1 | #!/usr/bin/env python |
---|
2 | """ Volume Canvas |
---|
3 | |
---|
4 | Simulation canvas for real-space simulation of SAS scattering intensity. |
---|
5 | The user can create an arrangement of basic shapes and estimate I(q) and |
---|
6 | I(q_x, q_y). Error estimates on the simulation are also available. |
---|
7 | |
---|
8 | Example: |
---|
9 | |
---|
10 | import sas.sascalc.realspace.VolumeCanvas as VolumeCanvas |
---|
11 | canvas = VolumeCanvas.VolumeCanvas() |
---|
12 | canvas.setParam('lores_density', 0.01) |
---|
13 | |
---|
14 | sphere = SphereDescriptor() |
---|
15 | handle = canvas.addObject(sphere) |
---|
16 | |
---|
17 | output, error = canvas.getIqError(q=0.1) |
---|
18 | output, error = canvas.getIq2DError(0.1, 0.1) |
---|
19 | |
---|
20 | or alternatively: |
---|
21 | iq = canvas.run(0.1) |
---|
22 | i2_2D = canvas.run([0.1, 1.57]) |
---|
23 | |
---|
24 | """ |
---|
25 | |
---|
26 | from sas.models.BaseComponent import BaseComponent |
---|
27 | from sas.sascalc.simulation.pointsmodelpy import pointsmodelpy |
---|
28 | from sas.sascalc.simulation.geoshapespy import geoshapespy |
---|
29 | |
---|
30 | |
---|
31 | import os.path, math |
---|
32 | |
---|
33 | class ShapeDescriptor: |
---|
34 | """ |
---|
35 | Class to hold the information about a shape |
---|
36 | The descriptor holds a dictionary of parameters. |
---|
37 | |
---|
38 | Note: if shape parameters are accessed directly |
---|
39 | from outside VolumeCanvas. The getPr method |
---|
40 | should be called before evaluating I(q). |
---|
41 | |
---|
42 | """ |
---|
43 | def __init__(self): |
---|
44 | """ |
---|
45 | Initialization |
---|
46 | """ |
---|
47 | ## Real space object |
---|
48 | self.shapeObject = None |
---|
49 | ## Parameters of the object |
---|
50 | self.params = {} |
---|
51 | self.params["center"] = [0, 0, 0] |
---|
52 | # Orientation are angular offsets in degrees with respect to X, Y, Z |
---|
53 | self.params["orientation"] = [0, 0, 0] |
---|
54 | # Default to lores shape |
---|
55 | self.params['is_lores'] = True |
---|
56 | self.params['order'] = 0 |
---|
57 | |
---|
58 | def create(self): |
---|
59 | """ |
---|
60 | Create an instance of the shape |
---|
61 | """ |
---|
62 | # Set center |
---|
63 | x0 = self.params["center"][0] |
---|
64 | y0 = self.params["center"][1] |
---|
65 | z0 = self.params["center"][2] |
---|
66 | geoshapespy.set_center(self.shapeObject, x0, y0, z0) |
---|
67 | |
---|
68 | # Set orientation |
---|
69 | x0 = self.params["orientation"][0] |
---|
70 | y0 = self.params["orientation"][1] |
---|
71 | z0 = self.params["orientation"][2] |
---|
72 | geoshapespy.set_orientation(self.shapeObject, x0, y0, z0) |
---|
73 | |
---|
74 | class SphereDescriptor(ShapeDescriptor): |
---|
75 | """ |
---|
76 | Descriptor for a sphere |
---|
77 | |
---|
78 | The parameters are: |
---|
79 | - radius [Angstroem] [default = 20 A] |
---|
80 | - Contrast [A-2] [default = 1 A-2] |
---|
81 | |
---|
82 | """ |
---|
83 | def __init__(self): |
---|
84 | """ |
---|
85 | Initialization |
---|
86 | """ |
---|
87 | ShapeDescriptor.__init__(self) |
---|
88 | # Default parameters |
---|
89 | self.params["type"] = "sphere" |
---|
90 | # Radius of the sphere |
---|
91 | self.params["radius"] = 20.0 |
---|
92 | # Constrast parameter |
---|
93 | self.params["contrast"] = 1.0 |
---|
94 | |
---|
95 | def create(self): |
---|
96 | """ |
---|
97 | Create an instance of the shape |
---|
98 | @return: instance of the shape |
---|
99 | """ |
---|
100 | self.shapeObject = geoshapespy.new_sphere(\ |
---|
101 | self.params["radius"]) |
---|
102 | |
---|
103 | ShapeDescriptor.create(self) |
---|
104 | return self.shapeObject |
---|
105 | |
---|
106 | class CylinderDescriptor(ShapeDescriptor): |
---|
107 | """ |
---|
108 | Descriptor for a cylinder |
---|
109 | Orientation: Default cylinder is along Y |
---|
110 | |
---|
111 | Parameters: |
---|
112 | - Length [default = 40 A] |
---|
113 | - Radius [default = 10 A] |
---|
114 | - Contrast [default = 1 A-2] |
---|
115 | """ |
---|
116 | def __init__(self): |
---|
117 | """ |
---|
118 | Initialization |
---|
119 | """ |
---|
120 | ShapeDescriptor.__init__(self) |
---|
121 | # Default parameters |
---|
122 | self.params["type"] = "cylinder" |
---|
123 | # Length of the cylinder |
---|
124 | self.params["length"] = 40.0 |
---|
125 | # Radius of the cylinder |
---|
126 | self.params["radius"] = 10.0 |
---|
127 | # Constrast parameter |
---|
128 | self.params["contrast"] = 1.0 |
---|
129 | |
---|
130 | def create(self): |
---|
131 | """ |
---|
132 | Create an instance of the shape |
---|
133 | @return: instance of the shape |
---|
134 | """ |
---|
135 | self.shapeObject = geoshapespy.new_cylinder(\ |
---|
136 | self.params["radius"], self.params["length"]) |
---|
137 | |
---|
138 | ShapeDescriptor.create(self) |
---|
139 | return self.shapeObject |
---|
140 | |
---|
141 | |
---|
142 | class EllipsoidDescriptor(ShapeDescriptor): |
---|
143 | """ |
---|
144 | Descriptor for an ellipsoid |
---|
145 | |
---|
146 | Parameters: |
---|
147 | - Radius_x along the x-axis [default = 30 A] |
---|
148 | - Radius_y along the y-axis [default = 20 A] |
---|
149 | - Radius_z along the z-axis [default = 10 A] |
---|
150 | - contrast [default = 1 A-2] |
---|
151 | """ |
---|
152 | def __init__(self): |
---|
153 | """ |
---|
154 | Initialization |
---|
155 | """ |
---|
156 | ShapeDescriptor.__init__(self) |
---|
157 | # Default parameters |
---|
158 | self.params["type"] = "ellipsoid" |
---|
159 | self.params["radius_x"] = 30.0 |
---|
160 | self.params["radius_y"] = 20.0 |
---|
161 | self.params["radius_z"] = 10.0 |
---|
162 | self.params["contrast"] = 1.0 |
---|
163 | |
---|
164 | def create(self): |
---|
165 | """ |
---|
166 | Create an instance of the shape |
---|
167 | @return: instance of the shape |
---|
168 | """ |
---|
169 | self.shapeObject = geoshapespy.new_ellipsoid(\ |
---|
170 | self.params["radius_x"], self.params["radius_y"], |
---|
171 | self.params["radius_z"]) |
---|
172 | |
---|
173 | ShapeDescriptor.create(self) |
---|
174 | return self.shapeObject |
---|
175 | |
---|
176 | class HelixDescriptor(ShapeDescriptor): |
---|
177 | """ |
---|
178 | Descriptor for an helix |
---|
179 | |
---|
180 | Parameters: |
---|
181 | -radius_helix: the radius of the helix [default = 10 A] |
---|
182 | -radius_tube: radius of the "tube" that forms the helix [default = 3 A] |
---|
183 | -pitch: distance between two consecutive turns of the helix [default = 34 A] |
---|
184 | -turns: number of turns of the helix [default = 3] |
---|
185 | -contrast: contrast parameter [default = 1 A-2] |
---|
186 | """ |
---|
187 | def __init__(self): |
---|
188 | """ |
---|
189 | Initialization |
---|
190 | """ |
---|
191 | ShapeDescriptor.__init__(self) |
---|
192 | # Default parameters |
---|
193 | self.params["type"] = "singlehelix" |
---|
194 | self.params["radius_helix"] = 10.0 |
---|
195 | self.params["radius_tube"] = 3.0 |
---|
196 | self.params["pitch"] = 34.0 |
---|
197 | self.params["turns"] = 3.0 |
---|
198 | self.params["contrast"] = 1.0 |
---|
199 | |
---|
200 | def create(self): |
---|
201 | """ |
---|
202 | Create an instance of the shape |
---|
203 | @return: instance of the shape |
---|
204 | """ |
---|
205 | self.shapeObject = geoshapespy.new_singlehelix(\ |
---|
206 | self.params["radius_helix"], self.params["radius_tube"], |
---|
207 | self.params["pitch"], self.params["turns"]) |
---|
208 | |
---|
209 | ShapeDescriptor.create(self) |
---|
210 | return self.shapeObject |
---|
211 | |
---|
212 | class PDBDescriptor(ShapeDescriptor): |
---|
213 | """ |
---|
214 | Descriptor for a PDB set of points |
---|
215 | |
---|
216 | Parameter: |
---|
217 | - file = name of the PDB file |
---|
218 | """ |
---|
219 | def __init__(self, filename): |
---|
220 | """ |
---|
221 | Initialization |
---|
222 | @param filename: name of the PDB file to load |
---|
223 | """ |
---|
224 | ShapeDescriptor.__init__(self) |
---|
225 | # Default parameters |
---|
226 | self.params["type"] = "pdb" |
---|
227 | self.params["file"] = filename |
---|
228 | self.params['is_lores'] = False |
---|
229 | |
---|
230 | def create(self): |
---|
231 | """ |
---|
232 | Create an instance of the shape |
---|
233 | @return: instance of the shape |
---|
234 | """ |
---|
235 | self.shapeObject = pointsmodelpy.new_pdbmodel() |
---|
236 | pointsmodelpy.pdbmodel_add(self.shapeObject, self.params['file']) |
---|
237 | |
---|
238 | #ShapeDescriptor.create(self) |
---|
239 | return self.shapeObject |
---|
240 | |
---|
241 | # Define a dictionary for the shape until we find |
---|
242 | # a better way to create them |
---|
243 | shape_dict = {'sphere':SphereDescriptor, |
---|
244 | 'cylinder':CylinderDescriptor, |
---|
245 | 'ellipsoid':EllipsoidDescriptor, |
---|
246 | 'singlehelix':HelixDescriptor} |
---|
247 | |
---|
248 | class VolumeCanvas(BaseComponent): |
---|
249 | """ |
---|
250 | Class representing an empty space volume to add |
---|
251 | geometrical object to. |
---|
252 | |
---|
253 | For 1D I(q) simulation, getPr() is called internally for the |
---|
254 | first call to getIq(). |
---|
255 | |
---|
256 | """ |
---|
257 | |
---|
258 | def __init__(self): |
---|
259 | """ |
---|
260 | Initialization |
---|
261 | """ |
---|
262 | BaseComponent.__init__(self) |
---|
263 | |
---|
264 | ## Maximum value of q reachable |
---|
265 | self.params['q_max'] = 0.1 |
---|
266 | self.params['lores_density'] = 0.1 |
---|
267 | self.params['scale'] = 1.0 |
---|
268 | self.params['background'] = 0.0 |
---|
269 | |
---|
270 | self.lores_model = pointsmodelpy.new_loresmodel(self.params['lores_density']) |
---|
271 | self.complex_model = pointsmodelpy.new_complexmodel() |
---|
272 | self.shapes = {} |
---|
273 | self.shapecount = 0 |
---|
274 | self.points = None |
---|
275 | self.npts = 0 |
---|
276 | self.hasPr = False |
---|
277 | |
---|
278 | def _model_changed(self): |
---|
279 | """ |
---|
280 | Reset internal data members to reflect the fact that the |
---|
281 | real-space model has changed |
---|
282 | """ |
---|
283 | self.hasPr = False |
---|
284 | self.points = None |
---|
285 | |
---|
286 | def addObject(self, shapeDesc, id = None): |
---|
287 | """ |
---|
288 | Adds a real-space object to the canvas. |
---|
289 | |
---|
290 | @param shapeDesc: object to add to the canvas [ShapeDescriptor] |
---|
291 | @param id: string handle for the object [string] [optional] |
---|
292 | @return: string handle for the object |
---|
293 | """ |
---|
294 | # If the handle is not provided, create one |
---|
295 | if id == None: |
---|
296 | id = shapeDesc.params["type"]+str(self.shapecount) |
---|
297 | |
---|
298 | # Self the order number |
---|
299 | shapeDesc.params['order'] = self.shapecount |
---|
300 | # Store the shape in a dictionary entry associated |
---|
301 | # with the handle |
---|
302 | self.shapes[id] = shapeDesc |
---|
303 | self.shapecount += 1 |
---|
304 | |
---|
305 | # model changed, need to recalculate P(r) |
---|
306 | self._model_changed() |
---|
307 | |
---|
308 | return id |
---|
309 | |
---|
310 | |
---|
311 | def add(self, shape, id = None): |
---|
312 | """ |
---|
313 | The intend of this method is to eventually be able to use it |
---|
314 | as a factory for the canvas and unify the simulation with the |
---|
315 | analytical solutions. For instance, if one adds a cylinder and |
---|
316 | it is the only shape on the canvas, the analytical solution |
---|
317 | could be called. If multiple shapes are involved, then |
---|
318 | simulation has to be performed. |
---|
319 | |
---|
320 | This function is deprecated, use addObject(). |
---|
321 | |
---|
322 | @param shape: name of the object to add to the canvas [string] |
---|
323 | @param id: string handle for the object [string] [optional] |
---|
324 | @return: string handle for the object |
---|
325 | """ |
---|
326 | # If the handle is not provided, create one |
---|
327 | if id == None: |
---|
328 | id = "shape"+str(self.shapecount) |
---|
329 | |
---|
330 | # shapeDesc = ShapeDescriptor(shape.lower()) |
---|
331 | if shape.lower() in shape_dict: |
---|
332 | shapeDesc = shape_dict[shape.lower()]() |
---|
333 | elif os.path.isfile(shape): |
---|
334 | # A valid filename was supplier, create a PDB object |
---|
335 | shapeDesc = PDBDescriptor(shape) |
---|
336 | else: |
---|
337 | raise ValueError("VolumeCanvas.add: Unknown shape %s" % shape) |
---|
338 | |
---|
339 | return self.addObject(shapeDesc, id) |
---|
340 | |
---|
341 | def delete(self, id): |
---|
342 | """ |
---|
343 | Delete a shape. The ID for the shape is required. |
---|
344 | @param id: string handle for the object [string] [optional] |
---|
345 | """ |
---|
346 | |
---|
347 | if id in self.shapes: |
---|
348 | del self.shapes[id] |
---|
349 | else: |
---|
350 | raise KeyError("VolumeCanvas.delete: could not find shape ID") |
---|
351 | |
---|
352 | # model changed, need to recalculate P(r) |
---|
353 | self._model_changed() |
---|
354 | |
---|
355 | |
---|
356 | def setParam(self, name, value): |
---|
357 | """ |
---|
358 | Function to set the value of a parameter. |
---|
359 | Both VolumeCanvas parameters and shape parameters |
---|
360 | are accessible. |
---|
361 | |
---|
362 | Note: if shape parameters are accessed directly |
---|
363 | from outside VolumeCanvas. The getPr method |
---|
364 | should be called before evaluating I(q). |
---|
365 | |
---|
366 | TODO: implemented a check method to protect |
---|
367 | against that. |
---|
368 | |
---|
369 | @param name: name of the parameter to change |
---|
370 | @param value: value to give the parameter |
---|
371 | """ |
---|
372 | |
---|
373 | # Lowercase for case insensitivity |
---|
374 | name = name.lower() |
---|
375 | |
---|
376 | # Look for shape access |
---|
377 | toks = name.split('.') |
---|
378 | |
---|
379 | # If a shape identifier was given, look the shape up |
---|
380 | # in the dictionary |
---|
381 | if len(toks): |
---|
382 | if toks[0] in self.shapes: |
---|
383 | # The shape was found, now look for the parameter |
---|
384 | if toks[1] in self.shapes[toks[0]].params: |
---|
385 | # The parameter was found, now change it |
---|
386 | self.shapes[toks[0]].params[toks[1]] = value |
---|
387 | self._model_changed() |
---|
388 | else: |
---|
389 | raise ValueError("Could not find parameter %s" % name) |
---|
390 | else: |
---|
391 | raise ValueError("Could not find shape %s" % toks[0]) |
---|
392 | |
---|
393 | else: |
---|
394 | # If we are not accessing the parameters of a |
---|
395 | # shape, see if the parameter is part of this object |
---|
396 | BaseComponent.setParam(self, name, value) |
---|
397 | self._model_changed() |
---|
398 | |
---|
399 | def getParam(self, name): |
---|
400 | """ |
---|
401 | @param name: name of the parameter to change |
---|
402 | """ |
---|
403 | #TODO: clean this up |
---|
404 | |
---|
405 | # Lowercase for case insensitivity |
---|
406 | name = name.lower() |
---|
407 | |
---|
408 | # Look for sub-model access |
---|
409 | toks = name.split('.') |
---|
410 | if len(toks) == 1: |
---|
411 | try: |
---|
412 | value = self.params[toks[0]] |
---|
413 | except KeyError: |
---|
414 | raise ValueError("VolumeCanvas.getParam: Could not find" |
---|
415 | " %s" % name) |
---|
416 | if isinstance(value, ShapeDescriptor): |
---|
417 | raise ValueError("VolumeCanvas.getParam: Cannot get parameter" |
---|
418 | " value.") |
---|
419 | else: |
---|
420 | return value |
---|
421 | |
---|
422 | elif len(toks) == 2: |
---|
423 | try: |
---|
424 | shapeinstance = self.shapes[toks[0]] |
---|
425 | except KeyError: |
---|
426 | raise ValueError("VolumeCanvas.getParam: Could not find " |
---|
427 | "%s" % name) |
---|
428 | |
---|
429 | if not toks[1] in shapeinstance.params: |
---|
430 | raise ValueError("VolumeCanvas.getParam: Could not find " |
---|
431 | "%s" % name) |
---|
432 | |
---|
433 | return shapeinstance.params[toks[1]] |
---|
434 | |
---|
435 | else: |
---|
436 | raise ValueError("VolumeCanvas.getParam: Could not find %s" % name) |
---|
437 | |
---|
438 | def getParamList(self, shapeid=None): |
---|
439 | """ |
---|
440 | return a full list of all available parameters from |
---|
441 | self.params.keys(). If a key in self.params is a instance |
---|
442 | of ShapeDescriptor, extend the return list to: |
---|
443 | [param1,param2,shapeid.param1,shapeid.param2.......] |
---|
444 | |
---|
445 | If shapeid is provided, return the list of parameters that |
---|
446 | belongs to that shape id only : [shapeid.param1, shapeid.param2...] |
---|
447 | """ |
---|
448 | |
---|
449 | param_list = [] |
---|
450 | if shapeid is None: |
---|
451 | for key1 in self.params: |
---|
452 | #value1 = self.params[key1] |
---|
453 | param_list.append(key1) |
---|
454 | for key2 in self.shapes: |
---|
455 | value2 = self.shapes[key2] |
---|
456 | header = key2 + '.' |
---|
457 | for key3 in value2.params: |
---|
458 | fullname = header + key3 |
---|
459 | param_list.append(fullname) |
---|
460 | |
---|
461 | else: |
---|
462 | if not shapeid in self.shapes: |
---|
463 | raise ValueError("VolumeCanvas: getParamList: Could not find " |
---|
464 | "%s" % shapeid) |
---|
465 | |
---|
466 | header = shapeid + '.' |
---|
467 | param_list = [header + param for param in self.shapes[shapeid].params] |
---|
468 | return param_list |
---|
469 | |
---|
470 | def getShapeList(self): |
---|
471 | """ |
---|
472 | Return a list of the shapes |
---|
473 | """ |
---|
474 | return self.shapes.keys() |
---|
475 | |
---|
476 | def _addSingleShape(self, shapeDesc): |
---|
477 | """ |
---|
478 | create shapeobject based on shapeDesc |
---|
479 | @param shapeDesc: shape description |
---|
480 | """ |
---|
481 | # Create the object model |
---|
482 | shapeDesc.create() |
---|
483 | |
---|
484 | if shapeDesc.params['is_lores']: |
---|
485 | # Add the shape to the lores_model |
---|
486 | pointsmodelpy.lores_add(self.lores_model, |
---|
487 | shapeDesc.shapeObject, shapeDesc.params['contrast']) |
---|
488 | |
---|
489 | def _createVolumeFromList(self): |
---|
490 | """ |
---|
491 | Create a new lores model with all the shapes in our internal list |
---|
492 | Whenever we change a parameter of a shape, we have to re-create |
---|
493 | the whole thing. |
---|
494 | |
---|
495 | Items with higher 'order' number take precedence for regions |
---|
496 | of space that are shared with other objects. Points in the |
---|
497 | overlapping region belonging to objects with lower 'order' |
---|
498 | will be ignored. |
---|
499 | |
---|
500 | Items are added in decreasing 'order' number. |
---|
501 | The item with the highest 'order' will be added *first*. |
---|
502 | [That conventions is prescribed by the realSpaceModeling module] |
---|
503 | """ |
---|
504 | |
---|
505 | # Create empty model |
---|
506 | self.lores_model = \ |
---|
507 | pointsmodelpy.new_loresmodel(self.params['lores_density']) |
---|
508 | |
---|
509 | # Create empty complex model |
---|
510 | self.complex_model = pointsmodelpy.new_complexmodel() |
---|
511 | |
---|
512 | # Order the object first |
---|
513 | obj_list = [] |
---|
514 | |
---|
515 | for shape in self.shapes: |
---|
516 | order = self.shapes[shape].params['order'] |
---|
517 | # find where to place it in the list |
---|
518 | stored = False |
---|
519 | |
---|
520 | for i in range(len(obj_list)): |
---|
521 | if obj_list[i][0] > order: |
---|
522 | obj_list.insert(i, [order, shape]) |
---|
523 | stored = True |
---|
524 | break |
---|
525 | |
---|
526 | if not stored: |
---|
527 | obj_list.append([order, shape]) |
---|
528 | |
---|
529 | # Add each shape |
---|
530 | len_list = len(obj_list) |
---|
531 | for i in range(len_list-1, -1, -1): |
---|
532 | shapedesc = self.shapes[obj_list[i][1]] |
---|
533 | self._addSingleShape(shapedesc) |
---|
534 | |
---|
535 | return 0 |
---|
536 | |
---|
537 | def getPr(self): |
---|
538 | """ |
---|
539 | Calculate P(r) from the objects on the canvas. |
---|
540 | This method should always be called after the shapes |
---|
541 | on the VolumeCanvas have changed. |
---|
542 | |
---|
543 | @return: calculation output flag |
---|
544 | """ |
---|
545 | # To find a complete example of the correct call order: |
---|
546 | # In LORES2, in actionclass.py, method CalculateAction._get_iq() |
---|
547 | |
---|
548 | # If there are not shapes, do nothing |
---|
549 | if len(self.shapes) == 0: |
---|
550 | self._model_changed() |
---|
551 | return 0 |
---|
552 | |
---|
553 | # generate space filling points from shape list |
---|
554 | self._createVolumeFromList() |
---|
555 | |
---|
556 | self.points = pointsmodelpy.new_point3dvec() |
---|
557 | |
---|
558 | pointsmodelpy.complexmodel_add(self.complex_model, |
---|
559 | self.lores_model, "LORES") |
---|
560 | for shape in self.shapes: |
---|
561 | if self.shapes[shape].params['is_lores'] == False: |
---|
562 | pointsmodelpy.complexmodel_add(self.complex_model, |
---|
563 | self.shapes[shape].shapeObject, "PDB") |
---|
564 | |
---|
565 | #pointsmodelpy.get_lorespoints(self.lores_model, self.points) |
---|
566 | self.npts = pointsmodelpy.get_complexpoints(self.complex_model, self.points) |
---|
567 | |
---|
568 | # expecting the rmax is a positive float or 0. The maximum distance. |
---|
569 | #rmax = pointsmodelpy.get_lores_pr(self.lores_model, self.points) |
---|
570 | |
---|
571 | rmax = pointsmodelpy.get_complex_pr(self.complex_model, self.points) |
---|
572 | self.hasPr = True |
---|
573 | |
---|
574 | return rmax |
---|
575 | |
---|
576 | def run(self, q = 0): |
---|
577 | """ |
---|
578 | Returns the value of I(q) for a given q-value |
---|
579 | @param q: q-value ([float] or [list]) ([A-1] or [[A-1], [rad]]) |
---|
580 | @return: I(q) [float] [cm-1] |
---|
581 | """ |
---|
582 | # Check for 1D q length |
---|
583 | if q.__class__.__name__ == 'int' \ |
---|
584 | or q.__class__.__name__ == 'float': |
---|
585 | return self.getIq(q) |
---|
586 | # Check for 2D q-value |
---|
587 | elif q.__class__.__name__ == 'list': |
---|
588 | # Compute (Qx, Qy) from (Q, phi) |
---|
589 | # Phi is in radian and Q-values are in A-1 |
---|
590 | qx = q[0]*math.cos(q[1]) |
---|
591 | qy = q[0]*math.sin(q[1]) |
---|
592 | return self.getIq2D(qx, qy) |
---|
593 | # Through an exception if it's not a |
---|
594 | # type we recognize |
---|
595 | else: |
---|
596 | raise ValueError("run(q): bad type for q") |
---|
597 | |
---|
598 | def runXY(self, q = 0): |
---|
599 | """ |
---|
600 | Standard run command for the canvas. |
---|
601 | Redirects to the correct method |
---|
602 | according to the input type. |
---|
603 | @param q: q-value [float] or [list] [A-1] |
---|
604 | @return: I(q) [float] [cm-1] |
---|
605 | """ |
---|
606 | # Check for 1D q length |
---|
607 | if q.__class__.__name__ == 'int' \ |
---|
608 | or q.__class__.__name__ == 'float': |
---|
609 | return self.getIq(q) |
---|
610 | # Check for 2D q-value |
---|
611 | elif q.__class__.__name__ == 'list': |
---|
612 | return self.getIq2D(q[0], q[1]) |
---|
613 | # Through an exception if it's not a |
---|
614 | # type we recognize |
---|
615 | else: |
---|
616 | raise ValueError("runXY(q): bad type for q") |
---|
617 | |
---|
618 | def _create_modelObject(self): |
---|
619 | """ |
---|
620 | Create the simulation model obejct from the list |
---|
621 | of shapes. |
---|
622 | |
---|
623 | This method needs to be called each time a parameter |
---|
624 | changes because of the way the underlying library |
---|
625 | was (badly) written. It is impossible to change a |
---|
626 | parameter, or remove a shape without having to |
---|
627 | refill the space points. |
---|
628 | |
---|
629 | TODO: improve that. |
---|
630 | """ |
---|
631 | # To find a complete example of the correct call order: |
---|
632 | # In LORES2, in actionclass.py, method CalculateAction._get_iq() |
---|
633 | |
---|
634 | # If there are not shapes, do nothing |
---|
635 | if len(self.shapes) == 0: |
---|
636 | self._model_changed() |
---|
637 | return 0 |
---|
638 | |
---|
639 | # generate space filling points from shape list |
---|
640 | self._createVolumeFromList() |
---|
641 | |
---|
642 | self.points = pointsmodelpy.new_point3dvec() |
---|
643 | |
---|
644 | pointsmodelpy.complexmodel_add(self.complex_model, |
---|
645 | self.lores_model, "LORES") |
---|
646 | for shape in self.shapes: |
---|
647 | if self.shapes[shape].params['is_lores'] == False: |
---|
648 | pointsmodelpy.complexmodel_add(self.complex_model, |
---|
649 | self.shapes[shape].shapeObject, "PDB") |
---|
650 | |
---|
651 | #pointsmodelpy.get_lorespoints(self.lores_model, self.points) |
---|
652 | self.npts = pointsmodelpy.get_complexpoints(self.complex_model, self.points) |
---|
653 | |
---|
654 | |
---|
655 | def getIq2D(self, qx, qy): |
---|
656 | """ |
---|
657 | Returns simulate I(q) for given q_x and q_y values. |
---|
658 | @param qx: q_x [A-1] |
---|
659 | @param qy: q_y [A-1] |
---|
660 | @return: I(q) [cm-1] |
---|
661 | """ |
---|
662 | |
---|
663 | # If this is the first simulation call, we need to generate the |
---|
664 | # space points |
---|
665 | if self.points == None: |
---|
666 | self._create_modelObject() |
---|
667 | |
---|
668 | # Protect against empty model |
---|
669 | if self.points == None: |
---|
670 | return 0 |
---|
671 | |
---|
672 | # Evalute I(q) |
---|
673 | norm = 1.0e8/self.params['lores_density']*self.params['scale'] |
---|
674 | return norm*pointsmodelpy.get_complex_iq_2D(self.complex_model, self.points, qx, qy)\ |
---|
675 | + self.params['background'] |
---|
676 | |
---|
677 | def write_pr(self, filename): |
---|
678 | """ |
---|
679 | Write P(r) to an output file |
---|
680 | @param filename: file name for P(r) output |
---|
681 | """ |
---|
682 | if self.hasPr == False: |
---|
683 | self.getPr() |
---|
684 | |
---|
685 | pointsmodelpy.outputPR(self.complex_model, filename) |
---|
686 | |
---|
687 | def getPrData(self): |
---|
688 | """ |
---|
689 | Write P(r) to an output file |
---|
690 | @param filename: file name for P(r) output |
---|
691 | """ |
---|
692 | if self.hasPr == False: |
---|
693 | self.getPr() |
---|
694 | |
---|
695 | return pointsmodelpy.get_pr(self.complex_model) |
---|
696 | |
---|
697 | def getIq(self, q): |
---|
698 | """ |
---|
699 | Returns the value of I(q) for a given q-value |
---|
700 | |
---|
701 | This method should remain internal to the class |
---|
702 | and the run() method should be used instead. |
---|
703 | |
---|
704 | @param q: q-value [float] |
---|
705 | @return: I(q) [float] |
---|
706 | """ |
---|
707 | |
---|
708 | if self.hasPr == False: |
---|
709 | self.getPr() |
---|
710 | |
---|
711 | # By dividing by the density instead of the actuall V/N, |
---|
712 | # we have an uncertainty of +-1 on N because the number |
---|
713 | # of points chosen for the simulation is int(density*volume). |
---|
714 | # Propagation of error gives: |
---|
715 | # delta(1/density^2) = 2*(1/density^2)/N |
---|
716 | # where N is stored in self.npts |
---|
717 | |
---|
718 | norm = 1.0e8/self.params['lores_density']*self.params['scale'] |
---|
719 | #return norm*pointsmodelpy.get_lores_i(self.lores_model, q) |
---|
720 | return norm*pointsmodelpy.get_complex_i(self.complex_model, q)\ |
---|
721 | + self.params['background'] |
---|
722 | |
---|
723 | def getError(self, q): |
---|
724 | """ |
---|
725 | Returns the error of I(q) for a given q-value |
---|
726 | @param q: q-value [float] |
---|
727 | @return: I(q) [float] |
---|
728 | """ |
---|
729 | |
---|
730 | if self.hasPr == False: |
---|
731 | self.getPr() |
---|
732 | |
---|
733 | # By dividing by the density instead of the actual V/N, |
---|
734 | # we have an uncertainty of +-1 on N because the number |
---|
735 | # of points chosen for the simulation is int(density*volume). |
---|
736 | # Propagation of error gives: |
---|
737 | # delta(1/density^2) = 2*(1/density^2)/N |
---|
738 | # where N is stored in self.npts |
---|
739 | |
---|
740 | norm = 1.0e8/self.params['lores_density']*self.params['scale'] |
---|
741 | #return norm*pointsmodelpy.get_lores_i(self.lores_model, q) |
---|
742 | return norm*pointsmodelpy.get_complex_i_error(self.complex_model, q)\ |
---|
743 | + self.params['background'] |
---|
744 | |
---|
745 | def getIqError(self, q): |
---|
746 | """ |
---|
747 | Return the simulated value along with its estimated |
---|
748 | error for a given q-value |
---|
749 | |
---|
750 | Propagation of errors is used to evaluate the |
---|
751 | uncertainty. |
---|
752 | |
---|
753 | @param q: q-value [float] |
---|
754 | @return: mean, error [float, float] |
---|
755 | """ |
---|
756 | val = self.getIq(q) |
---|
757 | # Simulation error (statistical) |
---|
758 | err = self.getError(q) |
---|
759 | # Error on V/N |
---|
760 | simerr = 2*val/self.npts |
---|
761 | return val, err+simerr |
---|
762 | |
---|
763 | def getIq2DError(self, qx, qy): |
---|
764 | """ |
---|
765 | Return the simulated value along with its estimated |
---|
766 | error for a given q-value |
---|
767 | |
---|
768 | Propagation of errors is used to evaluate the |
---|
769 | uncertainty. |
---|
770 | |
---|
771 | @param qx: qx-value [float] |
---|
772 | @param qy: qy-value [float] |
---|
773 | @return: mean, error [float, float] |
---|
774 | """ |
---|
775 | self._create_modelObject() |
---|
776 | |
---|
777 | norm = 1.0e8/self.params['lores_density']*self.params['scale'] |
---|
778 | val = norm*pointsmodelpy.get_complex_iq_2D(self.complex_model, self.points, qx, qy)\ |
---|
779 | + self.params['background'] |
---|
780 | |
---|
781 | # Simulation error (statistical) |
---|
782 | norm = 1.0e8/self.params['lores_density']*self.params['scale'] \ |
---|
783 | * math.pow(self.npts/self.params['lores_density'], 1.0/3.0)/self.npts |
---|
784 | err = norm*pointsmodelpy.get_complex_iq_2D_err(self.complex_model, self.points, qx, qy) |
---|
785 | # Error on V/N |
---|
786 | simerr = 2*val/self.npts |
---|
787 | |
---|
788 | # The error used for the position is over-simplified. |
---|
789 | # The actual error was empirically found to be about |
---|
790 | # an order of magnitude larger. |
---|
791 | return val, 10.0*err+simerr |
---|
792 | |
---|