source: sasview/src/sas/sascalc/pr/invertor.py @ 9e0dd49

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249unittest-saveload
Last change on this file since 9e0dd49 was 45dffa69, checked in by andyfaff, 8 years ago

MAINT: more 'not x is None' fixes

  • Property mode set to 100644
File size: 25.3 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
[9a5097c]9import numpy as np
[51f14603]10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
[463e7ffc]21logger = logging.getLogger(__name__)
[c155a16]22
[51f14603]23def help():
24    """
25    Provide general online help text
26    Future work: extend this function to allow topic selection
27    """
[3350ad6]28    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]29    info_txt += "(1980) 13, 168-175.\n\n"
30    info_txt += "P(r) is set to be equal to an expansion of base functions "
31    info_txt += "of the type "
32    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
33    info_txt += "base functions "
34    info_txt += "in the expansion is found by performing a least square fit "
35    info_txt += "with the "
36    info_txt += "following fit function:\n\n"
37    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
38    info_txt += "Reg_term\n\n"
39    info_txt += "where I_meas(q) is the measured scattering intensity and "
40    info_txt += "I_th(q) is "
41    info_txt += "the prediction from the Fourier transform of the P(r) "
42    info_txt += "expansion. "
43    info_txt += "The Reg_term term is a regularization term set to the second"
44    info_txt += " derivative "
45    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
46    info_txt += "a smooth P(r) output.\n\n"
47    info_txt += "The following are user inputs:\n\n"
48    info_txt += "   - Number of terms: the number of base functions in the P(r)"
49    info_txt += " expansion.\n\n"
50    info_txt += "   - Regularization constant: a multiplicative constant "
51    info_txt += "to set the size of "
52    info_txt += "the regularization term.\n\n"
53    info_txt += "   - Maximum distance: the maximum distance between any "
54    info_txt += "two points in the system.\n"
[3350ad6]55
[51f14603]56    return info_txt
[3350ad6]57
[51f14603]58
59class Invertor(Cinvertor):
60    """
61    Invertor class to perform P(r) inversion
[3350ad6]62
[51f14603]63    The problem is solved by posing the problem as  Ax = b,
64    where x is the set of coefficients we are looking for.
[3350ad6]65
[51f14603]66    Npts is the number of points.
[3350ad6]67
[51f14603]68    In the following i refers to the ith base function coefficient.
69    The matrix has its entries j in its first Npts rows set to ::
70
71        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]72
[51f14603]73    We them choose a number of r-points, n_r, to evaluate the second
74    derivative of P(r) at. This is used as our regularization term.
75    For a vector r of length n_r, the following n_r rows are set to ::
76
77        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
78        evaluated at r[j])
[3350ad6]79
[51f14603]80    The vector b has its first Npts entries set to ::
81
82        b[j] = (I(q) observed for point j)
[3350ad6]83
[51f14603]84    The following n_r entries are set to zero.
[3350ad6]85
[51f14603]86    The result is found by using scipy.linalg.basic.lstsq to invert
87    the matrix and find the coefficients x.
[3350ad6]88
[51f14603]89    Methods inherited from Cinvertor:
90
91    * ``get_peaks(pars)``: returns the number of P(r) peaks
92    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
93    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
94    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
95    """
96    ## Chisqr of the last computation
[3350ad6]97    chi2 = 0
[51f14603]98    ## Time elapsed for last computation
99    elapsed = 0
100    ## Alpha to get the reg term the same size as the signal
101    suggested_alpha = 0
102    ## Last number of base functions used
103    nfunc = 10
104    ## Last output values
105    out = None
106    ## Last errors on output values
107    cov = None
108    ## Background value
109    background = 0
110    ## Information dictionary for application use
111    info = {}
[3350ad6]112
[51f14603]113    def __init__(self):
114        Cinvertor.__init__(self)
[3350ad6]115
[51f14603]116    def __setstate__(self, state):
117        """
118        restore the state of invertor for pickle
119        """
120        (self.__dict__, self.alpha, self.d_max,
121         self.q_min, self.q_max,
122         self.x, self.y,
123         self.err, self.has_bck,
124         self.slit_height, self.slit_width) = state
[3350ad6]125
[51f14603]126    def __reduce_ex__(self, proto):
127        """
128        Overwrite the __reduce_ex__
129        """
130
131        state = (self.__dict__,
132                 self.alpha, self.d_max,
133                 self.q_min, self.q_max,
134                 self.x, self.y,
135                 self.err, self.has_bck,
136                 self.slit_height, self.slit_width,
[3350ad6]137                )
[51f14603]138        return (Invertor, tuple(), state, None, None)
[3350ad6]139
[51f14603]140    def __setattr__(self, name, value):
141        """
142        Set the value of an attribute.
143        Access the parent class methods for
144        x, y, err, d_max, q_min, q_max and alpha
145        """
146        if   name == 'x':
147            if 0.0 in value:
148                msg = "Invertor: one of your q-values is zero. "
149                msg += "Delete that entry before proceeding"
150                raise ValueError, msg
151            return self.set_x(value)
152        elif name == 'y':
153            return self.set_y(value)
154        elif name == 'err':
155            value2 = abs(value)
156            return self.set_err(value2)
157        elif name == 'd_max':
[2c60f304]158            if value <= 0.0:
159                msg = "Invertor: d_max must be greater than zero."
160                msg += "Correct that entry before proceeding"
161                raise ValueError, msg
[51f14603]162            return self.set_dmax(value)
163        elif name == 'q_min':
[235f514]164            if value is None:
[51f14603]165                return self.set_qmin(-1.0)
166            return self.set_qmin(value)
167        elif name == 'q_max':
[235f514]168            if value is None:
[51f14603]169                return self.set_qmax(-1.0)
170            return self.set_qmax(value)
171        elif name == 'alpha':
172            return self.set_alpha(value)
173        elif name == 'slit_height':
174            return self.set_slit_height(value)
175        elif name == 'slit_width':
176            return self.set_slit_width(value)
177        elif name == 'has_bck':
178            if value == True:
179                return self.set_has_bck(1)
180            elif value == False:
181                return self.set_has_bck(0)
182            else:
183                raise ValueError, "Invertor: has_bck can only be True or False"
[3350ad6]184
[51f14603]185        return Cinvertor.__setattr__(self, name, value)
[3350ad6]186
[51f14603]187    def __getattr__(self, name):
188        """
189        Return the value of an attribute
190        """
191        #import numpy
192        if name == 'x':
[9a5097c]193            out = np.ones(self.get_nx())
[51f14603]194            self.get_x(out)
195            return out
196        elif name == 'y':
[9a5097c]197            out = np.ones(self.get_ny())
[51f14603]198            self.get_y(out)
199            return out
200        elif name == 'err':
[9a5097c]201            out = np.ones(self.get_nerr())
[51f14603]202            self.get_err(out)
203            return out
204        elif name == 'd_max':
205            return self.get_dmax()
206        elif name == 'q_min':
207            qmin = self.get_qmin()
208            if qmin < 0:
209                return None
210            return qmin
211        elif name == 'q_max':
212            qmax = self.get_qmax()
213            if qmax < 0:
214                return None
215            return qmax
216        elif name == 'alpha':
217            return self.get_alpha()
218        elif name == 'slit_height':
219            return self.get_slit_height()
220        elif name == 'slit_width':
221            return self.get_slit_width()
222        elif name == 'has_bck':
223            value = self.get_has_bck()
224            if value == 1:
225                return True
226            else:
227                return False
228        elif name in self.__dict__:
229            return self.__dict__[name]
230        return None
[3350ad6]231
[51f14603]232    def clone(self):
233        """
234        Return a clone of this instance
235        """
236        #import copy
[3350ad6]237
[51f14603]238        invertor = Invertor()
[3350ad6]239        invertor.chi2 = self.chi2
[51f14603]240        invertor.elapsed = self.elapsed
[3350ad6]241        invertor.nfunc = self.nfunc
242        invertor.alpha = self.alpha
243        invertor.d_max = self.d_max
244        invertor.q_min = self.q_min
245        invertor.q_max = self.q_max
246
[51f14603]247        invertor.x = self.x
248        invertor.y = self.y
249        invertor.err = self.err
250        invertor.has_bck = self.has_bck
251        invertor.slit_height = self.slit_height
252        invertor.slit_width = self.slit_width
[3350ad6]253
[51f14603]254        invertor.info = copy.deepcopy(self.info)
[3350ad6]255
[51f14603]256        return invertor
[3350ad6]257
[51f14603]258    def invert(self, nfunc=10, nr=20):
259        """
260        Perform inversion to P(r)
[3350ad6]261
[51f14603]262        The problem is solved by posing the problem as  Ax = b,
263        where x is the set of coefficients we are looking for.
[3350ad6]264
[51f14603]265        Npts is the number of points.
[3350ad6]266
[51f14603]267        In the following i refers to the ith base function coefficient.
268        The matrix has its entries j in its first Npts rows set to ::
269
270            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]271
[51f14603]272        We them choose a number of r-points, n_r, to evaluate the second
273        derivative of P(r) at. This is used as our regularization term.
274        For a vector r of length n_r, the following n_r rows are set to ::
275
276            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]277
[51f14603]278        The vector b has its first Npts entries set to ::
279
280            b[j] = (I(q) observed for point j)
[3350ad6]281
[51f14603]282        The following n_r entries are set to zero.
[3350ad6]283
[51f14603]284        The result is found by using scipy.linalg.basic.lstsq to invert
285        the matrix and find the coefficients x.
[3350ad6]286
[51f14603]287        :param nfunc: number of base functions to use.
288        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
289        :return: c_out, c_cov - the coefficients with covariance matrix
290        """
291        # Reset the background value before proceeding
292        self.background = 0.0
293        return self.lstsq(nfunc, nr=nr)
[3350ad6]294
[51f14603]295    def iq(self, out, q):
296        """
297        Function to call to evaluate the scattering intensity
[3350ad6]298
[51f14603]299        :param args: c-parameters, and q
300        :return: I(q)
[3350ad6]301
[51f14603]302        """
303        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]304
[51f14603]305    def invert_optimize(self, nfunc=10, nr=20):
306        """
307        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]308
[51f14603]309        This probably produce more reliable results, but is much slower.
310        The minimization function is set to
311        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
312        where the reg_term is given by Svergun: it is the integral of
313        the square of the first derivative
314        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]315
[51f14603]316        :param nfunc: number of base functions to use.
317        :param nr: number of r points to evaluate the 2nd derivative at
318            for the reg. term.
[3350ad6]319
[51f14603]320        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]321
[51f14603]322        """
323        self.nfunc = nfunc
324        # First, check that the current data is valid
325        if self.is_valid() <= 0:
326            msg = "Invertor.invert: Data array are of different length"
327            raise RuntimeError, msg
[3350ad6]328
[9a5097c]329        p = np.ones(nfunc)
[51f14603]330        t_0 = time.time()
[3350ad6]331        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
332
[51f14603]333        # Compute chi^2
334        res = self.residuals(out)
335        chisqr = 0
336        for i in range(len(res)):
337            chisqr += res[i]
[3350ad6]338
[51f14603]339        self.chi2 = chisqr
340
341        # Store computation time
342        self.elapsed = time.time() - t_0
[3350ad6]343
[51f14603]344        if cov_x is None:
[9a5097c]345            cov_x = np.ones([nfunc, nfunc])
[51f14603]346            cov_x *= math.fabs(chisqr)
347        return out, cov_x
[3350ad6]348
[51f14603]349    def pr_fit(self, nfunc=5):
350        """
351        This is a direct fit to a given P(r). It assumes that the y data
352        is set to some P(r) distribution that we are trying to reproduce
353        with a set of base functions.
[3350ad6]354
[51f14603]355        This method is provided as a test.
356        """
357        # First, check that the current data is valid
358        if self.is_valid() <= 0:
359            msg = "Invertor.invert: Data arrays are of different length"
360            raise RuntimeError, msg
[3350ad6]361
[9a5097c]362        p = np.ones(nfunc)
[51f14603]363        t_0 = time.time()
[3350ad6]364        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
365
[51f14603]366        # Compute chi^2
367        res = self.pr_residuals(out)
368        chisqr = 0
369        for i in range(len(res)):
370            chisqr += res[i]
[3350ad6]371
[51f14603]372        self.chisqr = chisqr
[3350ad6]373
[51f14603]374        # Store computation time
375        self.elapsed = time.time() - t_0
376
377        return out, cov_x
[3350ad6]378
[51f14603]379    def pr_err(self, c, c_cov, r):
380        """
381        Returns the value of P(r) for a given r, and base function
382        coefficients, with error.
[3350ad6]383
[51f14603]384        :param c: base function coefficients
385        :param c_cov: covariance matrice of the base function coefficients
386        :param r: r-value to evaluate P(r) at
[3350ad6]387
[51f14603]388        :return: P(r)
[3350ad6]389
[51f14603]390        """
391        return self.get_pr_err(c, c_cov, r)
[3350ad6]392
[51f14603]393    def _accept_q(self, q):
394        """
395        Check q-value against user-defined range
396        """
[ac07a3a]397        if self.q_min is not None and q < self.q_min:
[51f14603]398            return False
[ac07a3a]399        if self.q_max is not None and q > self.q_max:
[51f14603]400            return False
401        return True
[3350ad6]402
[51f14603]403    def lstsq(self, nfunc=5, nr=20):
404        """
405        The problem is solved by posing the problem as  Ax = b,
406        where x is the set of coefficients we are looking for.
[3350ad6]407
[51f14603]408        Npts is the number of points.
[3350ad6]409
[51f14603]410        In the following i refers to the ith base function coefficient.
411        The matrix has its entries j in its first Npts rows set to ::
412
413            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]414
[51f14603]415        We them choose a number of r-points, n_r, to evaluate the second
416        derivative of P(r) at. This is used as our regularization term.
417        For a vector r of length n_r, the following n_r rows are set to ::
418
419            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
420            evaluated at r[j])
[3350ad6]421
[51f14603]422        The vector b has its first Npts entries set to ::
423
424            b[j] = (I(q) observed for point j)
[3350ad6]425
[51f14603]426        The following n_r entries are set to zero.
[3350ad6]427
[51f14603]428        The result is found by using scipy.linalg.basic.lstsq to invert
429        the matrix and find the coefficients x.
[3350ad6]430
[51f14603]431        :param nfunc: number of base functions to use.
432        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
433
434        If the result does not allow us to compute the covariance matrix,
435        a matrix filled with zeros will be returned.
436
437        """
438        # Note: To make sure an array is contiguous:
[9a5097c]439        # blah = np.ascontiguousarray(blah_original)
[51f14603]440        # ... before passing it to C
[3350ad6]441
[51f14603]442        if self.is_valid() < 0:
443            msg = "Invertor: invalid data; incompatible data lengths."
444            raise RuntimeError, msg
[3350ad6]445
[51f14603]446        self.nfunc = nfunc
447        # a -- An M x N matrix.
448        # b -- An M x nrhs matrix or M vector.
449        npts = len(self.x)
[3350ad6]450        nq = nr
[51f14603]451        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
452        if sqrt_alpha < 0.0:
453            nq = 0
454
455        # If we need to fit the background, add a term
456        if self.has_bck == True:
457            nfunc_0 = nfunc
458            nfunc += 1
459
[9a5097c]460        a = np.zeros([npts + nq, nfunc])
461        b = np.zeros(npts + nq)
462        err = np.zeros([nfunc, nfunc])
[3350ad6]463
[51f14603]464        # Construct the a matrix and b vector that represent the problem
465        t_0 = time.time()
466        try:
467            self._get_matrix(nfunc, nq, a, b)
468        except:
469            raise RuntimeError, "Invertor: could not invert I(Q)\n  %s" % sys.exc_value
[3350ad6]470
[51f14603]471        # Perform the inversion (least square fit)
472        c, chi2, _, _ = lstsq(a, b)
473        # Sanity check
474        try:
475            float(chi2)
476        except:
477            chi2 = -1.0
478        self.chi2 = chi2
[3350ad6]479
[9a5097c]480        inv_cov = np.zeros([nfunc, nfunc])
[51f14603]481        # Get the covariance matrix, defined as inv_cov = a_transposed * a
482        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]483
[51f14603]484        # Compute the reg term size for the output
485        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]486
[51f14603]487        if math.fabs(self.alpha) > 0:
488            new_alpha = sum_sig / (sum_reg / self.alpha)
489        else:
490            new_alpha = 0.0
491        self.suggested_alpha = new_alpha
[3350ad6]492
[51f14603]493        try:
[9a5097c]494            cov = np.linalg.pinv(inv_cov)
[51f14603]495            err = math.fabs(chi2 / float(npts - nfunc)) * cov
496        except:
497            # We were not able to estimate the errors
498            # Return an empty error matrix
[c155a16]499            logger.error(sys.exc_value)
[3350ad6]500
[51f14603]501        # Keep a copy of the last output
502        if self.has_bck == False:
503            self.background = 0
504            self.out = c
505            self.cov = err
506        else:
507            self.background = c[0]
[3350ad6]508
[9a5097c]509            err_0 = np.zeros([nfunc, nfunc])
510            c_0 = np.zeros(nfunc)
[3350ad6]511
[51f14603]512            for i in range(nfunc_0):
[3350ad6]513                c_0[i] = c[i + 1]
[51f14603]514                for j in range(nfunc_0):
[3350ad6]515                    err_0[i][j] = err[i + 1][j + 1]
516
[51f14603]517            self.out = c_0
518            self.cov = err_0
[3350ad6]519
[51f14603]520        # Store computation time
521        self.elapsed = time.time() - t_0
[3350ad6]522
[51f14603]523        return self.out, self.cov
[3350ad6]524
[51f14603]525    def estimate_numterms(self, isquit_func=None):
526        """
527        Returns a reasonable guess for the
528        number of terms
[3350ad6]529
[51f14603]530        :param isquit_func:
531          reference to thread function to call to check whether the computation needs to
532          be stopped.
[3350ad6]533
[51f14603]534        :return: number of terms, alpha, message
[3350ad6]535
[51f14603]536        """
[5f8fc78]537        from num_term import NTermEstimator
538        estimator = NTermEstimator(self.clone())
[51f14603]539        try:
540            return estimator.num_terms(isquit_func)
541        except:
542            # If we fail, estimate alpha and return the default
543            # number of terms
544            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[c155a16]545            logger.warning("Invertor.estimate_numterms: %s" % sys.exc_value)
[51f14603]546            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]547
[51f14603]548    def estimate_alpha(self, nfunc):
549        """
550        Returns a reasonable guess for the
551        regularization constant alpha
[3350ad6]552
[51f14603]553        :param nfunc: number of terms to use in the expansion.
[3350ad6]554
[51f14603]555        :return: alpha, message, elapsed
[3350ad6]556
[51f14603]557        where alpha is the estimate for alpha,
558        message is a message for the user,
559        elapsed is the computation time
560        """
561        #import time
562        try:
563            pr = self.clone()
[3350ad6]564
[51f14603]565            # T_0 for computation time
566            starttime = time.time()
567            elapsed = 0
[3350ad6]568
[51f14603]569            # If the current alpha is zero, try
570            # another value
571            if pr.alpha <= 0:
572                pr.alpha = 0.0001
[3350ad6]573
[51f14603]574            # Perform inversion to find the largest alpha
575            out, _ = pr.invert(nfunc)
576            elapsed = time.time() - starttime
577            initial_alpha = pr.alpha
578            initial_peaks = pr.get_peaks(out)
[3350ad6]579
[51f14603]580            # Try the inversion with the estimated alpha
581            pr.alpha = pr.suggested_alpha
582            out, _ = pr.invert(nfunc)
[3350ad6]583
[51f14603]584            npeaks = pr.get_peaks(out)
585            # if more than one peak to start with
586            # just return the estimate
587            if npeaks > 1:
588                #message = "Your P(r) is not smooth,
589                #please check your inversion parameters"
590                message = None
591                return pr.suggested_alpha, message, elapsed
592            else:
[3350ad6]593
[51f14603]594                # Look at smaller values
595                # We assume that for the suggested alpha, we have 1 peak
596                # if not, send a message to change parameters
597                alpha = pr.suggested_alpha
598                best_alpha = pr.suggested_alpha
599                found = False
600                for i in range(10):
[3350ad6]601                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]602                    out, _ = pr.invert(nfunc)
[3350ad6]603
[51f14603]604                    peaks = pr.get_peaks(out)
605                    if peaks > 1:
606                        found = True
607                        break
608                    best_alpha = pr.alpha
[3350ad6]609
[51f14603]610                # If we didn't find a turning point for alpha and
611                # the initial alpha already had only one peak,
612                # just return that
613                if not found and initial_peaks == 1 and \
614                    initial_alpha < best_alpha:
615                    best_alpha = initial_alpha
[3350ad6]616
[51f14603]617                # Check whether the size makes sense
618                message = ''
[3350ad6]619
[51f14603]620                if not found:
621                    message = None
622                elif best_alpha >= 0.5 * pr.suggested_alpha:
623                    # best alpha is too big, return a
624                    # reasonable value
[3350ad6]625                    message = "The estimated alpha for your system is too "
[51f14603]626                    message += "large. "
627                    message += "Try increasing your maximum distance."
[3350ad6]628
[51f14603]629                return best_alpha, message, elapsed
[3350ad6]630
[51f14603]631        except:
632            message = "Invertor.estimate_alpha: %s" % sys.exc_value
633            return 0, message, elapsed
[3350ad6]634
[51f14603]635    def to_file(self, path, npts=100):
636        """
637        Save the state to a file that will be readable
638        by SliceView.
[3350ad6]639
[51f14603]640        :param path: path of the file to write
641        :param npts: number of P(r) points to be written
[3350ad6]642
[51f14603]643        """
644        file = open(path, 'w')
645        file.write("#d_max=%g\n" % self.d_max)
646        file.write("#nfunc=%g\n" % self.nfunc)
647        file.write("#alpha=%g\n" % self.alpha)
648        file.write("#chi2=%g\n" % self.chi2)
649        file.write("#elapsed=%g\n" % self.elapsed)
650        file.write("#qmin=%s\n" % str(self.q_min))
651        file.write("#qmax=%s\n" % str(self.q_max))
652        file.write("#slit_height=%g\n" % self.slit_height)
653        file.write("#slit_width=%g\n" % self.slit_width)
654        file.write("#background=%g\n" % self.background)
655        if self.has_bck == True:
656            file.write("#has_bck=1\n")
657        else:
658            file.write("#has_bck=0\n")
659        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
[45dffa69]660        if self.out is not None:
[51f14603]661            if len(self.out) == len(self.cov):
662                for i in range(len(self.out)):
663                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]664                                                   str(self.cov[i][i])))
[51f14603]665        file.write("<r>  <Pr>  <dPr>\n")
[9a5097c]666        r = np.arange(0.0, self.d_max, self.d_max / npts)
[3350ad6]667
[51f14603]668        for r_i in r:
669            (value, err) = self.pr_err(self.out, self.cov, r_i)
670            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]671
[51f14603]672        file.close()
[3350ad6]673
[51f14603]674    def from_file(self, path):
675        """
676        Load the state of the Invertor from a file,
677        to be able to generate P(r) from a set of
678        parameters.
[3350ad6]679
[51f14603]680        :param path: path of the file to load
[3350ad6]681
[51f14603]682        """
683        #import os
684        #import re
685        if os.path.isfile(path):
686            try:
687                fd = open(path, 'r')
[3350ad6]688
[51f14603]689                buff = fd.read()
690                lines = buff.split('\n')
691                for line in lines:
692                    if line.startswith('#d_max='):
693                        toks = line.split('=')
694                        self.d_max = float(toks[1])
695                    elif line.startswith('#nfunc='):
696                        toks = line.split('=')
697                        self.nfunc = int(toks[1])
[9a5097c]698                        self.out = np.zeros(self.nfunc)
699                        self.cov = np.zeros([self.nfunc, self.nfunc])
[51f14603]700                    elif line.startswith('#alpha='):
701                        toks = line.split('=')
702                        self.alpha = float(toks[1])
703                    elif line.startswith('#chi2='):
704                        toks = line.split('=')
705                        self.chi2 = float(toks[1])
706                    elif line.startswith('#elapsed='):
707                        toks = line.split('=')
708                        self.elapsed = float(toks[1])
709                    elif line.startswith('#alpha_estimate='):
710                        toks = line.split('=')
711                        self.suggested_alpha = float(toks[1])
712                    elif line.startswith('#qmin='):
713                        toks = line.split('=')
714                        try:
715                            self.q_min = float(toks[1])
716                        except:
717                            self.q_min = None
718                    elif line.startswith('#qmax='):
719                        toks = line.split('=')
720                        try:
721                            self.q_max = float(toks[1])
722                        except:
723                            self.q_max = None
724                    elif line.startswith('#slit_height='):
725                        toks = line.split('=')
726                        self.slit_height = float(toks[1])
727                    elif line.startswith('#slit_width='):
728                        toks = line.split('=')
729                        self.slit_width = float(toks[1])
730                    elif line.startswith('#background='):
731                        toks = line.split('=')
732                        self.background = float(toks[1])
733                    elif line.startswith('#has_bck='):
734                        toks = line.split('=')
735                        if int(toks[1]) == 1:
736                            self.has_bck = True
737                        else:
738                            self.has_bck = False
[3350ad6]739
[51f14603]740                    # Now read in the parameters
741                    elif line.startswith('#C_'):
742                        toks = line.split('=')
743                        p = re.compile('#C_([0-9]+)')
744                        m = p.search(toks[0])
745                        toks2 = toks[1].split('+-')
746                        i = int(m.group(1))
747                        self.out[i] = float(toks2[0])
[3350ad6]748
[51f14603]749                        self.cov[i][i] = float(toks2[1])
[3350ad6]750
[51f14603]751            except:
752                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value
753                raise RuntimeError, msg
754        else:
755            msg = "Invertor.from_file: '%s' is not a file" % str(path)
756            raise RuntimeError, msg
Note: See TracBrowser for help on using the repository browser.