source: sasview/src/sas/sascalc/pr/invertor.py @ 09e0c32

ESS_GUIESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since 09e0c32 was aed159f, checked in by Piotr Rozyczko <piotr.rozyczko@…>, 6 years ago

Minor corrections to Inversion after PK's CR

  • Property mode set to 100644
File size: 25.5 KB
Line 
1# pylint: disable=invalid-name
2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
7"""
8
9import numpy as np
10import sys
11import math
12import time
13import copy
14import os
15import re
16import logging
17from numpy.linalg import lstsq
18from scipy import optimize
19from sas.sascalc.pr.core.pr_inversion import Cinvertor
20
21logger = logging.getLogger(__name__)
22
23def help():
24    """
25    Provide general online help text
26    Future work: extend this function to allow topic selection
27    """
28    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
29    info_txt += "(1980) 13, 168-175.\n\n"
30    info_txt += "P(r) is set to be equal to an expansion of base functions "
31    info_txt += "of the type "
32    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
33    info_txt += "base functions "
34    info_txt += "in the expansion is found by performing a least square fit "
35    info_txt += "with the "
36    info_txt += "following fit function:\n\n"
37    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
38    info_txt += "Reg_term\n\n"
39    info_txt += "where I_meas(q) is the measured scattering intensity and "
40    info_txt += "I_th(q) is "
41    info_txt += "the prediction from the Fourier transform of the P(r) "
42    info_txt += "expansion. "
43    info_txt += "The Reg_term term is a regularization term set to the second"
44    info_txt += " derivative "
45    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
46    info_txt += "a smooth P(r) output.\n\n"
47    info_txt += "The following are user inputs:\n\n"
48    info_txt += "   - Number of terms: the number of base functions in the P(r)"
49    info_txt += " expansion.\n\n"
50    info_txt += "   - Regularization constant: a multiplicative constant "
51    info_txt += "to set the size of "
52    info_txt += "the regularization term.\n\n"
53    info_txt += "   - Maximum distance: the maximum distance between any "
54    info_txt += "two points in the system.\n"
55
56    return info_txt
57
58
59class Invertor(Cinvertor):
60    """
61    Invertor class to perform P(r) inversion
62
63    The problem is solved by posing the problem as  Ax = b,
64    where x is the set of coefficients we are looking for.
65
66    Npts is the number of points.
67
68    In the following i refers to the ith base function coefficient.
69    The matrix has its entries j in its first Npts rows set to ::
70
71        A[j][i] = (Fourier transformed base function for point j)
72
73    We then choose a number of r-points, n_r, to evaluate the second
74    derivative of P(r) at. This is used as our regularization term.
75    For a vector r of length n_r, the following n_r rows are set to ::
76
77        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
78        evaluated at r[j])
79
80    The vector b has its first Npts entries set to ::
81
82        b[j] = (I(q) observed for point j)
83
84    The following n_r entries are set to zero.
85
86    The result is found by using scipy.linalg.basic.lstsq to invert
87    the matrix and find the coefficients x.
88
89    Methods inherited from Cinvertor:
90
91    * ``get_peaks(pars)``: returns the number of P(r) peaks
92    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
93    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
94    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
95    """
96    ## Chisqr of the last computation
97    chi2 = 0
98    ## Time elapsed for last computation
99    elapsed = 0
100    ## Alpha to get the reg term the same size as the signal
101    suggested_alpha = 0
102    ## Last number of base functions used
103    nfunc = 10
104    ## Last output values
105    out = None
106    ## Last errors on output values
107    cov = None
108    ## Background value
109    background = 0
110    ## Information dictionary for application use
111    info = {}
112
113    def __init__(self):
114        Cinvertor.__init__(self)
115
116    def __setstate__(self, state):
117        """
118        restore the state of invertor for pickle
119        """
120        (self.__dict__, self.alpha, self.d_max,
121         self.q_min, self.q_max,
122         self.x, self.y,
123         self.err, self.est_bck,
124         self.slit_height, self.slit_width) = state
125
126    def __reduce_ex__(self, proto):
127        """
128        Overwrite the __reduce_ex__
129        """
130
131        state = (self.__dict__,
132                 self.alpha, self.d_max,
133                 self.q_min, self.q_max,
134                 self.x, self.y,
135                 self.err, self.est_bck,
136                 self.slit_height, self.slit_width,
137                )
138        return (Invertor, tuple(), state, None, None)
139
140    def __setattr__(self, name, value):
141        """
142        Set the value of an attribute.
143        Access the parent class methods for
144        x, y, err, d_max, q_min, q_max and alpha
145        """
146        if name == 'x':
147            if 0.0 in value:
148                msg = "Invertor: one of your q-values is zero. "
149                msg += "Delete that entry before proceeding"
150                raise ValueError(msg)
151            return self.set_x(value)
152        elif name == 'y':
153            return self.set_y(value)
154        elif name == 'err':
155            value2 = abs(value)
156            return self.set_err(value2)
157        elif name == 'd_max':
158            if value <= 0.0:
159                msg = "Invertor: d_max must be greater than zero."
160                msg += "Correct that entry before proceeding"
161                raise ValueError(msg)
162            return self.set_dmax(value)
163        elif name == 'q_min':
164            if value is None:
165                return self.set_qmin(-1.0)
166            return self.set_qmin(value)
167        elif name == 'q_max':
168            if value is None:
169                return self.set_qmax(-1.0)
170            return self.set_qmax(value)
171        elif name == 'alpha':
172            return self.set_alpha(value)
173        elif name == 'slit_height':
174            return self.set_slit_height(value)
175        elif name == 'slit_width':
176            return self.set_slit_width(value)
177        elif name == 'est_bck':
178            if value == True:
179                return self.set_est_bck(1)
180            elif value == False:
181                return self.set_est_bck(0)
182            else:
183                raise ValueError("Invertor: est_bck can only be True or False")
184
185        return Cinvertor.__setattr__(self, name, value)
186
187    def __getattr__(self, name):
188        """
189        Return the value of an attribute
190        """
191        #import numpy
192        if name == 'x':
193            out = np.ones(self.get_nx())
194            self.get_x(out)
195            return out
196        elif name == 'y':
197            out = np.ones(self.get_ny())
198            self.get_y(out)
199            return out
200        elif name == 'err':
201            out = np.ones(self.get_nerr())
202            self.get_err(out)
203            return out
204        elif name == 'd_max':
205            return self.get_dmax()
206        elif name == 'q_min':
207            qmin = self.get_qmin()
208            if qmin < 0:
209                return None
210            return qmin
211        elif name == 'q_max':
212            qmax = self.get_qmax()
213            if qmax < 0:
214                return None
215            return qmax
216        elif name == 'alpha':
217            return self.get_alpha()
218        elif name == 'slit_height':
219            return self.get_slit_height()
220        elif name == 'slit_width':
221            return self.get_slit_width()
222        elif name == 'est_bck':
223            value = self.get_est_bck()
224            return value == 1
225        elif name in self.__dict__:
226            return self.__dict__[name]
227        return None
228
229    def add_errors(self, sigma=0.05):
230        """
231        Adds errors to data set is they are not available.
232        Uses  $\Delta y = \sigma | y |$.
233        """
234        self.dy = sigma * np.fabs(self.y)
235
236    def clone(self):
237        """
238        Return a clone of this instance
239        """
240        #import copy
241
242        invertor = Invertor()
243        invertor.chi2 = self.chi2
244        invertor.elapsed = self.elapsed
245        invertor.nfunc = self.nfunc
246        invertor.alpha = self.alpha
247        invertor.d_max = self.d_max
248        invertor.q_min = self.q_min
249        invertor.q_max = self.q_max
250
251        invertor.x = self.x
252        invertor.y = self.y
253        invertor.err = self.err
254        invertor.est_bck = self.est_bck
255        invertor.background = self.background
256        invertor.slit_height = self.slit_height
257        invertor.slit_width = self.slit_width
258
259        invertor.info = copy.deepcopy(self.info)
260
261        return invertor
262
263    def invert(self, nfunc=10, nr=20):
264        """
265        Perform inversion to P(r)
266
267        The problem is solved by posing the problem as  Ax = b,
268        where x is the set of coefficients we are looking for.
269
270        Npts is the number of points.
271
272        In the following i refers to the ith base function coefficient.
273        The matrix has its entries j in its first Npts rows set to ::
274
275            A[i][j] = (Fourier transformed base function for point j)
276
277        We then choose a number of r-points, n_r, to evaluate the second
278        derivative of P(r) at. This is used as our regularization term.
279        For a vector r of length n_r, the following n_r rows are set to ::
280
281            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
282
283        The vector b has its first Npts entries set to ::
284
285            b[j] = (I(q) observed for point j)
286
287        The following n_r entries are set to zero.
288
289        The result is found by using scipy.linalg.basic.lstsq to invert
290        the matrix and find the coefficients x.
291
292        :param nfunc: number of base functions to use.
293        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
294        :return: c_out, c_cov - the coefficients with covariance matrix
295        """
296        # Reset the background value before proceeding
297        # self.background = 0.0
298        if not self.est_bck:
299            self.y -= self.background
300        out, cov = self.lstsq(nfunc, nr=nr)
301        if not self.est_bck:
302            self.y += self.background
303        return out, cov
304
305    def iq(self, out, q):
306        """
307        Function to call to evaluate the scattering intensity
308
309        :param args: c-parameters, and q
310        :return: I(q)
311
312        """
313        return Cinvertor.iq(self, out, q) + self.background
314
315    def invert_optimize(self, nfunc=10, nr=20):
316        """
317        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
318
319        This probably produce more reliable results, but is much slower.
320        The minimization function is set to
321        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
322        where the reg_term is given by Svergun: it is the integral of
323        the square of the first derivative
324        of P(r), d(P(r))/dr, integrated over the full range of r.
325
326        :param nfunc: number of base functions to use.
327        :param nr: number of r points to evaluate the 2nd derivative at
328            for the reg. term.
329
330        :return: c_out, c_cov - the coefficients with covariance matrix
331
332        """
333        self.nfunc = nfunc
334        # First, check that the current data is valid
335        if self.is_valid() <= 0:
336            msg = "Invertor.invert: Data array are of different length"
337            raise RuntimeError(msg)
338
339        p = np.ones(nfunc)
340        t_0 = time.time()
341        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
342
343        # Compute chi^2
344        res = self.residuals(out)
345        chisqr = 0
346        for i in range(len(res)):
347            chisqr += res[i]
348
349        self.chi2 = chisqr
350
351        # Store computation time
352        self.elapsed = time.time() - t_0
353
354        if cov_x is None:
355            cov_x = np.ones([nfunc, nfunc])
356            cov_x *= math.fabs(chisqr)
357        return out, cov_x
358
359    def pr_fit(self, nfunc=5):
360        """
361        This is a direct fit to a given P(r). It assumes that the y data
362        is set to some P(r) distribution that we are trying to reproduce
363        with a set of base functions.
364
365        This method is provided as a test.
366        """
367        # First, check that the current data is valid
368        if self.is_valid() <= 0:
369            msg = "Invertor.invert: Data arrays are of different length"
370            raise RuntimeError(msg)
371
372        p = np.ones(nfunc)
373        t_0 = time.time()
374        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
375
376        # Compute chi^2
377        res = self.pr_residuals(out)
378        chisqr = 0
379        for i in range(len(res)):
380            chisqr += res[i]
381
382        self.chisqr = chisqr
383
384        # Store computation time
385        self.elapsed = time.time() - t_0
386
387        return out, cov_x
388
389    def pr_err(self, c, c_cov, r):
390        """
391        Returns the value of P(r) for a given r, and base function
392        coefficients, with error.
393
394        :param c: base function coefficients
395        :param c_cov: covariance matrice of the base function coefficients
396        :param r: r-value to evaluate P(r) at
397
398        :return: P(r)
399
400        """
401        return self.get_pr_err(c, c_cov, r)
402
403    def _accept_q(self, q):
404        """
405        Check q-value against user-defined range
406        """
407        if self.q_min is not None and q < self.q_min:
408            return False
409        if self.q_max is not None and q > self.q_max:
410            return False
411        return True
412
413    def lstsq(self, nfunc=5, nr=20):
414        """
415        The problem is solved by posing the problem as  Ax = b,
416        where x is the set of coefficients we are looking for.
417
418        Npts is the number of points.
419
420        In the following i refers to the ith base function coefficient.
421        The matrix has its entries j in its first Npts rows set to ::
422
423            A[i][j] = (Fourier transformed base function for point j)
424
425        We them choose a number of r-points, n_r, to evaluate the second
426        derivative of P(r) at. This is used as our regularization term.
427        For a vector r of length n_r, the following n_r rows are set to ::
428
429            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
430            evaluated at r[j])
431
432        The vector b has its first Npts entries set to ::
433
434            b[j] = (I(q) observed for point j)
435
436        The following n_r entries are set to zero.
437
438        The result is found by using scipy.linalg.basic.lstsq to invert
439        the matrix and find the coefficients x.
440
441        :param nfunc: number of base functions to use.
442        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
443
444        If the result does not allow us to compute the covariance matrix,
445        a matrix filled with zeros will be returned.
446
447        """
448        # Note: To make sure an array is contiguous:
449        # blah = np.ascontiguousarray(blah_original)
450        # ... before passing it to C
451
452        if self.is_valid() < 0:
453            msg = "Invertor: invalid data; incompatible data lengths."
454            raise RuntimeError(msg)
455
456        self.nfunc = nfunc
457        # a -- An M x N matrix.
458        # b -- An M x nrhs matrix or M vector.
459        npts = len(self.x)
460        nq = nr
461        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
462        if sqrt_alpha < 0.0:
463            nq = 0
464
465        # If we need to fit the background, add a term
466        if self.est_bck:
467            nfunc_0 = nfunc
468            nfunc += 1
469
470        a = np.zeros([npts + nq, nfunc])
471        b = np.zeros(npts + nq)
472        err = np.zeros([nfunc, nfunc])
473
474        # Construct the a matrix and b vector that represent the problem
475        t_0 = time.time()
476        try:
477            self._get_matrix(nfunc, nq, a, b)
478        except Exception as exc:
479            raise RuntimeError("Invertor: could not invert I(Q)\n  %s" % str(exc))
480
481        # Perform the inversion (least square fit)
482        c, chi2, _, _ = lstsq(a, b)
483        # Sanity check
484        try:
485            float(chi2)
486        except:
487            chi2 = -1.0
488        self.chi2 = chi2
489
490        inv_cov = np.zeros([nfunc, nfunc])
491        # Get the covariance matrix, defined as inv_cov = a_transposed * a
492        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
493
494        # Compute the reg term size for the output
495        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
496
497        if math.fabs(self.alpha) > 0:
498            new_alpha = sum_sig / (sum_reg / self.alpha)
499        else:
500            new_alpha = 0.0
501        self.suggested_alpha = new_alpha
502
503        try:
504            cov = np.linalg.pinv(inv_cov)
505            err = math.fabs(chi2 / float(npts - nfunc)) * cov
506        except:
507            # We were not able to estimate the errors
508            # Return an empty error matrix
509            logger.error(sys.exc_info()[1])
510
511        # Keep a copy of the last output
512        if not self.est_bck:
513            self.out = c
514            self.cov = err
515        else:
516            self.background = c[0]
517
518            err_0 = np.zeros([nfunc, nfunc])
519            c_0 = np.zeros(nfunc)
520
521            for i in range(nfunc_0):
522                c_0[i] = c[i + 1]
523                for j in range(nfunc_0):
524                    err_0[i][j] = err[i + 1][j + 1]
525
526            self.out = c_0
527            self.cov = err_0
528
529        # Store computation time
530        self.elapsed = time.time() - t_0
531
532        return self.out, self.cov
533
534    def estimate_numterms(self, isquit_func=None):
535        """
536        Returns a reasonable guess for the
537        number of terms
538
539        :param isquit_func:
540          reference to thread function to call to check whether the computation needs to
541          be stopped.
542
543        :return: number of terms, alpha, message
544
545        """
546        from .num_term import NTermEstimator
547        estimator = NTermEstimator(self.clone())
548        try:
549            return estimator.num_terms(isquit_func)
550        except:
551            # If we fail, estimate alpha and return the default
552            # number of terms
553            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
554            logger.warning("Invertor.estimate_numterms: %s" % sys.exc_info()[1])
555            return self.nfunc, best_alpha, "Could not estimate number of terms"
556
557    def estimate_alpha(self, nfunc):
558        """
559        Returns a reasonable guess for the
560        regularization constant alpha
561
562        :param nfunc: number of terms to use in the expansion.
563
564        :return: alpha, message, elapsed
565
566        where alpha is the estimate for alpha,
567        message is a message for the user,
568        elapsed is the computation time
569        """
570        #import time
571        try:
572            pr = self.clone()
573
574            # T_0 for computation time
575            starttime = time.time()
576            elapsed = 0
577
578            # If the current alpha is zero, try
579            # another value
580            if pr.alpha <= 0:
581                pr.alpha = 0.0001
582
583            # Perform inversion to find the largest alpha
584            out, _ = pr.invert(nfunc)
585            elapsed = time.time() - starttime
586            initial_alpha = pr.alpha
587            initial_peaks = pr.get_peaks(out)
588
589            # Try the inversion with the estimated alpha
590            pr.alpha = pr.suggested_alpha
591            out, _ = pr.invert(nfunc)
592
593            npeaks = pr.get_peaks(out)
594            # if more than one peak to start with
595            # just return the estimate
596            if npeaks > 1:
597                #message = "Your P(r) is not smooth,
598                #please check your inversion parameters"
599                message = None
600                return pr.suggested_alpha, message, elapsed
601            else:
602
603                # Look at smaller values
604                # We assume that for the suggested alpha, we have 1 peak
605                # if not, send a message to change parameters
606                alpha = pr.suggested_alpha
607                best_alpha = pr.suggested_alpha
608                found = False
609                for i in range(10):
610                    pr.alpha = (0.33) ** (i + 1) * alpha
611                    out, _ = pr.invert(nfunc)
612
613                    peaks = pr.get_peaks(out)
614                    if peaks > 1:
615                        found = True
616                        break
617                    best_alpha = pr.alpha
618
619                # If we didn't find a turning point for alpha and
620                # the initial alpha already had only one peak,
621                # just return that
622                if not found and initial_peaks == 1 and \
623                    initial_alpha < best_alpha:
624                    best_alpha = initial_alpha
625
626                # Check whether the size makes sense
627                message = ''
628
629                if not found:
630                    message = None
631                elif best_alpha >= 0.5 * pr.suggested_alpha:
632                    # best alpha is too big, return a
633                    # reasonable value
634                    message = "The estimated alpha for your system is too "
635                    message += "large. "
636                    message += "Try increasing your maximum distance."
637
638                return best_alpha, message, elapsed
639
640        except:
641            message = "Invertor.estimate_alpha: %s" % sys.exc_info()[1]
642            return 0, message, elapsed
643
644    def to_file(self, path, npts=100):
645        """
646        Save the state to a file that will be readable
647        by SliceView.
648
649        :param path: path of the file to write
650        :param npts: number of P(r) points to be written
651
652        """
653        file = open(path, 'w')
654        file.write("#d_max=%g\n" % self.d_max)
655        file.write("#nfunc=%g\n" % self.nfunc)
656        file.write("#alpha=%g\n" % self.alpha)
657        file.write("#chi2=%g\n" % self.chi2)
658        file.write("#elapsed=%g\n" % self.elapsed)
659        file.write("#qmin=%s\n" % str(self.q_min))
660        file.write("#qmax=%s\n" % str(self.q_max))
661        file.write("#slit_height=%g\n" % self.slit_height)
662        file.write("#slit_width=%g\n" % self.slit_width)
663        file.write("#background=%g\n" % self.background)
664        if self.est_bck:
665            file.write("#has_bck=1\n")
666        else:
667            file.write("#has_bck=0\n")
668        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
669        if self.out is not None:
670            if len(self.out) == len(self.cov):
671                for i in range(len(self.out)):
672                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
673                                                   str(self.cov[i][i])))
674        file.write("<r>  <Pr>  <dPr>\n")
675        r = np.arange(0.0, self.d_max, self.d_max / npts)
676
677        for r_i in r:
678            (value, err) = self.pr_err(self.out, self.cov, r_i)
679            file.write("%g  %g  %g\n" % (r_i, value, err))
680
681        file.close()
682
683    def from_file(self, path):
684        """
685        Load the state of the Invertor from a file,
686        to be able to generate P(r) from a set of
687        parameters.
688
689        :param path: path of the file to load
690
691        """
692        #import os
693        #import re
694        if os.path.isfile(path):
695            try:
696                fd = open(path, 'r')
697
698                buff = fd.read()
699                lines = buff.split('\n')
700                for line in lines:
701                    if line.startswith('#d_max='):
702                        toks = line.split('=')
703                        self.d_max = float(toks[1])
704                    elif line.startswith('#nfunc='):
705                        toks = line.split('=')
706                        self.nfunc = int(toks[1])
707                        self.out = np.zeros(self.nfunc)
708                        self.cov = np.zeros([self.nfunc, self.nfunc])
709                    elif line.startswith('#alpha='):
710                        toks = line.split('=')
711                        self.alpha = float(toks[1])
712                    elif line.startswith('#chi2='):
713                        toks = line.split('=')
714                        self.chi2 = float(toks[1])
715                    elif line.startswith('#elapsed='):
716                        toks = line.split('=')
717                        self.elapsed = float(toks[1])
718                    elif line.startswith('#alpha_estimate='):
719                        toks = line.split('=')
720                        self.suggested_alpha = float(toks[1])
721                    elif line.startswith('#qmin='):
722                        toks = line.split('=')
723                        try:
724                            self.q_min = float(toks[1])
725                        except:
726                            self.q_min = None
727                    elif line.startswith('#qmax='):
728                        toks = line.split('=')
729                        try:
730                            self.q_max = float(toks[1])
731                        except:
732                            self.q_max = None
733                    elif line.startswith('#slit_height='):
734                        toks = line.split('=')
735                        self.slit_height = float(toks[1])
736                    elif line.startswith('#slit_width='):
737                        toks = line.split('=')
738                        self.slit_width = float(toks[1])
739                    elif line.startswith('#background='):
740                        toks = line.split('=')
741                        self.background = float(toks[1])
742                    elif line.startswith('#has_bck='):
743                        toks = line.split('=')
744                        self.est_bck = int(toks[1]) == 1
745
746                    # Now read in the parameters
747                    elif line.startswith('#C_'):
748                        toks = line.split('=')
749                        p = re.compile('#C_([0-9]+)')
750                        m = p.search(toks[0])
751                        toks2 = toks[1].split('+-')
752                        i = int(m.group(1))
753                        self.out[i] = float(toks2[0])
754
755                        self.cov[i][i] = float(toks2[1])
756
757            except:
758                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_info()[1]
759                raise RuntimeError(msg)
760        else:
761            msg = "Invertor.from_file: '%s' is not a file" % str(path)
762            raise RuntimeError(msg)
Note: See TracBrowser for help on using the repository browser.