[1db4a53] | 1 | import math |
---|
| 2 | import numpy |
---|
| 3 | import copy |
---|
[5f8fc78] | 4 | import sys |
---|
| 5 | import logging |
---|
[b699768] | 6 | from sas.sascalc.pr.invertor import Invertor |
---|
[e96a852] | 7 | |
---|
[5f8fc78] | 8 | class NTermEstimator(object): |
---|
[d84a90c] | 9 | """ |
---|
| 10 | """ |
---|
| 11 | def __init__(self, invertor): |
---|
| 12 | """ |
---|
| 13 | """ |
---|
| 14 | self.invertor = invertor |
---|
| 15 | self.nterm_min = 10 |
---|
| 16 | self.nterm_max = len(self.invertor.x) |
---|
[1db4a53] | 17 | if self.nterm_max > 50: |
---|
| 18 | self.nterm_max = 50 |
---|
[d84a90c] | 19 | self.isquit_func = None |
---|
[038c00cf] | 20 | |
---|
[d84a90c] | 21 | self.osc_list = [] |
---|
| 22 | self.err_list = [] |
---|
| 23 | self.alpha_list = [] |
---|
| 24 | self.mess_list = [] |
---|
| 25 | self.dataset = [] |
---|
[038c00cf] | 26 | |
---|
[d84a90c] | 27 | def is_odd(self, n): |
---|
| 28 | """ |
---|
| 29 | """ |
---|
[1db4a53] | 30 | return bool(n % 2) |
---|
[e96a852] | 31 | |
---|
[d84a90c] | 32 | def sort_osc(self): |
---|
| 33 | """ |
---|
| 34 | """ |
---|
[1db4a53] | 35 | #import copy |
---|
[d84a90c] | 36 | osc = copy.deepcopy(self.dataset) |
---|
| 37 | lis = [] |
---|
| 38 | for i in range(len(osc)): |
---|
| 39 | osc.sort() |
---|
| 40 | re = osc.pop(0) |
---|
| 41 | lis.append(re) |
---|
| 42 | return lis |
---|
[038c00cf] | 43 | |
---|
[d84a90c] | 44 | def median_osc(self): |
---|
| 45 | """ |
---|
| 46 | """ |
---|
| 47 | osc = self.sort_osc() |
---|
| 48 | dv = len(osc) |
---|
| 49 | med = float(dv) / 2.0 |
---|
| 50 | odd = self.is_odd(dv) |
---|
| 51 | medi = 0 |
---|
| 52 | for i in range(dv): |
---|
| 53 | if odd == True: |
---|
| 54 | medi = osc[int(med)] |
---|
| 55 | else: |
---|
| 56 | medi = osc[int(med) - 1] |
---|
| 57 | return medi |
---|
[e96a852] | 58 | |
---|
[d84a90c] | 59 | def get0_out(self): |
---|
| 60 | """ |
---|
[34f3ad0] | 61 | """ |
---|
[e96a852] | 62 | inver = self.invertor |
---|
| 63 | self.osc_list = [] |
---|
| 64 | self.err_list = [] |
---|
| 65 | self.alpha_list = [] |
---|
[7578961] | 66 | for k in range(self.nterm_min, self.nterm_max, 1): |
---|
[e96a852] | 67 | if self.isquit_func != None: |
---|
| 68 | self.isquit_func() |
---|
[34f3ad0] | 69 | best_alpha, message, _ = inver.estimate_alpha(k) |
---|
[e96a852] | 70 | inver.alpha = best_alpha |
---|
| 71 | inver.out, inver.cov = inver.lstsq(k) |
---|
| 72 | osc = inver.oscillations(inver.out) |
---|
| 73 | err = inver.get_pos_err(inver.out, inver.cov) |
---|
[1db4a53] | 74 | if osc > 10.0: |
---|
[7578961] | 75 | break |
---|
[e96a852] | 76 | self.osc_list.append(osc) |
---|
| 77 | self.err_list.append(err) |
---|
| 78 | self.alpha_list.append(inver.alpha) |
---|
| 79 | self.mess_list.append(message) |
---|
[038c00cf] | 80 | |
---|
[e96a852] | 81 | new_osc1 = [] |
---|
[1db4a53] | 82 | new_osc2 = [] |
---|
[e96a852] | 83 | new_osc3 = [] |
---|
[1db4a53] | 84 | flag9 = False |
---|
| 85 | flag8 = False |
---|
[e96a852] | 86 | for i in range(len(self.err_list)): |
---|
[1db4a53] | 87 | if self.err_list[i] <= 1.0 and self.err_list[i] >= 0.9: |
---|
[e96a852] | 88 | new_osc1.append(self.osc_list[i]) |
---|
[1db4a53] | 89 | flag9 = True |
---|
| 90 | if self.err_list[i] < 0.9 and self.err_list[i] >= 0.8: |
---|
[e96a852] | 91 | new_osc2.append(self.osc_list[i]) |
---|
[1db4a53] | 92 | flag8 = True |
---|
| 93 | if self.err_list[i] < 0.8 and self.err_list[i] >= 0.7: |
---|
[e96a852] | 94 | new_osc3.append(self.osc_list[i]) |
---|
[038c00cf] | 95 | |
---|
[1db4a53] | 96 | if flag9 == True: |
---|
[e96a852] | 97 | self.dataset = new_osc1 |
---|
[1db4a53] | 98 | elif flag8 == True: |
---|
[e96a852] | 99 | self.dataset = new_osc2 |
---|
| 100 | else: |
---|
| 101 | self.dataset = new_osc3 |
---|
[038c00cf] | 102 | |
---|
[e96a852] | 103 | return self.dataset |
---|
[038c00cf] | 104 | |
---|
[d84a90c] | 105 | def ls_osc(self): |
---|
| 106 | """ |
---|
| 107 | """ |
---|
[e96a852] | 108 | # Generate data |
---|
[bf6b8d1] | 109 | self.get0_out() |
---|
[e96a852] | 110 | med = self.median_osc() |
---|
[038c00cf] | 111 | |
---|
[e96a852] | 112 | #TODO: check 1 |
---|
| 113 | ls_osc = self.dataset |
---|
| 114 | ls = [] |
---|
| 115 | for i in range(len(ls_osc)): |
---|
| 116 | if int(med) == int(ls_osc[i]): |
---|
| 117 | ls.append(ls_osc[i]) |
---|
| 118 | return ls |
---|
| 119 | |
---|
[d84a90c] | 120 | def compare_err(self): |
---|
| 121 | """ |
---|
| 122 | """ |
---|
[e96a852] | 123 | ls = self.ls_osc() |
---|
| 124 | nt_ls = [] |
---|
| 125 | for i in range(len(ls)): |
---|
| 126 | r = ls[i] |
---|
| 127 | n = self.osc_list.index(r) + 10 |
---|
| 128 | nt_ls.append(n) |
---|
| 129 | return nt_ls |
---|
| 130 | |
---|
[d84a90c] | 131 | def num_terms(self, isquit_func=None): |
---|
| 132 | """ |
---|
| 133 | """ |
---|
| 134 | try: |
---|
| 135 | self.isquit_func = isquit_func |
---|
| 136 | nts = self.compare_err() |
---|
| 137 | div = len(nts) |
---|
[038c00cf] | 138 | tem = float(div) / 2.0 |
---|
[d84a90c] | 139 | odd = self.is_odd(div) |
---|
| 140 | if odd == True: |
---|
| 141 | nt = nts[int(tem)] |
---|
| 142 | else: |
---|
| 143 | nt = nts[int(tem) - 1] |
---|
[038c00cf] | 144 | return nt, self.alpha_list[nt - 10], self.mess_list[nt - 10] |
---|
[d84a90c] | 145 | except: |
---|
[c1bffa5] | 146 | #TODO: check the logic above and make sure it doesn't |
---|
| 147 | # rely on the try-except. |
---|
[bf6b8d1] | 148 | return self.nterm_min, self.invertor.alpha, '' |
---|
[e96a852] | 149 | |
---|
[34f3ad0] | 150 | |
---|
[e96a852] | 151 | #For testing |
---|
| 152 | def load(path): |
---|
[d84a90c] | 153 | # Read the data from the data file |
---|
[038c00cf] | 154 | data_x = numpy.zeros(0) |
---|
| 155 | data_y = numpy.zeros(0) |
---|
[d84a90c] | 156 | data_err = numpy.zeros(0) |
---|
[038c00cf] | 157 | scale = None |
---|
| 158 | min_err = 0.0 |
---|
[d84a90c] | 159 | if not path == None: |
---|
[038c00cf] | 160 | input_f = open(path, 'r') |
---|
| 161 | buff = input_f.read() |
---|
| 162 | lines = buff.split('\n') |
---|
[d84a90c] | 163 | for line in lines: |
---|
| 164 | try: |
---|
| 165 | toks = line.split() |
---|
[1db4a53] | 166 | test_x = float(toks[0]) |
---|
| 167 | test_y = float(toks[1]) |
---|
| 168 | if len(toks) > 2: |
---|
[d84a90c] | 169 | err = float(toks[2]) |
---|
| 170 | else: |
---|
[1db4a53] | 171 | if scale == None: |
---|
| 172 | scale = 0.05 * math.sqrt(test_y) |
---|
[d84a90c] | 173 | #scale = 0.05/math.sqrt(y) |
---|
[34f3ad0] | 174 | min_err = 0.01 * y |
---|
[1db4a53] | 175 | err = scale * math.sqrt(test_y) + min_err |
---|
[d84a90c] | 176 | #err = 0 |
---|
[038c00cf] | 177 | |
---|
[1db4a53] | 178 | data_x = numpy.append(data_x, test_x) |
---|
| 179 | data_y = numpy.append(data_y, test_y) |
---|
[d84a90c] | 180 | data_err = numpy.append(data_err, err) |
---|
| 181 | except: |
---|
[5f8fc78] | 182 | logging.error(sys.exc_value) |
---|
[038c00cf] | 183 | |
---|
[d84a90c] | 184 | return data_x, data_y, data_err |
---|
| 185 | |
---|
[e96a852] | 186 | |
---|
| 187 | if __name__ == "__main__": |
---|
[5f8fc78] | 188 | invert = Invertor() |
---|
[e96a852] | 189 | x, y, erro = load("test/Cyl_A_D102.txt") |
---|
[5f8fc78] | 190 | invert.d_max = 102.0 |
---|
| 191 | invert.nfunc = 10 |
---|
| 192 | invert.x = x |
---|
| 193 | invert.y = y |
---|
| 194 | invert.err = erro |
---|
[e96a852] | 195 | # Testing estimator |
---|
[5f8fc78] | 196 | est = NTermEstimator(invert) |
---|
[e96a852] | 197 | print est.num_terms() |
---|