outfile) { |
---|
307 | cerr << "error: unable to open output file: " |
---|
308 | << outfile << endl; |
---|
309 | exit(1); |
---|
310 | } |
---|
311 | int size = pr_xy_.dim1(); |
---|
312 | //pr_xy_ is a N x N array |
---|
313 | for (int i = 0; i != size; ++i){ |
---|
314 | for (int j = 0; j != size; ++j) |
---|
315 | { |
---|
316 | outfile << i << " " << j <<" "<< pr_xy_[i][j] << endl; |
---|
317 | } |
---|
318 | } |
---|
319 | } |
---|
320 | |
---|
321 | void PointsModel::CalculateIQ_2D(IQ *iq,double phi) |
---|
322 | { |
---|
323 | int nIpoints = iq->GetNumI(); |
---|
324 | double qstep = (iq->GetQmax()) / (nIpoints-1); |
---|
325 | vector<double> fint(nIpoints, 0); |
---|
326 | double Izero = 0; |
---|
327 | |
---|
328 | //number of bins on x and y axis |
---|
329 | int size_r = pr_xy_.dim1(); |
---|
330 | //rstep is set to one, otherwise should be cos(phi)*rstep |
---|
331 | double cosphi = cos(phi); |
---|
332 | double sinphi = sin(phi); |
---|
333 | |
---|
334 | for(int k = 1; k != nIpoints; ++k){ |
---|
335 | double q = k * qstep; |
---|
336 | double tmp = cos(q*(cosphi+sinphi)); |
---|
337 | |
---|
338 | for(int i=0; i!=size_r; ++i){ |
---|
339 | for(int j = 0; j!=size_r; ++j){ |
---|
340 | fint[k] += pr_xy_[i][j]*tmp; |
---|
341 | } |
---|
342 | } |
---|
343 | } |
---|
344 | |
---|
345 | for(int i=0; i!=size_r; ++i){ |
---|
346 | for(int j = 0; j!=size_r; ++j){ |
---|
347 | Izero += pr_xy_[i][j]; |
---|
348 | } |
---|
349 | } |
---|
350 | fint[0] = Izero; |
---|
351 | |
---|
352 | //assign I(Q) with normalization |
---|
353 | for(int j = 0; j < nIpoints; ++j){ |
---|
354 | (*iq).iq_data[j][0] = j * qstep; |
---|
355 | (*iq).iq_data[j][1] = fint[j] / Izero; |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | vector<double> PointsModel::GetCenter() |
---|
360 | { |
---|
361 | vector<double> vp(3,0); |
---|
362 | return vp; |
---|
363 | } |
---|
364 | |
---|
365 | double PointsModel::CalculateIQ_2D(double qx, double qy) |
---|
366 | { |
---|
367 | //for each (Qx,Qy) on 2D detector, calculate I |
---|
368 | double q = sqrt(qx*qx+qy*qy); |
---|
369 | double I = 0; |
---|
370 | |
---|
371 | double cosphi = qx/q; |
---|
372 | double sinphi = qy/q; |
---|
373 | double tmp = cos(q*(cosphi+sinphi)); |
---|
374 | |
---|
375 | //loop through P(r) on xy plane |
---|
376 | int size_r = pr_xy_.dim1(); |
---|
377 | for(int i=-size_r+1; i!=size_r; ++i){ |
---|
378 | for(int j = -size_r+1; j!=size_r; ++j){ |
---|
379 | //rstep is set to one, left out from calculation |
---|
380 | I += pr_xy_[abs(i)][abs(j)]*cos(q*(cosphi*i+sinphi*j)); |
---|
381 | } |
---|
382 | } |
---|
383 | |
---|
384 | //return I, without normalization |
---|
385 | return I; |
---|
386 | } |
---|
387 | |
---|
388 | /* |
---|
389 | * 2D simulation for oriented systems |
---|
390 | * The beam direction is assumed to be in the z direction. |
---|
391 | * |
---|
392 | * @param points: vector of space points |
---|
393 | * @param qx: qx [A-1] |
---|
394 | * @param qy: qy [A-1] |
---|
395 | * @return: I(qx, qy) for the system described by the space points [cm-1] |
---|
396 | * |
---|
397 | */ |
---|
398 | double PointsModel::CalculateIQ_2D(const vector<Point3D>&points, double qx, double qy){ |
---|
399 | /* |
---|
400 | * TODO: the vector of points should really be part of the class |
---|
401 | * This is a design flaw inherited from the original programmer. |
---|
402 | */ |
---|
403 | |
---|
404 | int size = points.size(); |
---|
405 | |
---|
406 | double cos_term = 0; |
---|
407 | double sin_term = 0; |
---|
408 | for (int i = 0; i < size; i++) { |
---|
409 | //the sld for the pair of points |
---|
410 | |
---|
411 | double phase = qx*points[i].getX() + qy*points[i].getY(); |
---|
412 | |
---|
413 | cos_term += cos(phase) * points[i].getSLD(); |
---|
414 | sin_term += sin(phase) * points[i].getSLD(); |
---|
415 | |
---|
416 | } |
---|
417 | |
---|
418 | // P(q) = 1/V I(q) = (V/N)^2 (1/V) (cos_term^2 + sin_term^2) |
---|
419 | // We divide by N here and we will multiply by the density later. |
---|
420 | |
---|
421 | return (cos_term*cos_term + sin_term*sin_term)/size; |
---|
422 | } |
---|
423 | |
---|
424 | double PointsModel::CalculateIQ_2D_Error(const vector<Point3D>&points, double qx, double qy){ |
---|
425 | |
---|
426 | int size = points.size(); |
---|
427 | |
---|
428 | double delta_x, delta_y; |
---|
429 | double q_t2 = qx*qx + qy*qy; |
---|
430 | double cos_term = 0; |
---|
431 | double sin_term = 0; |
---|
432 | double cos_err = 0; |
---|
433 | double sin_err = 0; |
---|
434 | |
---|
435 | // Estimate the error on the position of each point |
---|
436 | // in x or y as V^(1/3)/N |
---|
437 | |
---|
438 | for (int i = 0; i < size; i++) { |
---|
439 | |
---|
440 | |
---|
441 | //the sld for the pair of points |
---|
442 | |
---|
443 | double phase = qx*points[i].getX() + qy*points[i].getY(); |
---|
444 | double sld_fac = points[i].getSLD() * points[i].getSLD(); |
---|
445 | |
---|
446 | cos_term += cos(phase) * points[i].getSLD(); |
---|
447 | sin_term += sin(phase) * points[i].getSLD(); |
---|
448 | |
---|
449 | sin_err += cos(phase) * cos(phase) * sld_fac; |
---|
450 | cos_err += sin(phase) * sin(phase) * sld_fac; |
---|
451 | |
---|
452 | } |
---|
453 | |
---|
454 | // P(q) = 1/V I(q) = (V/N)^2 (1/V) (cos_term^2 + sin_term^2) |
---|
455 | // We divide by N here and we will multiply by the density later. |
---|
456 | |
---|
457 | // We will need to multiply this error by V^(1/3)/N. |
---|
458 | // We don't have access to V from within this class. |
---|
459 | return 2*sqrt(cos_term*cos_term*cos_err*cos_err + sin_term*sin_term*sin_err*sin_err)/size; |
---|
460 | } |
---|
461 | |
---|