source: sasview/src/sas/sascalc/pr/invertor.py @ 20ac508

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since 20ac508 was b699768, checked in by Piotr Rozyczko <piotr.rozyczko@…>, 9 years ago

Initial commit of the refactored SasCalc? module.

  • Property mode set to 100644
File size: 25.2 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
9import numpy
10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
21def help():
22    """
23    Provide general online help text
24    Future work: extend this function to allow topic selection
25    """
[3350ad6]26    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]27    info_txt += "(1980) 13, 168-175.\n\n"
28    info_txt += "P(r) is set to be equal to an expansion of base functions "
29    info_txt += "of the type "
30    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
31    info_txt += "base functions "
32    info_txt += "in the expansion is found by performing a least square fit "
33    info_txt += "with the "
34    info_txt += "following fit function:\n\n"
35    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
36    info_txt += "Reg_term\n\n"
37    info_txt += "where I_meas(q) is the measured scattering intensity and "
38    info_txt += "I_th(q) is "
39    info_txt += "the prediction from the Fourier transform of the P(r) "
40    info_txt += "expansion. "
41    info_txt += "The Reg_term term is a regularization term set to the second"
42    info_txt += " derivative "
43    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
44    info_txt += "a smooth P(r) output.\n\n"
45    info_txt += "The following are user inputs:\n\n"
46    info_txt += "   - Number of terms: the number of base functions in the P(r)"
47    info_txt += " expansion.\n\n"
48    info_txt += "   - Regularization constant: a multiplicative constant "
49    info_txt += "to set the size of "
50    info_txt += "the regularization term.\n\n"
51    info_txt += "   - Maximum distance: the maximum distance between any "
52    info_txt += "two points in the system.\n"
[3350ad6]53
[51f14603]54    return info_txt
[3350ad6]55
[51f14603]56
57class Invertor(Cinvertor):
58    """
59    Invertor class to perform P(r) inversion
[3350ad6]60
[51f14603]61    The problem is solved by posing the problem as  Ax = b,
62    where x is the set of coefficients we are looking for.
[3350ad6]63
[51f14603]64    Npts is the number of points.
[3350ad6]65
[51f14603]66    In the following i refers to the ith base function coefficient.
67    The matrix has its entries j in its first Npts rows set to ::
68
69        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]70
[51f14603]71    We them choose a number of r-points, n_r, to evaluate the second
72    derivative of P(r) at. This is used as our regularization term.
73    For a vector r of length n_r, the following n_r rows are set to ::
74
75        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
76        evaluated at r[j])
[3350ad6]77
[51f14603]78    The vector b has its first Npts entries set to ::
79
80        b[j] = (I(q) observed for point j)
[3350ad6]81
[51f14603]82    The following n_r entries are set to zero.
[3350ad6]83
[51f14603]84    The result is found by using scipy.linalg.basic.lstsq to invert
85    the matrix and find the coefficients x.
[3350ad6]86
[51f14603]87    Methods inherited from Cinvertor:
88
89    * ``get_peaks(pars)``: returns the number of P(r) peaks
90    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
91    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
92    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
93    """
94    ## Chisqr of the last computation
[3350ad6]95    chi2 = 0
[51f14603]96    ## Time elapsed for last computation
97    elapsed = 0
98    ## Alpha to get the reg term the same size as the signal
99    suggested_alpha = 0
100    ## Last number of base functions used
101    nfunc = 10
102    ## Last output values
103    out = None
104    ## Last errors on output values
105    cov = None
106    ## Background value
107    background = 0
108    ## Information dictionary for application use
109    info = {}
[3350ad6]110
[51f14603]111    def __init__(self):
112        Cinvertor.__init__(self)
[3350ad6]113
[51f14603]114    def __setstate__(self, state):
115        """
116        restore the state of invertor for pickle
117        """
118        (self.__dict__, self.alpha, self.d_max,
119         self.q_min, self.q_max,
120         self.x, self.y,
121         self.err, self.has_bck,
122         self.slit_height, self.slit_width) = state
[3350ad6]123
[51f14603]124    def __reduce_ex__(self, proto):
125        """
126        Overwrite the __reduce_ex__
127        """
128
129        state = (self.__dict__,
130                 self.alpha, self.d_max,
131                 self.q_min, self.q_max,
132                 self.x, self.y,
133                 self.err, self.has_bck,
134                 self.slit_height, self.slit_width,
[3350ad6]135                )
[51f14603]136        return (Invertor, tuple(), state, None, None)
[3350ad6]137
[51f14603]138    def __setattr__(self, name, value):
139        """
140        Set the value of an attribute.
141        Access the parent class methods for
142        x, y, err, d_max, q_min, q_max and alpha
143        """
144        if   name == 'x':
145            if 0.0 in value:
146                msg = "Invertor: one of your q-values is zero. "
147                msg += "Delete that entry before proceeding"
148                raise ValueError, msg
149            return self.set_x(value)
150        elif name == 'y':
151            return self.set_y(value)
152        elif name == 'err':
153            value2 = abs(value)
154            return self.set_err(value2)
155        elif name == 'd_max':
156            return self.set_dmax(value)
157        elif name == 'q_min':
158            if value == None:
159                return self.set_qmin(-1.0)
160            return self.set_qmin(value)
161        elif name == 'q_max':
162            if value == None:
163                return self.set_qmax(-1.0)
164            return self.set_qmax(value)
165        elif name == 'alpha':
166            return self.set_alpha(value)
167        elif name == 'slit_height':
168            return self.set_slit_height(value)
169        elif name == 'slit_width':
170            return self.set_slit_width(value)
171        elif name == 'has_bck':
172            if value == True:
173                return self.set_has_bck(1)
174            elif value == False:
175                return self.set_has_bck(0)
176            else:
177                raise ValueError, "Invertor: has_bck can only be True or False"
[3350ad6]178
[51f14603]179        return Cinvertor.__setattr__(self, name, value)
[3350ad6]180
[51f14603]181    def __getattr__(self, name):
182        """
183        Return the value of an attribute
184        """
185        #import numpy
186        if name == 'x':
187            out = numpy.ones(self.get_nx())
188            self.get_x(out)
189            return out
190        elif name == 'y':
191            out = numpy.ones(self.get_ny())
192            self.get_y(out)
193            return out
194        elif name == 'err':
195            out = numpy.ones(self.get_nerr())
196            self.get_err(out)
197            return out
198        elif name == 'd_max':
199            return self.get_dmax()
200        elif name == 'q_min':
201            qmin = self.get_qmin()
202            if qmin < 0:
203                return None
204            return qmin
205        elif name == 'q_max':
206            qmax = self.get_qmax()
207            if qmax < 0:
208                return None
209            return qmax
210        elif name == 'alpha':
211            return self.get_alpha()
212        elif name == 'slit_height':
213            return self.get_slit_height()
214        elif name == 'slit_width':
215            return self.get_slit_width()
216        elif name == 'has_bck':
217            value = self.get_has_bck()
218            if value == 1:
219                return True
220            else:
221                return False
222        elif name in self.__dict__:
223            return self.__dict__[name]
224        return None
[3350ad6]225
[51f14603]226    def clone(self):
227        """
228        Return a clone of this instance
229        """
230        #import copy
[3350ad6]231
[51f14603]232        invertor = Invertor()
[3350ad6]233        invertor.chi2 = self.chi2
[51f14603]234        invertor.elapsed = self.elapsed
[3350ad6]235        invertor.nfunc = self.nfunc
236        invertor.alpha = self.alpha
237        invertor.d_max = self.d_max
238        invertor.q_min = self.q_min
239        invertor.q_max = self.q_max
240
[51f14603]241        invertor.x = self.x
242        invertor.y = self.y
243        invertor.err = self.err
244        invertor.has_bck = self.has_bck
245        invertor.slit_height = self.slit_height
246        invertor.slit_width = self.slit_width
[3350ad6]247
[51f14603]248        invertor.info = copy.deepcopy(self.info)
[3350ad6]249
[51f14603]250        return invertor
[3350ad6]251
[51f14603]252    def invert(self, nfunc=10, nr=20):
253        """
254        Perform inversion to P(r)
[3350ad6]255
[51f14603]256        The problem is solved by posing the problem as  Ax = b,
257        where x is the set of coefficients we are looking for.
[3350ad6]258
[51f14603]259        Npts is the number of points.
[3350ad6]260
[51f14603]261        In the following i refers to the ith base function coefficient.
262        The matrix has its entries j in its first Npts rows set to ::
263
264            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]265
[51f14603]266        We them choose a number of r-points, n_r, to evaluate the second
267        derivative of P(r) at. This is used as our regularization term.
268        For a vector r of length n_r, the following n_r rows are set to ::
269
270            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]271
[51f14603]272        The vector b has its first Npts entries set to ::
273
274            b[j] = (I(q) observed for point j)
[3350ad6]275
[51f14603]276        The following n_r entries are set to zero.
[3350ad6]277
[51f14603]278        The result is found by using scipy.linalg.basic.lstsq to invert
279        the matrix and find the coefficients x.
[3350ad6]280
[51f14603]281        :param nfunc: number of base functions to use.
282        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
283        :return: c_out, c_cov - the coefficients with covariance matrix
284        """
285        # Reset the background value before proceeding
286        self.background = 0.0
287        return self.lstsq(nfunc, nr=nr)
[3350ad6]288
[51f14603]289    def iq(self, out, q):
290        """
291        Function to call to evaluate the scattering intensity
[3350ad6]292
[51f14603]293        :param args: c-parameters, and q
294        :return: I(q)
[3350ad6]295
[51f14603]296        """
297        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]298
[51f14603]299    def invert_optimize(self, nfunc=10, nr=20):
300        """
301        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]302
[51f14603]303        This probably produce more reliable results, but is much slower.
304        The minimization function is set to
305        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
306        where the reg_term is given by Svergun: it is the integral of
307        the square of the first derivative
308        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]309
[51f14603]310        :param nfunc: number of base functions to use.
311        :param nr: number of r points to evaluate the 2nd derivative at
312            for the reg. term.
[3350ad6]313
[51f14603]314        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]315
[51f14603]316        """
317        self.nfunc = nfunc
318        # First, check that the current data is valid
319        if self.is_valid() <= 0:
320            msg = "Invertor.invert: Data array are of different length"
321            raise RuntimeError, msg
[3350ad6]322
[51f14603]323        p = numpy.ones(nfunc)
324        t_0 = time.time()
[3350ad6]325        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
326
[51f14603]327        # Compute chi^2
328        res = self.residuals(out)
329        chisqr = 0
330        for i in range(len(res)):
331            chisqr += res[i]
[3350ad6]332
[51f14603]333        self.chi2 = chisqr
334
335        # Store computation time
336        self.elapsed = time.time() - t_0
[3350ad6]337
[51f14603]338        if cov_x is None:
339            cov_x = numpy.ones([nfunc, nfunc])
340            cov_x *= math.fabs(chisqr)
341        return out, cov_x
[3350ad6]342
[51f14603]343    def pr_fit(self, nfunc=5):
344        """
345        This is a direct fit to a given P(r). It assumes that the y data
346        is set to some P(r) distribution that we are trying to reproduce
347        with a set of base functions.
[3350ad6]348
[51f14603]349        This method is provided as a test.
350        """
351        # First, check that the current data is valid
352        if self.is_valid() <= 0:
353            msg = "Invertor.invert: Data arrays are of different length"
354            raise RuntimeError, msg
[3350ad6]355
[51f14603]356        p = numpy.ones(nfunc)
357        t_0 = time.time()
[3350ad6]358        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
359
[51f14603]360        # Compute chi^2
361        res = self.pr_residuals(out)
362        chisqr = 0
363        for i in range(len(res)):
364            chisqr += res[i]
[3350ad6]365
[51f14603]366        self.chisqr = chisqr
[3350ad6]367
[51f14603]368        # Store computation time
369        self.elapsed = time.time() - t_0
370
371        return out, cov_x
[3350ad6]372
[51f14603]373    def pr_err(self, c, c_cov, r):
374        """
375        Returns the value of P(r) for a given r, and base function
376        coefficients, with error.
[3350ad6]377
[51f14603]378        :param c: base function coefficients
379        :param c_cov: covariance matrice of the base function coefficients
380        :param r: r-value to evaluate P(r) at
[3350ad6]381
[51f14603]382        :return: P(r)
[3350ad6]383
[51f14603]384        """
385        return self.get_pr_err(c, c_cov, r)
[3350ad6]386
[51f14603]387    def _accept_q(self, q):
388        """
389        Check q-value against user-defined range
390        """
391        if not self.q_min == None and q < self.q_min:
392            return False
393        if not self.q_max == None and q > self.q_max:
394            return False
395        return True
[3350ad6]396
[51f14603]397    def lstsq(self, nfunc=5, nr=20):
398        """
399        The problem is solved by posing the problem as  Ax = b,
400        where x is the set of coefficients we are looking for.
[3350ad6]401
[51f14603]402        Npts is the number of points.
[3350ad6]403
[51f14603]404        In the following i refers to the ith base function coefficient.
405        The matrix has its entries j in its first Npts rows set to ::
406
407            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]408
[51f14603]409        We them choose a number of r-points, n_r, to evaluate the second
410        derivative of P(r) at. This is used as our regularization term.
411        For a vector r of length n_r, the following n_r rows are set to ::
412
413            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
414            evaluated at r[j])
[3350ad6]415
[51f14603]416        The vector b has its first Npts entries set to ::
417
418            b[j] = (I(q) observed for point j)
[3350ad6]419
[51f14603]420        The following n_r entries are set to zero.
[3350ad6]421
[51f14603]422        The result is found by using scipy.linalg.basic.lstsq to invert
423        the matrix and find the coefficients x.
[3350ad6]424
[51f14603]425        :param nfunc: number of base functions to use.
426        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
427
428        If the result does not allow us to compute the covariance matrix,
429        a matrix filled with zeros will be returned.
430
431        """
432        # Note: To make sure an array is contiguous:
433        # blah = numpy.ascontiguousarray(blah_original)
434        # ... before passing it to C
[3350ad6]435
[51f14603]436        if self.is_valid() < 0:
437            msg = "Invertor: invalid data; incompatible data lengths."
438            raise RuntimeError, msg
[3350ad6]439
[51f14603]440        self.nfunc = nfunc
441        # a -- An M x N matrix.
442        # b -- An M x nrhs matrix or M vector.
443        npts = len(self.x)
[3350ad6]444        nq = nr
[51f14603]445        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
446        if sqrt_alpha < 0.0:
447            nq = 0
448
449        # If we need to fit the background, add a term
450        if self.has_bck == True:
451            nfunc_0 = nfunc
452            nfunc += 1
453
454        a = numpy.zeros([npts + nq, nfunc])
455        b = numpy.zeros(npts + nq)
456        err = numpy.zeros([nfunc, nfunc])
[3350ad6]457
[51f14603]458        # Construct the a matrix and b vector that represent the problem
459        t_0 = time.time()
460        try:
461            self._get_matrix(nfunc, nq, a, b)
462        except:
463            raise RuntimeError, "Invertor: could not invert I(Q)\n  %s" % sys.exc_value
[3350ad6]464
[51f14603]465        # Perform the inversion (least square fit)
466        c, chi2, _, _ = lstsq(a, b)
467        # Sanity check
468        try:
469            float(chi2)
470        except:
471            chi2 = -1.0
472        self.chi2 = chi2
[3350ad6]473
[51f14603]474        inv_cov = numpy.zeros([nfunc, nfunc])
475        # Get the covariance matrix, defined as inv_cov = a_transposed * a
476        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]477
[51f14603]478        # Compute the reg term size for the output
479        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]480
[51f14603]481        if math.fabs(self.alpha) > 0:
482            new_alpha = sum_sig / (sum_reg / self.alpha)
483        else:
484            new_alpha = 0.0
485        self.suggested_alpha = new_alpha
[3350ad6]486
[51f14603]487        try:
488            cov = numpy.linalg.pinv(inv_cov)
489            err = math.fabs(chi2 / float(npts - nfunc)) * cov
490        except:
491            # We were not able to estimate the errors
492            # Return an empty error matrix
[3350ad6]493            logging.error(sys.exc_value)
494
[51f14603]495        # Keep a copy of the last output
496        if self.has_bck == False:
497            self.background = 0
498            self.out = c
499            self.cov = err
500        else:
501            self.background = c[0]
[3350ad6]502
[51f14603]503            err_0 = numpy.zeros([nfunc, nfunc])
504            c_0 = numpy.zeros(nfunc)
[3350ad6]505
[51f14603]506            for i in range(nfunc_0):
[3350ad6]507                c_0[i] = c[i + 1]
[51f14603]508                for j in range(nfunc_0):
[3350ad6]509                    err_0[i][j] = err[i + 1][j + 1]
510
[51f14603]511            self.out = c_0
512            self.cov = err_0
[3350ad6]513
[51f14603]514        # Store computation time
515        self.elapsed = time.time() - t_0
[3350ad6]516
[51f14603]517        return self.out, self.cov
[3350ad6]518
[51f14603]519    def estimate_numterms(self, isquit_func=None):
520        """
521        Returns a reasonable guess for the
522        number of terms
[3350ad6]523
[51f14603]524        :param isquit_func:
525          reference to thread function to call to check whether the computation needs to
526          be stopped.
[3350ad6]527
[51f14603]528        :return: number of terms, alpha, message
[3350ad6]529
[51f14603]530        """
[5f8fc78]531        from num_term import NTermEstimator
532        estimator = NTermEstimator(self.clone())
[51f14603]533        try:
534            return estimator.num_terms(isquit_func)
535        except:
536            # If we fail, estimate alpha and return the default
537            # number of terms
538            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[3d250da3]539            logging.warning("Invertor.estimate_numterms: %s" % sys.exc_value)
[51f14603]540            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]541
[51f14603]542    def estimate_alpha(self, nfunc):
543        """
544        Returns a reasonable guess for the
545        regularization constant alpha
[3350ad6]546
[51f14603]547        :param nfunc: number of terms to use in the expansion.
[3350ad6]548
[51f14603]549        :return: alpha, message, elapsed
[3350ad6]550
[51f14603]551        where alpha is the estimate for alpha,
552        message is a message for the user,
553        elapsed is the computation time
554        """
555        #import time
556        try:
557            pr = self.clone()
[3350ad6]558
[51f14603]559            # T_0 for computation time
560            starttime = time.time()
561            elapsed = 0
[3350ad6]562
[51f14603]563            # If the current alpha is zero, try
564            # another value
565            if pr.alpha <= 0:
566                pr.alpha = 0.0001
[3350ad6]567
[51f14603]568            # Perform inversion to find the largest alpha
569            out, _ = pr.invert(nfunc)
570            elapsed = time.time() - starttime
571            initial_alpha = pr.alpha
572            initial_peaks = pr.get_peaks(out)
[3350ad6]573
[51f14603]574            # Try the inversion with the estimated alpha
575            pr.alpha = pr.suggested_alpha
576            out, _ = pr.invert(nfunc)
[3350ad6]577
[51f14603]578            npeaks = pr.get_peaks(out)
579            # if more than one peak to start with
580            # just return the estimate
581            if npeaks > 1:
582                #message = "Your P(r) is not smooth,
583                #please check your inversion parameters"
584                message = None
585                return pr.suggested_alpha, message, elapsed
586            else:
[3350ad6]587
[51f14603]588                # Look at smaller values
589                # We assume that for the suggested alpha, we have 1 peak
590                # if not, send a message to change parameters
591                alpha = pr.suggested_alpha
592                best_alpha = pr.suggested_alpha
593                found = False
594                for i in range(10):
[3350ad6]595                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]596                    out, _ = pr.invert(nfunc)
[3350ad6]597
[51f14603]598                    peaks = pr.get_peaks(out)
599                    if peaks > 1:
600                        found = True
601                        break
602                    best_alpha = pr.alpha
[3350ad6]603
[51f14603]604                # If we didn't find a turning point for alpha and
605                # the initial alpha already had only one peak,
606                # just return that
607                if not found and initial_peaks == 1 and \
608                    initial_alpha < best_alpha:
609                    best_alpha = initial_alpha
[3350ad6]610
[51f14603]611                # Check whether the size makes sense
612                message = ''
[3350ad6]613
[51f14603]614                if not found:
615                    message = None
616                elif best_alpha >= 0.5 * pr.suggested_alpha:
617                    # best alpha is too big, return a
618                    # reasonable value
[3350ad6]619                    message = "The estimated alpha for your system is too "
[51f14603]620                    message += "large. "
621                    message += "Try increasing your maximum distance."
[3350ad6]622
[51f14603]623                return best_alpha, message, elapsed
[3350ad6]624
[51f14603]625        except:
626            message = "Invertor.estimate_alpha: %s" % sys.exc_value
627            return 0, message, elapsed
[3350ad6]628
[51f14603]629    def to_file(self, path, npts=100):
630        """
631        Save the state to a file that will be readable
632        by SliceView.
[3350ad6]633
[51f14603]634        :param path: path of the file to write
635        :param npts: number of P(r) points to be written
[3350ad6]636
[51f14603]637        """
638        file = open(path, 'w')
639        file.write("#d_max=%g\n" % self.d_max)
640        file.write("#nfunc=%g\n" % self.nfunc)
641        file.write("#alpha=%g\n" % self.alpha)
642        file.write("#chi2=%g\n" % self.chi2)
643        file.write("#elapsed=%g\n" % self.elapsed)
644        file.write("#qmin=%s\n" % str(self.q_min))
645        file.write("#qmax=%s\n" % str(self.q_max))
646        file.write("#slit_height=%g\n" % self.slit_height)
647        file.write("#slit_width=%g\n" % self.slit_width)
648        file.write("#background=%g\n" % self.background)
649        if self.has_bck == True:
650            file.write("#has_bck=1\n")
651        else:
652            file.write("#has_bck=0\n")
653        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
654        if not self.out == None:
655            if len(self.out) == len(self.cov):
656                for i in range(len(self.out)):
657                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]658                                                   str(self.cov[i][i])))
[51f14603]659        file.write("<r>  <Pr>  <dPr>\n")
[3350ad6]660        r = numpy.arange(0.0, self.d_max, self.d_max / npts)
661
[51f14603]662        for r_i in r:
663            (value, err) = self.pr_err(self.out, self.cov, r_i)
664            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]665
[51f14603]666        file.close()
[3350ad6]667
[51f14603]668    def from_file(self, path):
669        """
670        Load the state of the Invertor from a file,
671        to be able to generate P(r) from a set of
672        parameters.
[3350ad6]673
[51f14603]674        :param path: path of the file to load
[3350ad6]675
[51f14603]676        """
677        #import os
678        #import re
679        if os.path.isfile(path):
680            try:
681                fd = open(path, 'r')
[3350ad6]682
[51f14603]683                buff = fd.read()
684                lines = buff.split('\n')
685                for line in lines:
686                    if line.startswith('#d_max='):
687                        toks = line.split('=')
688                        self.d_max = float(toks[1])
689                    elif line.startswith('#nfunc='):
690                        toks = line.split('=')
691                        self.nfunc = int(toks[1])
692                        self.out = numpy.zeros(self.nfunc)
693                        self.cov = numpy.zeros([self.nfunc, self.nfunc])
694                    elif line.startswith('#alpha='):
695                        toks = line.split('=')
696                        self.alpha = float(toks[1])
697                    elif line.startswith('#chi2='):
698                        toks = line.split('=')
699                        self.chi2 = float(toks[1])
700                    elif line.startswith('#elapsed='):
701                        toks = line.split('=')
702                        self.elapsed = float(toks[1])
703                    elif line.startswith('#alpha_estimate='):
704                        toks = line.split('=')
705                        self.suggested_alpha = float(toks[1])
706                    elif line.startswith('#qmin='):
707                        toks = line.split('=')
708                        try:
709                            self.q_min = float(toks[1])
710                        except:
711                            self.q_min = None
712                    elif line.startswith('#qmax='):
713                        toks = line.split('=')
714                        try:
715                            self.q_max = float(toks[1])
716                        except:
717                            self.q_max = None
718                    elif line.startswith('#slit_height='):
719                        toks = line.split('=')
720                        self.slit_height = float(toks[1])
721                    elif line.startswith('#slit_width='):
722                        toks = line.split('=')
723                        self.slit_width = float(toks[1])
724                    elif line.startswith('#background='):
725                        toks = line.split('=')
726                        self.background = float(toks[1])
727                    elif line.startswith('#has_bck='):
728                        toks = line.split('=')
729                        if int(toks[1]) == 1:
730                            self.has_bck = True
731                        else:
732                            self.has_bck = False
[3350ad6]733
[51f14603]734                    # Now read in the parameters
735                    elif line.startswith('#C_'):
736                        toks = line.split('=')
737                        p = re.compile('#C_([0-9]+)')
738                        m = p.search(toks[0])
739                        toks2 = toks[1].split('+-')
740                        i = int(m.group(1))
741                        self.out[i] = float(toks2[0])
[3350ad6]742
[51f14603]743                        self.cov[i][i] = float(toks2[1])
[3350ad6]744
[51f14603]745            except:
746                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value
747                raise RuntimeError, msg
748        else:
749            msg = "Invertor.from_file: '%s' is not a file" % str(path)
750            raise RuntimeError, msg
Note: See TracBrowser for help on using the repository browser.