source: sasview/src/sas/sascalc/pr/invertor.py @ 50f1477

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 50f1477 was 2c60f304, checked in by ajj, 8 years ago

Fixing issue with dmax in P(r). Now logs value error rather than crashing.

  • Property mode set to 100644
File size: 25.4 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
9import numpy
10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
21def help():
22    """
23    Provide general online help text
24    Future work: extend this function to allow topic selection
25    """
[3350ad6]26    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]27    info_txt += "(1980) 13, 168-175.\n\n"
28    info_txt += "P(r) is set to be equal to an expansion of base functions "
29    info_txt += "of the type "
30    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
31    info_txt += "base functions "
32    info_txt += "in the expansion is found by performing a least square fit "
33    info_txt += "with the "
34    info_txt += "following fit function:\n\n"
35    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
36    info_txt += "Reg_term\n\n"
37    info_txt += "where I_meas(q) is the measured scattering intensity and "
38    info_txt += "I_th(q) is "
39    info_txt += "the prediction from the Fourier transform of the P(r) "
40    info_txt += "expansion. "
41    info_txt += "The Reg_term term is a regularization term set to the second"
42    info_txt += " derivative "
43    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
44    info_txt += "a smooth P(r) output.\n\n"
45    info_txt += "The following are user inputs:\n\n"
46    info_txt += "   - Number of terms: the number of base functions in the P(r)"
47    info_txt += " expansion.\n\n"
48    info_txt += "   - Regularization constant: a multiplicative constant "
49    info_txt += "to set the size of "
50    info_txt += "the regularization term.\n\n"
51    info_txt += "   - Maximum distance: the maximum distance between any "
52    info_txt += "two points in the system.\n"
[3350ad6]53
[51f14603]54    return info_txt
[3350ad6]55
[51f14603]56
57class Invertor(Cinvertor):
58    """
59    Invertor class to perform P(r) inversion
[3350ad6]60
[51f14603]61    The problem is solved by posing the problem as  Ax = b,
62    where x is the set of coefficients we are looking for.
[3350ad6]63
[51f14603]64    Npts is the number of points.
[3350ad6]65
[51f14603]66    In the following i refers to the ith base function coefficient.
67    The matrix has its entries j in its first Npts rows set to ::
68
69        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]70
[51f14603]71    We them choose a number of r-points, n_r, to evaluate the second
72    derivative of P(r) at. This is used as our regularization term.
73    For a vector r of length n_r, the following n_r rows are set to ::
74
75        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
76        evaluated at r[j])
[3350ad6]77
[51f14603]78    The vector b has its first Npts entries set to ::
79
80        b[j] = (I(q) observed for point j)
[3350ad6]81
[51f14603]82    The following n_r entries are set to zero.
[3350ad6]83
[51f14603]84    The result is found by using scipy.linalg.basic.lstsq to invert
85    the matrix and find the coefficients x.
[3350ad6]86
[51f14603]87    Methods inherited from Cinvertor:
88
89    * ``get_peaks(pars)``: returns the number of P(r) peaks
90    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
91    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
92    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
93    """
94    ## Chisqr of the last computation
[3350ad6]95    chi2 = 0
[51f14603]96    ## Time elapsed for last computation
97    elapsed = 0
98    ## Alpha to get the reg term the same size as the signal
99    suggested_alpha = 0
100    ## Last number of base functions used
101    nfunc = 10
102    ## Last output values
103    out = None
104    ## Last errors on output values
105    cov = None
106    ## Background value
107    background = 0
108    ## Information dictionary for application use
109    info = {}
[3350ad6]110
[51f14603]111    def __init__(self):
112        Cinvertor.__init__(self)
[3350ad6]113
[51f14603]114    def __setstate__(self, state):
115        """
116        restore the state of invertor for pickle
117        """
118        (self.__dict__, self.alpha, self.d_max,
119         self.q_min, self.q_max,
120         self.x, self.y,
121         self.err, self.has_bck,
122         self.slit_height, self.slit_width) = state
[3350ad6]123
[51f14603]124    def __reduce_ex__(self, proto):
125        """
126        Overwrite the __reduce_ex__
127        """
128
129        state = (self.__dict__,
130                 self.alpha, self.d_max,
131                 self.q_min, self.q_max,
132                 self.x, self.y,
133                 self.err, self.has_bck,
134                 self.slit_height, self.slit_width,
[3350ad6]135                )
[51f14603]136        return (Invertor, tuple(), state, None, None)
[3350ad6]137
[51f14603]138    def __setattr__(self, name, value):
139        """
140        Set the value of an attribute.
141        Access the parent class methods for
142        x, y, err, d_max, q_min, q_max and alpha
143        """
144        if   name == 'x':
145            if 0.0 in value:
146                msg = "Invertor: one of your q-values is zero. "
147                msg += "Delete that entry before proceeding"
148                raise ValueError, msg
149            return self.set_x(value)
150        elif name == 'y':
151            return self.set_y(value)
152        elif name == 'err':
153            value2 = abs(value)
154            return self.set_err(value2)
155        elif name == 'd_max':
[2c60f304]156            if value <= 0.0:
157                msg = "Invertor: d_max must be greater than zero."
158                msg += "Correct that entry before proceeding"
159                raise ValueError, msg
[51f14603]160            return self.set_dmax(value)
161        elif name == 'q_min':
162            if value == None:
163                return self.set_qmin(-1.0)
164            return self.set_qmin(value)
165        elif name == 'q_max':
166            if value == None:
167                return self.set_qmax(-1.0)
168            return self.set_qmax(value)
169        elif name == 'alpha':
170            return self.set_alpha(value)
171        elif name == 'slit_height':
172            return self.set_slit_height(value)
173        elif name == 'slit_width':
174            return self.set_slit_width(value)
175        elif name == 'has_bck':
176            if value == True:
177                return self.set_has_bck(1)
178            elif value == False:
179                return self.set_has_bck(0)
180            else:
181                raise ValueError, "Invertor: has_bck can only be True or False"
[3350ad6]182
[51f14603]183        return Cinvertor.__setattr__(self, name, value)
[3350ad6]184
[51f14603]185    def __getattr__(self, name):
186        """
187        Return the value of an attribute
188        """
189        #import numpy
190        if name == 'x':
191            out = numpy.ones(self.get_nx())
192            self.get_x(out)
193            return out
194        elif name == 'y':
195            out = numpy.ones(self.get_ny())
196            self.get_y(out)
197            return out
198        elif name == 'err':
199            out = numpy.ones(self.get_nerr())
200            self.get_err(out)
201            return out
202        elif name == 'd_max':
203            return self.get_dmax()
204        elif name == 'q_min':
205            qmin = self.get_qmin()
206            if qmin < 0:
207                return None
208            return qmin
209        elif name == 'q_max':
210            qmax = self.get_qmax()
211            if qmax < 0:
212                return None
213            return qmax
214        elif name == 'alpha':
215            return self.get_alpha()
216        elif name == 'slit_height':
217            return self.get_slit_height()
218        elif name == 'slit_width':
219            return self.get_slit_width()
220        elif name == 'has_bck':
221            value = self.get_has_bck()
222            if value == 1:
223                return True
224            else:
225                return False
226        elif name in self.__dict__:
227            return self.__dict__[name]
228        return None
[3350ad6]229
[51f14603]230    def clone(self):
231        """
232        Return a clone of this instance
233        """
234        #import copy
[3350ad6]235
[51f14603]236        invertor = Invertor()
[3350ad6]237        invertor.chi2 = self.chi2
[51f14603]238        invertor.elapsed = self.elapsed
[3350ad6]239        invertor.nfunc = self.nfunc
240        invertor.alpha = self.alpha
241        invertor.d_max = self.d_max
242        invertor.q_min = self.q_min
243        invertor.q_max = self.q_max
244
[51f14603]245        invertor.x = self.x
246        invertor.y = self.y
247        invertor.err = self.err
248        invertor.has_bck = self.has_bck
249        invertor.slit_height = self.slit_height
250        invertor.slit_width = self.slit_width
[3350ad6]251
[51f14603]252        invertor.info = copy.deepcopy(self.info)
[3350ad6]253
[51f14603]254        return invertor
[3350ad6]255
[51f14603]256    def invert(self, nfunc=10, nr=20):
257        """
258        Perform inversion to P(r)
[3350ad6]259
[51f14603]260        The problem is solved by posing the problem as  Ax = b,
261        where x is the set of coefficients we are looking for.
[3350ad6]262
[51f14603]263        Npts is the number of points.
[3350ad6]264
[51f14603]265        In the following i refers to the ith base function coefficient.
266        The matrix has its entries j in its first Npts rows set to ::
267
268            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]269
[51f14603]270        We them choose a number of r-points, n_r, to evaluate the second
271        derivative of P(r) at. This is used as our regularization term.
272        For a vector r of length n_r, the following n_r rows are set to ::
273
274            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]275
[51f14603]276        The vector b has its first Npts entries set to ::
277
278            b[j] = (I(q) observed for point j)
[3350ad6]279
[51f14603]280        The following n_r entries are set to zero.
[3350ad6]281
[51f14603]282        The result is found by using scipy.linalg.basic.lstsq to invert
283        the matrix and find the coefficients x.
[3350ad6]284
[51f14603]285        :param nfunc: number of base functions to use.
286        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
287        :return: c_out, c_cov - the coefficients with covariance matrix
288        """
289        # Reset the background value before proceeding
290        self.background = 0.0
291        return self.lstsq(nfunc, nr=nr)
[3350ad6]292
[51f14603]293    def iq(self, out, q):
294        """
295        Function to call to evaluate the scattering intensity
[3350ad6]296
[51f14603]297        :param args: c-parameters, and q
298        :return: I(q)
[3350ad6]299
[51f14603]300        """
301        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]302
[51f14603]303    def invert_optimize(self, nfunc=10, nr=20):
304        """
305        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]306
[51f14603]307        This probably produce more reliable results, but is much slower.
308        The minimization function is set to
309        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
310        where the reg_term is given by Svergun: it is the integral of
311        the square of the first derivative
312        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]313
[51f14603]314        :param nfunc: number of base functions to use.
315        :param nr: number of r points to evaluate the 2nd derivative at
316            for the reg. term.
[3350ad6]317
[51f14603]318        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]319
[51f14603]320        """
321        self.nfunc = nfunc
322        # First, check that the current data is valid
323        if self.is_valid() <= 0:
324            msg = "Invertor.invert: Data array are of different length"
325            raise RuntimeError, msg
[3350ad6]326
[51f14603]327        p = numpy.ones(nfunc)
328        t_0 = time.time()
[3350ad6]329        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
330
[51f14603]331        # Compute chi^2
332        res = self.residuals(out)
333        chisqr = 0
334        for i in range(len(res)):
335            chisqr += res[i]
[3350ad6]336
[51f14603]337        self.chi2 = chisqr
338
339        # Store computation time
340        self.elapsed = time.time() - t_0
[3350ad6]341
[51f14603]342        if cov_x is None:
343            cov_x = numpy.ones([nfunc, nfunc])
344            cov_x *= math.fabs(chisqr)
345        return out, cov_x
[3350ad6]346
[51f14603]347    def pr_fit(self, nfunc=5):
348        """
349        This is a direct fit to a given P(r). It assumes that the y data
350        is set to some P(r) distribution that we are trying to reproduce
351        with a set of base functions.
[3350ad6]352
[51f14603]353        This method is provided as a test.
354        """
355        # First, check that the current data is valid
356        if self.is_valid() <= 0:
357            msg = "Invertor.invert: Data arrays are of different length"
358            raise RuntimeError, msg
[3350ad6]359
[51f14603]360        p = numpy.ones(nfunc)
361        t_0 = time.time()
[3350ad6]362        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
363
[51f14603]364        # Compute chi^2
365        res = self.pr_residuals(out)
366        chisqr = 0
367        for i in range(len(res)):
368            chisqr += res[i]
[3350ad6]369
[51f14603]370        self.chisqr = chisqr
[3350ad6]371
[51f14603]372        # Store computation time
373        self.elapsed = time.time() - t_0
374
375        return out, cov_x
[3350ad6]376
[51f14603]377    def pr_err(self, c, c_cov, r):
378        """
379        Returns the value of P(r) for a given r, and base function
380        coefficients, with error.
[3350ad6]381
[51f14603]382        :param c: base function coefficients
383        :param c_cov: covariance matrice of the base function coefficients
384        :param r: r-value to evaluate P(r) at
[3350ad6]385
[51f14603]386        :return: P(r)
[3350ad6]387
[51f14603]388        """
389        return self.get_pr_err(c, c_cov, r)
[3350ad6]390
[51f14603]391    def _accept_q(self, q):
392        """
393        Check q-value against user-defined range
394        """
395        if not self.q_min == None and q < self.q_min:
396            return False
397        if not self.q_max == None and q > self.q_max:
398            return False
399        return True
[3350ad6]400
[51f14603]401    def lstsq(self, nfunc=5, nr=20):
402        """
403        The problem is solved by posing the problem as  Ax = b,
404        where x is the set of coefficients we are looking for.
[3350ad6]405
[51f14603]406        Npts is the number of points.
[3350ad6]407
[51f14603]408        In the following i refers to the ith base function coefficient.
409        The matrix has its entries j in its first Npts rows set to ::
410
411            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]412
[51f14603]413        We them choose a number of r-points, n_r, to evaluate the second
414        derivative of P(r) at. This is used as our regularization term.
415        For a vector r of length n_r, the following n_r rows are set to ::
416
417            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
418            evaluated at r[j])
[3350ad6]419
[51f14603]420        The vector b has its first Npts entries set to ::
421
422            b[j] = (I(q) observed for point j)
[3350ad6]423
[51f14603]424        The following n_r entries are set to zero.
[3350ad6]425
[51f14603]426        The result is found by using scipy.linalg.basic.lstsq to invert
427        the matrix and find the coefficients x.
[3350ad6]428
[51f14603]429        :param nfunc: number of base functions to use.
430        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
431
432        If the result does not allow us to compute the covariance matrix,
433        a matrix filled with zeros will be returned.
434
435        """
436        # Note: To make sure an array is contiguous:
437        # blah = numpy.ascontiguousarray(blah_original)
438        # ... before passing it to C
[3350ad6]439
[51f14603]440        if self.is_valid() < 0:
441            msg = "Invertor: invalid data; incompatible data lengths."
442            raise RuntimeError, msg
[3350ad6]443
[51f14603]444        self.nfunc = nfunc
445        # a -- An M x N matrix.
446        # b -- An M x nrhs matrix or M vector.
447        npts = len(self.x)
[3350ad6]448        nq = nr
[51f14603]449        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
450        if sqrt_alpha < 0.0:
451            nq = 0
452
453        # If we need to fit the background, add a term
454        if self.has_bck == True:
455            nfunc_0 = nfunc
456            nfunc += 1
457
458        a = numpy.zeros([npts + nq, nfunc])
459        b = numpy.zeros(npts + nq)
460        err = numpy.zeros([nfunc, nfunc])
[3350ad6]461
[51f14603]462        # Construct the a matrix and b vector that represent the problem
463        t_0 = time.time()
464        try:
465            self._get_matrix(nfunc, nq, a, b)
466        except:
467            raise RuntimeError, "Invertor: could not invert I(Q)\n  %s" % sys.exc_value
[3350ad6]468
[51f14603]469        # Perform the inversion (least square fit)
470        c, chi2, _, _ = lstsq(a, b)
471        # Sanity check
472        try:
473            float(chi2)
474        except:
475            chi2 = -1.0
476        self.chi2 = chi2
[3350ad6]477
[51f14603]478        inv_cov = numpy.zeros([nfunc, nfunc])
479        # Get the covariance matrix, defined as inv_cov = a_transposed * a
480        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]481
[51f14603]482        # Compute the reg term size for the output
483        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]484
[51f14603]485        if math.fabs(self.alpha) > 0:
486            new_alpha = sum_sig / (sum_reg / self.alpha)
487        else:
488            new_alpha = 0.0
489        self.suggested_alpha = new_alpha
[3350ad6]490
[51f14603]491        try:
492            cov = numpy.linalg.pinv(inv_cov)
493            err = math.fabs(chi2 / float(npts - nfunc)) * cov
494        except:
495            # We were not able to estimate the errors
496            # Return an empty error matrix
[3350ad6]497            logging.error(sys.exc_value)
498
[51f14603]499        # Keep a copy of the last output
500        if self.has_bck == False:
501            self.background = 0
502            self.out = c
503            self.cov = err
504        else:
505            self.background = c[0]
[3350ad6]506
[51f14603]507            err_0 = numpy.zeros([nfunc, nfunc])
508            c_0 = numpy.zeros(nfunc)
[3350ad6]509
[51f14603]510            for i in range(nfunc_0):
[3350ad6]511                c_0[i] = c[i + 1]
[51f14603]512                for j in range(nfunc_0):
[3350ad6]513                    err_0[i][j] = err[i + 1][j + 1]
514
[51f14603]515            self.out = c_0
516            self.cov = err_0
[3350ad6]517
[51f14603]518        # Store computation time
519        self.elapsed = time.time() - t_0
[3350ad6]520
[51f14603]521        return self.out, self.cov
[3350ad6]522
[51f14603]523    def estimate_numterms(self, isquit_func=None):
524        """
525        Returns a reasonable guess for the
526        number of terms
[3350ad6]527
[51f14603]528        :param isquit_func:
529          reference to thread function to call to check whether the computation needs to
530          be stopped.
[3350ad6]531
[51f14603]532        :return: number of terms, alpha, message
[3350ad6]533
[51f14603]534        """
[5f8fc78]535        from num_term import NTermEstimator
536        estimator = NTermEstimator(self.clone())
[51f14603]537        try:
538            return estimator.num_terms(isquit_func)
539        except:
540            # If we fail, estimate alpha and return the default
541            # number of terms
542            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[3d250da3]543            logging.warning("Invertor.estimate_numterms: %s" % sys.exc_value)
[51f14603]544            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]545
[51f14603]546    def estimate_alpha(self, nfunc):
547        """
548        Returns a reasonable guess for the
549        regularization constant alpha
[3350ad6]550
[51f14603]551        :param nfunc: number of terms to use in the expansion.
[3350ad6]552
[51f14603]553        :return: alpha, message, elapsed
[3350ad6]554
[51f14603]555        where alpha is the estimate for alpha,
556        message is a message for the user,
557        elapsed is the computation time
558        """
559        #import time
560        try:
561            pr = self.clone()
[3350ad6]562
[51f14603]563            # T_0 for computation time
564            starttime = time.time()
565            elapsed = 0
[3350ad6]566
[51f14603]567            # If the current alpha is zero, try
568            # another value
569            if pr.alpha <= 0:
570                pr.alpha = 0.0001
[3350ad6]571
[51f14603]572            # Perform inversion to find the largest alpha
573            out, _ = pr.invert(nfunc)
574            elapsed = time.time() - starttime
575            initial_alpha = pr.alpha
576            initial_peaks = pr.get_peaks(out)
[3350ad6]577
[51f14603]578            # Try the inversion with the estimated alpha
579            pr.alpha = pr.suggested_alpha
580            out, _ = pr.invert(nfunc)
[3350ad6]581
[51f14603]582            npeaks = pr.get_peaks(out)
583            # if more than one peak to start with
584            # just return the estimate
585            if npeaks > 1:
586                #message = "Your P(r) is not smooth,
587                #please check your inversion parameters"
588                message = None
589                return pr.suggested_alpha, message, elapsed
590            else:
[3350ad6]591
[51f14603]592                # Look at smaller values
593                # We assume that for the suggested alpha, we have 1 peak
594                # if not, send a message to change parameters
595                alpha = pr.suggested_alpha
596                best_alpha = pr.suggested_alpha
597                found = False
598                for i in range(10):
[3350ad6]599                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]600                    out, _ = pr.invert(nfunc)
[3350ad6]601
[51f14603]602                    peaks = pr.get_peaks(out)
603                    if peaks > 1:
604                        found = True
605                        break
606                    best_alpha = pr.alpha
[3350ad6]607
[51f14603]608                # If we didn't find a turning point for alpha and
609                # the initial alpha already had only one peak,
610                # just return that
611                if not found and initial_peaks == 1 and \
612                    initial_alpha < best_alpha:
613                    best_alpha = initial_alpha
[3350ad6]614
[51f14603]615                # Check whether the size makes sense
616                message = ''
[3350ad6]617
[51f14603]618                if not found:
619                    message = None
620                elif best_alpha >= 0.5 * pr.suggested_alpha:
621                    # best alpha is too big, return a
622                    # reasonable value
[3350ad6]623                    message = "The estimated alpha for your system is too "
[51f14603]624                    message += "large. "
625                    message += "Try increasing your maximum distance."
[3350ad6]626
[51f14603]627                return best_alpha, message, elapsed
[3350ad6]628
[51f14603]629        except:
630            message = "Invertor.estimate_alpha: %s" % sys.exc_value
631            return 0, message, elapsed
[3350ad6]632
[51f14603]633    def to_file(self, path, npts=100):
634        """
635        Save the state to a file that will be readable
636        by SliceView.
[3350ad6]637
[51f14603]638        :param path: path of the file to write
639        :param npts: number of P(r) points to be written
[3350ad6]640
[51f14603]641        """
642        file = open(path, 'w')
643        file.write("#d_max=%g\n" % self.d_max)
644        file.write("#nfunc=%g\n" % self.nfunc)
645        file.write("#alpha=%g\n" % self.alpha)
646        file.write("#chi2=%g\n" % self.chi2)
647        file.write("#elapsed=%g\n" % self.elapsed)
648        file.write("#qmin=%s\n" % str(self.q_min))
649        file.write("#qmax=%s\n" % str(self.q_max))
650        file.write("#slit_height=%g\n" % self.slit_height)
651        file.write("#slit_width=%g\n" % self.slit_width)
652        file.write("#background=%g\n" % self.background)
653        if self.has_bck == True:
654            file.write("#has_bck=1\n")
655        else:
656            file.write("#has_bck=0\n")
657        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
658        if not self.out == None:
659            if len(self.out) == len(self.cov):
660                for i in range(len(self.out)):
661                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]662                                                   str(self.cov[i][i])))
[51f14603]663        file.write("<r>  <Pr>  <dPr>\n")
[3350ad6]664        r = numpy.arange(0.0, self.d_max, self.d_max / npts)
665
[51f14603]666        for r_i in r:
667            (value, err) = self.pr_err(self.out, self.cov, r_i)
668            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]669
[51f14603]670        file.close()
[3350ad6]671
[51f14603]672    def from_file(self, path):
673        """
674        Load the state of the Invertor from a file,
675        to be able to generate P(r) from a set of
676        parameters.
[3350ad6]677
[51f14603]678        :param path: path of the file to load
[3350ad6]679
[51f14603]680        """
681        #import os
682        #import re
683        if os.path.isfile(path):
684            try:
685                fd = open(path, 'r')
[3350ad6]686
[51f14603]687                buff = fd.read()
688                lines = buff.split('\n')
689                for line in lines:
690                    if line.startswith('#d_max='):
691                        toks = line.split('=')
692                        self.d_max = float(toks[1])
693                    elif line.startswith('#nfunc='):
694                        toks = line.split('=')
695                        self.nfunc = int(toks[1])
696                        self.out = numpy.zeros(self.nfunc)
697                        self.cov = numpy.zeros([self.nfunc, self.nfunc])
698                    elif line.startswith('#alpha='):
699                        toks = line.split('=')
700                        self.alpha = float(toks[1])
701                    elif line.startswith('#chi2='):
702                        toks = line.split('=')
703                        self.chi2 = float(toks[1])
704                    elif line.startswith('#elapsed='):
705                        toks = line.split('=')
706                        self.elapsed = float(toks[1])
707                    elif line.startswith('#alpha_estimate='):
708                        toks = line.split('=')
709                        self.suggested_alpha = float(toks[1])
710                    elif line.startswith('#qmin='):
711                        toks = line.split('=')
712                        try:
713                            self.q_min = float(toks[1])
714                        except:
715                            self.q_min = None
716                    elif line.startswith('#qmax='):
717                        toks = line.split('=')
718                        try:
719                            self.q_max = float(toks[1])
720                        except:
721                            self.q_max = None
722                    elif line.startswith('#slit_height='):
723                        toks = line.split('=')
724                        self.slit_height = float(toks[1])
725                    elif line.startswith('#slit_width='):
726                        toks = line.split('=')
727                        self.slit_width = float(toks[1])
728                    elif line.startswith('#background='):
729                        toks = line.split('=')
730                        self.background = float(toks[1])
731                    elif line.startswith('#has_bck='):
732                        toks = line.split('=')
733                        if int(toks[1]) == 1:
734                            self.has_bck = True
735                        else:
736                            self.has_bck = False
[3350ad6]737
[51f14603]738                    # Now read in the parameters
739                    elif line.startswith('#C_'):
740                        toks = line.split('=')
741                        p = re.compile('#C_([0-9]+)')
742                        m = p.search(toks[0])
743                        toks2 = toks[1].split('+-')
744                        i = int(m.group(1))
745                        self.out[i] = float(toks2[0])
[3350ad6]746
[51f14603]747                        self.cov[i][i] = float(toks2[1])
[3350ad6]748
[51f14603]749            except:
750                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value
751                raise RuntimeError, msg
752        else:
753            msg = "Invertor.from_file: '%s' is not a file" % str(path)
754            raise RuntimeError, msg
Note: See TracBrowser for help on using the repository browser.