source: sasview/src/sas/sascalc/pr/invertor.py @ 18f11a6

ESS_GUIESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since 18f11a6 was 6da860a, checked in by krzywon, 7 years ago

Responding to P(r) code review.

  • Property mode set to 100644
File size: 25.6 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
8
[9a5097c]9import numpy as np
[51f14603]10import sys
11import math
12import time
13import copy
14import os
15import re
[3350ad6]16import logging
[51f14603]17from numpy.linalg import lstsq
18from scipy import optimize
[b699768]19from sas.sascalc.pr.core.pr_inversion import Cinvertor
[51f14603]20
[463e7ffc]21logger = logging.getLogger(__name__)
[c155a16]22
[51f14603]23def help():
24    """
25    Provide general online help text
26    Future work: extend this function to allow topic selection
27    """
[3350ad6]28    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]29    info_txt += "(1980) 13, 168-175.\n\n"
30    info_txt += "P(r) is set to be equal to an expansion of base functions "
31    info_txt += "of the type "
32    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
33    info_txt += "base functions "
34    info_txt += "in the expansion is found by performing a least square fit "
35    info_txt += "with the "
36    info_txt += "following fit function:\n\n"
37    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
38    info_txt += "Reg_term\n\n"
39    info_txt += "where I_meas(q) is the measured scattering intensity and "
40    info_txt += "I_th(q) is "
41    info_txt += "the prediction from the Fourier transform of the P(r) "
42    info_txt += "expansion. "
43    info_txt += "The Reg_term term is a regularization term set to the second"
44    info_txt += " derivative "
45    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
46    info_txt += "a smooth P(r) output.\n\n"
47    info_txt += "The following are user inputs:\n\n"
48    info_txt += "   - Number of terms: the number of base functions in the P(r)"
49    info_txt += " expansion.\n\n"
50    info_txt += "   - Regularization constant: a multiplicative constant "
51    info_txt += "to set the size of "
52    info_txt += "the regularization term.\n\n"
53    info_txt += "   - Maximum distance: the maximum distance between any "
54    info_txt += "two points in the system.\n"
[3350ad6]55
[51f14603]56    return info_txt
[3350ad6]57
[51f14603]58
59class Invertor(Cinvertor):
60    """
61    Invertor class to perform P(r) inversion
[3350ad6]62
[51f14603]63    The problem is solved by posing the problem as  Ax = b,
64    where x is the set of coefficients we are looking for.
[3350ad6]65
[51f14603]66    Npts is the number of points.
[3350ad6]67
[51f14603]68    In the following i refers to the ith base function coefficient.
69    The matrix has its entries j in its first Npts rows set to ::
70
71        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]72
[51f14603]73    We them choose a number of r-points, n_r, to evaluate the second
74    derivative of P(r) at. This is used as our regularization term.
75    For a vector r of length n_r, the following n_r rows are set to ::
76
77        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
78        evaluated at r[j])
[3350ad6]79
[51f14603]80    The vector b has its first Npts entries set to ::
81
82        b[j] = (I(q) observed for point j)
[3350ad6]83
[51f14603]84    The following n_r entries are set to zero.
[3350ad6]85
[51f14603]86    The result is found by using scipy.linalg.basic.lstsq to invert
87    the matrix and find the coefficients x.
[3350ad6]88
[51f14603]89    Methods inherited from Cinvertor:
90
91    * ``get_peaks(pars)``: returns the number of P(r) peaks
92    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
93    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
94    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
95    """
96    ## Chisqr of the last computation
[3350ad6]97    chi2 = 0
[51f14603]98    ## Time elapsed for last computation
99    elapsed = 0
100    ## Alpha to get the reg term the same size as the signal
101    suggested_alpha = 0
102    ## Last number of base functions used
103    nfunc = 10
104    ## Last output values
105    out = None
106    ## Last errors on output values
107    cov = None
108    ## Background value
109    background = 0
110    ## Information dictionary for application use
111    info = {}
[3350ad6]112
[51f14603]113    def __init__(self):
114        Cinvertor.__init__(self)
[3350ad6]115
[51f14603]116    def __setstate__(self, state):
117        """
118        restore the state of invertor for pickle
119        """
120        (self.__dict__, self.alpha, self.d_max,
121         self.q_min, self.q_max,
122         self.x, self.y,
[cb62bd5]123         self.err, self.est_bck,
[51f14603]124         self.slit_height, self.slit_width) = state
[3350ad6]125
[51f14603]126    def __reduce_ex__(self, proto):
127        """
128        Overwrite the __reduce_ex__
129        """
130
131        state = (self.__dict__,
132                 self.alpha, self.d_max,
133                 self.q_min, self.q_max,
134                 self.x, self.y,
[cb62bd5]135                 self.err, self.est_bck,
[51f14603]136                 self.slit_height, self.slit_width,
[3350ad6]137                )
[51f14603]138        return (Invertor, tuple(), state, None, None)
[3350ad6]139
[51f14603]140    def __setattr__(self, name, value):
141        """
142        Set the value of an attribute.
143        Access the parent class methods for
144        x, y, err, d_max, q_min, q_max and alpha
145        """
146        if   name == 'x':
147            if 0.0 in value:
148                msg = "Invertor: one of your q-values is zero. "
149                msg += "Delete that entry before proceeding"
[574adc7]150                raise ValueError(msg)
[51f14603]151            return self.set_x(value)
152        elif name == 'y':
153            return self.set_y(value)
154        elif name == 'err':
155            value2 = abs(value)
156            return self.set_err(value2)
157        elif name == 'd_max':
[2c60f304]158            if value <= 0.0:
159                msg = "Invertor: d_max must be greater than zero."
160                msg += "Correct that entry before proceeding"
[574adc7]161                raise ValueError(msg)
[51f14603]162            return self.set_dmax(value)
163        elif name == 'q_min':
[235f514]164            if value is None:
[51f14603]165                return self.set_qmin(-1.0)
166            return self.set_qmin(value)
167        elif name == 'q_max':
[235f514]168            if value is None:
[51f14603]169                return self.set_qmax(-1.0)
170            return self.set_qmax(value)
171        elif name == 'alpha':
172            return self.set_alpha(value)
173        elif name == 'slit_height':
174            return self.set_slit_height(value)
175        elif name == 'slit_width':
176            return self.set_slit_width(value)
[cb62bd5]177        elif name == 'est_bck':
[51f14603]178            if value == True:
[cb62bd5]179                return self.set_est_bck(1)
[51f14603]180            elif value == False:
[cb62bd5]181                return self.set_est_bck(0)
[51f14603]182            else:
[574adc7]183                raise ValueError("Invertor: est_bck can only be True or False")
[3350ad6]184
[51f14603]185        return Cinvertor.__setattr__(self, name, value)
[3350ad6]186
[51f14603]187    def __getattr__(self, name):
188        """
189        Return the value of an attribute
190        """
191        #import numpy
192        if name == 'x':
[9a5097c]193            out = np.ones(self.get_nx())
[51f14603]194            self.get_x(out)
195            return out
196        elif name == 'y':
[9a5097c]197            out = np.ones(self.get_ny())
[51f14603]198            self.get_y(out)
199            return out
200        elif name == 'err':
[9a5097c]201            out = np.ones(self.get_nerr())
[51f14603]202            self.get_err(out)
203            return out
204        elif name == 'd_max':
205            return self.get_dmax()
206        elif name == 'q_min':
207            qmin = self.get_qmin()
208            if qmin < 0:
209                return None
210            return qmin
211        elif name == 'q_max':
212            qmax = self.get_qmax()
213            if qmax < 0:
214                return None
215            return qmax
216        elif name == 'alpha':
217            return self.get_alpha()
218        elif name == 'slit_height':
219            return self.get_slit_height()
220        elif name == 'slit_width':
221            return self.get_slit_width()
[cb62bd5]222        elif name == 'est_bck':
223            value = self.get_est_bck()
[51f14603]224            if value == 1:
225                return True
226            else:
227                return False
228        elif name in self.__dict__:
229            return self.__dict__[name]
230        return None
[3350ad6]231
[51f14603]232    def clone(self):
233        """
234        Return a clone of this instance
235        """
236        #import copy
[3350ad6]237
[51f14603]238        invertor = Invertor()
[3350ad6]239        invertor.chi2 = self.chi2
[51f14603]240        invertor.elapsed = self.elapsed
[3350ad6]241        invertor.nfunc = self.nfunc
242        invertor.alpha = self.alpha
243        invertor.d_max = self.d_max
244        invertor.q_min = self.q_min
245        invertor.q_max = self.q_max
246
[51f14603]247        invertor.x = self.x
248        invertor.y = self.y
249        invertor.err = self.err
[cb62bd5]250        invertor.est_bck = self.est_bck
251        invertor.background = self.background
[51f14603]252        invertor.slit_height = self.slit_height
253        invertor.slit_width = self.slit_width
[3350ad6]254
[51f14603]255        invertor.info = copy.deepcopy(self.info)
[3350ad6]256
[51f14603]257        return invertor
[3350ad6]258
[51f14603]259    def invert(self, nfunc=10, nr=20):
260        """
261        Perform inversion to P(r)
[3350ad6]262
[51f14603]263        The problem is solved by posing the problem as  Ax = b,
264        where x is the set of coefficients we are looking for.
[3350ad6]265
[51f14603]266        Npts is the number of points.
[3350ad6]267
[51f14603]268        In the following i refers to the ith base function coefficient.
269        The matrix has its entries j in its first Npts rows set to ::
270
271            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]272
[51f14603]273        We them choose a number of r-points, n_r, to evaluate the second
274        derivative of P(r) at. This is used as our regularization term.
275        For a vector r of length n_r, the following n_r rows are set to ::
276
277            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]278
[51f14603]279        The vector b has its first Npts entries set to ::
280
281            b[j] = (I(q) observed for point j)
[3350ad6]282
[51f14603]283        The following n_r entries are set to zero.
[3350ad6]284
[51f14603]285        The result is found by using scipy.linalg.basic.lstsq to invert
286        the matrix and find the coefficients x.
[3350ad6]287
[51f14603]288        :param nfunc: number of base functions to use.
289        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
290        :return: c_out, c_cov - the coefficients with covariance matrix
291        """
292        # Reset the background value before proceeding
[cb62bd5]293        # self.background = 0.0
294        if not self.est_bck:
295            self.y -= self.background
296        out, cov = self.lstsq(nfunc, nr=nr)
297        if not self.est_bck:
298            self.y += self.background
299        return out, cov
[3350ad6]300
[51f14603]301    def iq(self, out, q):
302        """
303        Function to call to evaluate the scattering intensity
[3350ad6]304
[51f14603]305        :param args: c-parameters, and q
306        :return: I(q)
[3350ad6]307
[51f14603]308        """
309        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]310
[51f14603]311    def invert_optimize(self, nfunc=10, nr=20):
312        """
313        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]314
[51f14603]315        This probably produce more reliable results, but is much slower.
316        The minimization function is set to
317        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
318        where the reg_term is given by Svergun: it is the integral of
319        the square of the first derivative
320        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]321
[51f14603]322        :param nfunc: number of base functions to use.
323        :param nr: number of r points to evaluate the 2nd derivative at
324            for the reg. term.
[3350ad6]325
[51f14603]326        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]327
[51f14603]328        """
329        self.nfunc = nfunc
330        # First, check that the current data is valid
331        if self.is_valid() <= 0:
332            msg = "Invertor.invert: Data array are of different length"
[574adc7]333            raise RuntimeError(msg)
[3350ad6]334
[9a5097c]335        p = np.ones(nfunc)
[51f14603]336        t_0 = time.time()
[3350ad6]337        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
338
[51f14603]339        # Compute chi^2
340        res = self.residuals(out)
341        chisqr = 0
342        for i in range(len(res)):
343            chisqr += res[i]
[3350ad6]344
[51f14603]345        self.chi2 = chisqr
346
347        # Store computation time
348        self.elapsed = time.time() - t_0
[3350ad6]349
[51f14603]350        if cov_x is None:
[9a5097c]351            cov_x = np.ones([nfunc, nfunc])
[51f14603]352            cov_x *= math.fabs(chisqr)
353        return out, cov_x
[3350ad6]354
[51f14603]355    def pr_fit(self, nfunc=5):
356        """
357        This is a direct fit to a given P(r). It assumes that the y data
358        is set to some P(r) distribution that we are trying to reproduce
359        with a set of base functions.
[3350ad6]360
[51f14603]361        This method is provided as a test.
362        """
363        # First, check that the current data is valid
364        if self.is_valid() <= 0:
365            msg = "Invertor.invert: Data arrays are of different length"
[574adc7]366            raise RuntimeError(msg)
[3350ad6]367
[9a5097c]368        p = np.ones(nfunc)
[51f14603]369        t_0 = time.time()
[3350ad6]370        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
371
[51f14603]372        # Compute chi^2
373        res = self.pr_residuals(out)
374        chisqr = 0
375        for i in range(len(res)):
376            chisqr += res[i]
[3350ad6]377
[51f14603]378        self.chisqr = chisqr
[3350ad6]379
[51f14603]380        # Store computation time
381        self.elapsed = time.time() - t_0
382
383        return out, cov_x
[3350ad6]384
[51f14603]385    def pr_err(self, c, c_cov, r):
386        """
387        Returns the value of P(r) for a given r, and base function
388        coefficients, with error.
[3350ad6]389
[51f14603]390        :param c: base function coefficients
391        :param c_cov: covariance matrice of the base function coefficients
392        :param r: r-value to evaluate P(r) at
[3350ad6]393
[51f14603]394        :return: P(r)
[3350ad6]395
[51f14603]396        """
397        return self.get_pr_err(c, c_cov, r)
[3350ad6]398
[51f14603]399    def _accept_q(self, q):
400        """
401        Check q-value against user-defined range
402        """
[ac07a3a]403        if self.q_min is not None and q < self.q_min:
[51f14603]404            return False
[ac07a3a]405        if self.q_max is not None and q > self.q_max:
[51f14603]406            return False
407        return True
[3350ad6]408
[51f14603]409    def lstsq(self, nfunc=5, nr=20):
410        """
411        The problem is solved by posing the problem as  Ax = b,
412        where x is the set of coefficients we are looking for.
[3350ad6]413
[51f14603]414        Npts is the number of points.
[3350ad6]415
[51f14603]416        In the following i refers to the ith base function coefficient.
417        The matrix has its entries j in its first Npts rows set to ::
418
419            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]420
[51f14603]421        We them choose a number of r-points, n_r, to evaluate the second
422        derivative of P(r) at. This is used as our regularization term.
423        For a vector r of length n_r, the following n_r rows are set to ::
424
425            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
426            evaluated at r[j])
[3350ad6]427
[51f14603]428        The vector b has its first Npts entries set to ::
429
430            b[j] = (I(q) observed for point j)
[3350ad6]431
[51f14603]432        The following n_r entries are set to zero.
[3350ad6]433
[51f14603]434        The result is found by using scipy.linalg.basic.lstsq to invert
435        the matrix and find the coefficients x.
[3350ad6]436
[51f14603]437        :param nfunc: number of base functions to use.
438        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
439
440        If the result does not allow us to compute the covariance matrix,
441        a matrix filled with zeros will be returned.
442
443        """
444        # Note: To make sure an array is contiguous:
[9a5097c]445        # blah = np.ascontiguousarray(blah_original)
[51f14603]446        # ... before passing it to C
[3350ad6]447
[51f14603]448        if self.is_valid() < 0:
449            msg = "Invertor: invalid data; incompatible data lengths."
[574adc7]450            raise RuntimeError(msg)
[3350ad6]451
[51f14603]452        self.nfunc = nfunc
453        # a -- An M x N matrix.
454        # b -- An M x nrhs matrix or M vector.
455        npts = len(self.x)
[3350ad6]456        nq = nr
[51f14603]457        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
458        if sqrt_alpha < 0.0:
459            nq = 0
460
461        # If we need to fit the background, add a term
[cb62bd5]462        if self.est_bck == True:
[51f14603]463            nfunc_0 = nfunc
464            nfunc += 1
465
[9a5097c]466        a = np.zeros([npts + nq, nfunc])
467        b = np.zeros(npts + nq)
468        err = np.zeros([nfunc, nfunc])
[3350ad6]469
[51f14603]470        # Construct the a matrix and b vector that represent the problem
471        t_0 = time.time()
472        try:
473            self._get_matrix(nfunc, nq, a, b)
[d04ac05]474        except Exception as exc:
475            raise RuntimeError("Invertor: could not invert I(Q)\n  %s" % str(exc))
[3350ad6]476
[51f14603]477        # Perform the inversion (least square fit)
478        c, chi2, _, _ = lstsq(a, b)
479        # Sanity check
480        try:
481            float(chi2)
482        except:
[6da860a]483            chi2 = -1.0
[51f14603]484        self.chi2 = chi2
[3350ad6]485
[9a5097c]486        inv_cov = np.zeros([nfunc, nfunc])
[51f14603]487        # Get the covariance matrix, defined as inv_cov = a_transposed * a
488        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]489
[51f14603]490        # Compute the reg term size for the output
491        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]492
[51f14603]493        if math.fabs(self.alpha) > 0:
494            new_alpha = sum_sig / (sum_reg / self.alpha)
495        else:
496            new_alpha = 0.0
497        self.suggested_alpha = new_alpha
[3350ad6]498
[51f14603]499        try:
[9a5097c]500            cov = np.linalg.pinv(inv_cov)
[51f14603]501            err = math.fabs(chi2 / float(npts - nfunc)) * cov
[8f83719f]502        except Exception as ex:
[51f14603]503            # We were not able to estimate the errors
504            # Return an empty error matrix
[8f83719f]505            logger.error(ex)
[3350ad6]506
[51f14603]507        # Keep a copy of the last output
[cb62bd5]508        if self.est_bck == False:
[51f14603]509            self.out = c
510            self.cov = err
511        else:
512            self.background = c[0]
[3350ad6]513
[9a5097c]514            err_0 = np.zeros([nfunc, nfunc])
515            c_0 = np.zeros(nfunc)
[3350ad6]516
[51f14603]517            for i in range(nfunc_0):
[3350ad6]518                c_0[i] = c[i + 1]
[51f14603]519                for j in range(nfunc_0):
[3350ad6]520                    err_0[i][j] = err[i + 1][j + 1]
521
[51f14603]522            self.out = c_0
523            self.cov = err_0
[3350ad6]524
[51f14603]525        # Store computation time
526        self.elapsed = time.time() - t_0
[3350ad6]527
[51f14603]528        return self.out, self.cov
[3350ad6]529
[51f14603]530    def estimate_numterms(self, isquit_func=None):
531        """
532        Returns a reasonable guess for the
533        number of terms
[3350ad6]534
[51f14603]535        :param isquit_func:
536          reference to thread function to call to check whether the computation needs to
537          be stopped.
[3350ad6]538
[51f14603]539        :return: number of terms, alpha, message
[3350ad6]540
[51f14603]541        """
[6a3e1fe]542        from sas.sascalc.pr.num_term import NTermEstimator
[5f8fc78]543        estimator = NTermEstimator(self.clone())
[51f14603]544        try:
545            return estimator.num_terms(isquit_func)
[8f83719f]546        except Exception as ex:
[51f14603]547            # If we fail, estimate alpha and return the default
548            # number of terms
549            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[8f83719f]550            logger.warning("Invertor.estimate_numterms: %s" % ex)
[51f14603]551            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]552
[51f14603]553    def estimate_alpha(self, nfunc):
554        """
555        Returns a reasonable guess for the
556        regularization constant alpha
[3350ad6]557
[51f14603]558        :param nfunc: number of terms to use in the expansion.
[3350ad6]559
[51f14603]560        :return: alpha, message, elapsed
[3350ad6]561
[51f14603]562        where alpha is the estimate for alpha,
563        message is a message for the user,
564        elapsed is the computation time
565        """
566        #import time
567        try:
568            pr = self.clone()
[3350ad6]569
[51f14603]570            # T_0 for computation time
571            starttime = time.time()
572            elapsed = 0
[3350ad6]573
[51f14603]574            # If the current alpha is zero, try
575            # another value
576            if pr.alpha <= 0:
577                pr.alpha = 0.0001
[3350ad6]578
[51f14603]579            # Perform inversion to find the largest alpha
580            out, _ = pr.invert(nfunc)
581            elapsed = time.time() - starttime
582            initial_alpha = pr.alpha
583            initial_peaks = pr.get_peaks(out)
[3350ad6]584
[51f14603]585            # Try the inversion with the estimated alpha
586            pr.alpha = pr.suggested_alpha
587            out, _ = pr.invert(nfunc)
[3350ad6]588
[51f14603]589            npeaks = pr.get_peaks(out)
590            # if more than one peak to start with
591            # just return the estimate
592            if npeaks > 1:
593                #message = "Your P(r) is not smooth,
594                #please check your inversion parameters"
595                message = None
596                return pr.suggested_alpha, message, elapsed
597            else:
[3350ad6]598
[51f14603]599                # Look at smaller values
600                # We assume that for the suggested alpha, we have 1 peak
601                # if not, send a message to change parameters
602                alpha = pr.suggested_alpha
603                best_alpha = pr.suggested_alpha
604                found = False
605                for i in range(10):
[3350ad6]606                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]607                    out, _ = pr.invert(nfunc)
[3350ad6]608
[51f14603]609                    peaks = pr.get_peaks(out)
610                    if peaks > 1:
611                        found = True
612                        break
613                    best_alpha = pr.alpha
[3350ad6]614
[51f14603]615                # If we didn't find a turning point for alpha and
616                # the initial alpha already had only one peak,
617                # just return that
618                if not found and initial_peaks == 1 and \
619                    initial_alpha < best_alpha:
620                    best_alpha = initial_alpha
[3350ad6]621
[51f14603]622                # Check whether the size makes sense
623                message = ''
[3350ad6]624
[51f14603]625                if not found:
626                    message = None
627                elif best_alpha >= 0.5 * pr.suggested_alpha:
628                    # best alpha is too big, return a
629                    # reasonable value
[3350ad6]630                    message = "The estimated alpha for your system is too "
[51f14603]631                    message += "large. "
632                    message += "Try increasing your maximum distance."
[3350ad6]633
[51f14603]634                return best_alpha, message, elapsed
[3350ad6]635
[8f83719f]636        except Exception as ex:
637            message = "Invertor.estimate_alpha: %s" % ex
[51f14603]638            return 0, message, elapsed
[3350ad6]639
[51f14603]640    def to_file(self, path, npts=100):
641        """
642        Save the state to a file that will be readable
643        by SliceView.
[3350ad6]644
[51f14603]645        :param path: path of the file to write
646        :param npts: number of P(r) points to be written
[3350ad6]647
[51f14603]648        """
649        file = open(path, 'w')
650        file.write("#d_max=%g\n" % self.d_max)
651        file.write("#nfunc=%g\n" % self.nfunc)
652        file.write("#alpha=%g\n" % self.alpha)
653        file.write("#chi2=%g\n" % self.chi2)
654        file.write("#elapsed=%g\n" % self.elapsed)
655        file.write("#qmin=%s\n" % str(self.q_min))
656        file.write("#qmax=%s\n" % str(self.q_max))
657        file.write("#slit_height=%g\n" % self.slit_height)
658        file.write("#slit_width=%g\n" % self.slit_width)
659        file.write("#background=%g\n" % self.background)
[cb62bd5]660        if self.est_bck == True:
[51f14603]661            file.write("#has_bck=1\n")
662        else:
663            file.write("#has_bck=0\n")
664        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
[45dffa69]665        if self.out is not None:
[51f14603]666            if len(self.out) == len(self.cov):
667                for i in range(len(self.out)):
668                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]669                                                   str(self.cov[i][i])))
[51f14603]670        file.write("<r>  <Pr>  <dPr>\n")
[9a5097c]671        r = np.arange(0.0, self.d_max, self.d_max / npts)
[3350ad6]672
[51f14603]673        for r_i in r:
674            (value, err) = self.pr_err(self.out, self.cov, r_i)
675            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]676
[51f14603]677        file.close()
[3350ad6]678
[51f14603]679    def from_file(self, path):
680        """
681        Load the state of the Invertor from a file,
682        to be able to generate P(r) from a set of
683        parameters.
[3350ad6]684
[51f14603]685        :param path: path of the file to load
[3350ad6]686
[51f14603]687        """
688        #import os
689        #import re
690        if os.path.isfile(path):
691            try:
692                fd = open(path, 'r')
[3350ad6]693
[51f14603]694                buff = fd.read()
695                lines = buff.split('\n')
696                for line in lines:
697                    if line.startswith('#d_max='):
698                        toks = line.split('=')
699                        self.d_max = float(toks[1])
700                    elif line.startswith('#nfunc='):
701                        toks = line.split('=')
702                        self.nfunc = int(toks[1])
[9a5097c]703                        self.out = np.zeros(self.nfunc)
704                        self.cov = np.zeros([self.nfunc, self.nfunc])
[51f14603]705                    elif line.startswith('#alpha='):
706                        toks = line.split('=')
707                        self.alpha = float(toks[1])
708                    elif line.startswith('#chi2='):
709                        toks = line.split('=')
710                        self.chi2 = float(toks[1])
711                    elif line.startswith('#elapsed='):
712                        toks = line.split('=')
713                        self.elapsed = float(toks[1])
714                    elif line.startswith('#alpha_estimate='):
715                        toks = line.split('=')
716                        self.suggested_alpha = float(toks[1])
717                    elif line.startswith('#qmin='):
718                        toks = line.split('=')
719                        try:
720                            self.q_min = float(toks[1])
721                        except:
722                            self.q_min = None
723                    elif line.startswith('#qmax='):
724                        toks = line.split('=')
725                        try:
726                            self.q_max = float(toks[1])
727                        except:
728                            self.q_max = None
729                    elif line.startswith('#slit_height='):
730                        toks = line.split('=')
731                        self.slit_height = float(toks[1])
732                    elif line.startswith('#slit_width='):
733                        toks = line.split('=')
734                        self.slit_width = float(toks[1])
735                    elif line.startswith('#background='):
736                        toks = line.split('=')
737                        self.background = float(toks[1])
738                    elif line.startswith('#has_bck='):
739                        toks = line.split('=')
740                        if int(toks[1]) == 1:
[cb62bd5]741                            self.est_bck = True
[51f14603]742                        else:
[cb62bd5]743                            self.est_bck = False
[3350ad6]744
[51f14603]745                    # Now read in the parameters
746                    elif line.startswith('#C_'):
747                        toks = line.split('=')
748                        p = re.compile('#C_([0-9]+)')
749                        m = p.search(toks[0])
750                        toks2 = toks[1].split('+-')
751                        i = int(m.group(1))
752                        self.out[i] = float(toks2[0])
[3350ad6]753
[51f14603]754                        self.cov[i][i] = float(toks2[1])
[3350ad6]755
[8f83719f]756            except Exception as ex:
757                msg = "Invertor.from_file: corrupted file\n%s" % ex
[574adc7]758                raise RuntimeError(msg)
[51f14603]759        else:
760            msg = "Invertor.from_file: '%s' is not a file" % str(path)
[574adc7]761            raise RuntimeError(msg)
Note: See TracBrowser for help on using the repository browser.