source: sasview/src/sas/sascalc/pr/invertor.py @ 109afbd

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249
Last change on this file since 109afbd was 57e48ca, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

fix rcond requires float error in pr

  • Property mode set to 100644
File size: 25.4 KB
RevLine 
[3350ad6]1# pylint: disable=invalid-name
[51f14603]2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
[bc3e38c]5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
[51f14603]7"""
[3e6829d]8from __future__ import division
[51f14603]9
[9a5097c]10import numpy as np
[51f14603]11import sys
12import math
13import time
14import copy
15import os
16import re
[3350ad6]17import logging
[51f14603]18from numpy.linalg import lstsq
19from scipy import optimize
[952ea1f]20from sas.sascalc.pr._pr_inversion import Cinvertor
[51f14603]21
[463e7ffc]22logger = logging.getLogger(__name__)
[c155a16]23
[51f14603]24def help():
25    """
26    Provide general online help text
27    Future work: extend this function to allow topic selection
28    """
[3350ad6]29    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
[51f14603]30    info_txt += "(1980) 13, 168-175.\n\n"
31    info_txt += "P(r) is set to be equal to an expansion of base functions "
32    info_txt += "of the type "
33    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
34    info_txt += "base functions "
35    info_txt += "in the expansion is found by performing a least square fit "
36    info_txt += "with the "
37    info_txt += "following fit function:\n\n"
38    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
39    info_txt += "Reg_term\n\n"
40    info_txt += "where I_meas(q) is the measured scattering intensity and "
41    info_txt += "I_th(q) is "
42    info_txt += "the prediction from the Fourier transform of the P(r) "
43    info_txt += "expansion. "
44    info_txt += "The Reg_term term is a regularization term set to the second"
45    info_txt += " derivative "
46    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
47    info_txt += "a smooth P(r) output.\n\n"
48    info_txt += "The following are user inputs:\n\n"
49    info_txt += "   - Number of terms: the number of base functions in the P(r)"
50    info_txt += " expansion.\n\n"
51    info_txt += "   - Regularization constant: a multiplicative constant "
52    info_txt += "to set the size of "
53    info_txt += "the regularization term.\n\n"
54    info_txt += "   - Maximum distance: the maximum distance between any "
55    info_txt += "two points in the system.\n"
[3350ad6]56
[51f14603]57    return info_txt
[3350ad6]58
[51f14603]59
60class Invertor(Cinvertor):
61    """
62    Invertor class to perform P(r) inversion
[3350ad6]63
[51f14603]64    The problem is solved by posing the problem as  Ax = b,
65    where x is the set of coefficients we are looking for.
[3350ad6]66
[51f14603]67    Npts is the number of points.
[3350ad6]68
[51f14603]69    In the following i refers to the ith base function coefficient.
70    The matrix has its entries j in its first Npts rows set to ::
71
72        A[j][i] = (Fourier transformed base function for point j)
[3350ad6]73
[952ea1f]74    We then choose a number of r-points, n_r, to evaluate the second
[51f14603]75    derivative of P(r) at. This is used as our regularization term.
76    For a vector r of length n_r, the following n_r rows are set to ::
77
78        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
79        evaluated at r[j])
[3350ad6]80
[51f14603]81    The vector b has its first Npts entries set to ::
82
83        b[j] = (I(q) observed for point j)
[3350ad6]84
[51f14603]85    The following n_r entries are set to zero.
[3350ad6]86
[51f14603]87    The result is found by using scipy.linalg.basic.lstsq to invert
88    the matrix and find the coefficients x.
[3350ad6]89
[51f14603]90    Methods inherited from Cinvertor:
91
92    * ``get_peaks(pars)``: returns the number of P(r) peaks
93    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
94    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
95    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
96    """
97    ## Chisqr of the last computation
[3350ad6]98    chi2 = 0
[51f14603]99    ## Time elapsed for last computation
100    elapsed = 0
101    ## Alpha to get the reg term the same size as the signal
102    suggested_alpha = 0
103    ## Last number of base functions used
104    nfunc = 10
105    ## Last output values
106    out = None
107    ## Last errors on output values
108    cov = None
109    ## Background value
110    background = 0
111    ## Information dictionary for application use
112    info = {}
[3350ad6]113
[51f14603]114    def __init__(self):
115        Cinvertor.__init__(self)
[3350ad6]116
[51f14603]117    def __setstate__(self, state):
118        """
119        restore the state of invertor for pickle
120        """
121        (self.__dict__, self.alpha, self.d_max,
122         self.q_min, self.q_max,
123         self.x, self.y,
[cb62bd5]124         self.err, self.est_bck,
[51f14603]125         self.slit_height, self.slit_width) = state
[3350ad6]126
[51f14603]127    def __reduce_ex__(self, proto):
128        """
129        Overwrite the __reduce_ex__
130        """
131
132        state = (self.__dict__,
133                 self.alpha, self.d_max,
134                 self.q_min, self.q_max,
135                 self.x, self.y,
[cb62bd5]136                 self.err, self.est_bck,
[51f14603]137                 self.slit_height, self.slit_width,
[3350ad6]138                )
[51f14603]139        return (Invertor, tuple(), state, None, None)
[3350ad6]140
[51f14603]141    def __setattr__(self, name, value):
142        """
143        Set the value of an attribute.
144        Access the parent class methods for
145        x, y, err, d_max, q_min, q_max and alpha
146        """
[952ea1f]147        if name == 'x':
[51f14603]148            if 0.0 in value:
149                msg = "Invertor: one of your q-values is zero. "
150                msg += "Delete that entry before proceeding"
[574adc7]151                raise ValueError(msg)
[51f14603]152            return self.set_x(value)
153        elif name == 'y':
154            return self.set_y(value)
155        elif name == 'err':
156            value2 = abs(value)
157            return self.set_err(value2)
158        elif name == 'd_max':
[2c60f304]159            if value <= 0.0:
160                msg = "Invertor: d_max must be greater than zero."
161                msg += "Correct that entry before proceeding"
[574adc7]162                raise ValueError(msg)
[51f14603]163            return self.set_dmax(value)
164        elif name == 'q_min':
[235f514]165            if value is None:
[51f14603]166                return self.set_qmin(-1.0)
167            return self.set_qmin(value)
168        elif name == 'q_max':
[235f514]169            if value is None:
[51f14603]170                return self.set_qmax(-1.0)
171            return self.set_qmax(value)
172        elif name == 'alpha':
173            return self.set_alpha(value)
174        elif name == 'slit_height':
175            return self.set_slit_height(value)
176        elif name == 'slit_width':
177            return self.set_slit_width(value)
[cb62bd5]178        elif name == 'est_bck':
[51f14603]179            if value == True:
[cb62bd5]180                return self.set_est_bck(1)
[51f14603]181            elif value == False:
[cb62bd5]182                return self.set_est_bck(0)
[51f14603]183            else:
[574adc7]184                raise ValueError("Invertor: est_bck can only be True or False")
[3350ad6]185
[51f14603]186        return Cinvertor.__setattr__(self, name, value)
[3350ad6]187
[51f14603]188    def __getattr__(self, name):
189        """
190        Return the value of an attribute
191        """
192        #import numpy
193        if name == 'x':
[9a5097c]194            out = np.ones(self.get_nx())
[51f14603]195            self.get_x(out)
196            return out
197        elif name == 'y':
[9a5097c]198            out = np.ones(self.get_ny())
[51f14603]199            self.get_y(out)
200            return out
201        elif name == 'err':
[9a5097c]202            out = np.ones(self.get_nerr())
[51f14603]203            self.get_err(out)
204            return out
205        elif name == 'd_max':
206            return self.get_dmax()
207        elif name == 'q_min':
208            qmin = self.get_qmin()
209            if qmin < 0:
210                return None
211            return qmin
212        elif name == 'q_max':
213            qmax = self.get_qmax()
214            if qmax < 0:
215                return None
216            return qmax
217        elif name == 'alpha':
218            return self.get_alpha()
219        elif name == 'slit_height':
220            return self.get_slit_height()
221        elif name == 'slit_width':
222            return self.get_slit_width()
[cb62bd5]223        elif name == 'est_bck':
224            value = self.get_est_bck()
[2469df7]225            return value == 1
[51f14603]226        elif name in self.__dict__:
227            return self.__dict__[name]
228        return None
[3350ad6]229
[51f14603]230    def clone(self):
231        """
232        Return a clone of this instance
233        """
234        #import copy
[3350ad6]235
[51f14603]236        invertor = Invertor()
[3350ad6]237        invertor.chi2 = self.chi2
[51f14603]238        invertor.elapsed = self.elapsed
[3350ad6]239        invertor.nfunc = self.nfunc
240        invertor.alpha = self.alpha
241        invertor.d_max = self.d_max
242        invertor.q_min = self.q_min
243        invertor.q_max = self.q_max
244
[51f14603]245        invertor.x = self.x
246        invertor.y = self.y
247        invertor.err = self.err
[cb62bd5]248        invertor.est_bck = self.est_bck
249        invertor.background = self.background
[51f14603]250        invertor.slit_height = self.slit_height
251        invertor.slit_width = self.slit_width
[3350ad6]252
[51f14603]253        invertor.info = copy.deepcopy(self.info)
[3350ad6]254
[51f14603]255        return invertor
[3350ad6]256
[51f14603]257    def invert(self, nfunc=10, nr=20):
258        """
259        Perform inversion to P(r)
[3350ad6]260
[51f14603]261        The problem is solved by posing the problem as  Ax = b,
262        where x is the set of coefficients we are looking for.
[3350ad6]263
[51f14603]264        Npts is the number of points.
[3350ad6]265
[51f14603]266        In the following i refers to the ith base function coefficient.
267        The matrix has its entries j in its first Npts rows set to ::
268
269            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]270
[952ea1f]271        We then choose a number of r-points, n_r, to evaluate the second
[51f14603]272        derivative of P(r) at. This is used as our regularization term.
273        For a vector r of length n_r, the following n_r rows are set to ::
274
275            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
[3350ad6]276
[51f14603]277        The vector b has its first Npts entries set to ::
278
279            b[j] = (I(q) observed for point j)
[3350ad6]280
[51f14603]281        The following n_r entries are set to zero.
[3350ad6]282
[51f14603]283        The result is found by using scipy.linalg.basic.lstsq to invert
284        the matrix and find the coefficients x.
[3350ad6]285
[51f14603]286        :param nfunc: number of base functions to use.
287        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
288        :return: c_out, c_cov - the coefficients with covariance matrix
289        """
290        # Reset the background value before proceeding
[cb62bd5]291        # self.background = 0.0
292        if not self.est_bck:
293            self.y -= self.background
294        out, cov = self.lstsq(nfunc, nr=nr)
295        if not self.est_bck:
296            self.y += self.background
297        return out, cov
[3350ad6]298
[51f14603]299    def iq(self, out, q):
300        """
301        Function to call to evaluate the scattering intensity
[3350ad6]302
[51f14603]303        :param args: c-parameters, and q
304        :return: I(q)
[3350ad6]305
[51f14603]306        """
307        return Cinvertor.iq(self, out, q) + self.background
[3350ad6]308
[51f14603]309    def invert_optimize(self, nfunc=10, nr=20):
310        """
311        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
[3350ad6]312
[51f14603]313        This probably produce more reliable results, but is much slower.
314        The minimization function is set to
315        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
316        where the reg_term is given by Svergun: it is the integral of
317        the square of the first derivative
318        of P(r), d(P(r))/dr, integrated over the full range of r.
[3350ad6]319
[51f14603]320        :param nfunc: number of base functions to use.
321        :param nr: number of r points to evaluate the 2nd derivative at
322            for the reg. term.
[3350ad6]323
[51f14603]324        :return: c_out, c_cov - the coefficients with covariance matrix
[3350ad6]325
[51f14603]326        """
327        self.nfunc = nfunc
328        # First, check that the current data is valid
329        if self.is_valid() <= 0:
330            msg = "Invertor.invert: Data array are of different length"
[574adc7]331            raise RuntimeError(msg)
[3350ad6]332
[9a5097c]333        p = np.ones(nfunc)
[51f14603]334        t_0 = time.time()
[3350ad6]335        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
336
[51f14603]337        # Compute chi^2
338        res = self.residuals(out)
339        chisqr = 0
340        for i in range(len(res)):
341            chisqr += res[i]
[3350ad6]342
[51f14603]343        self.chi2 = chisqr
344
345        # Store computation time
346        self.elapsed = time.time() - t_0
[3350ad6]347
[51f14603]348        if cov_x is None:
[9a5097c]349            cov_x = np.ones([nfunc, nfunc])
[51f14603]350            cov_x *= math.fabs(chisqr)
351        return out, cov_x
[3350ad6]352
[51f14603]353    def pr_fit(self, nfunc=5):
354        """
355        This is a direct fit to a given P(r). It assumes that the y data
356        is set to some P(r) distribution that we are trying to reproduce
357        with a set of base functions.
[3350ad6]358
[51f14603]359        This method is provided as a test.
360        """
361        # First, check that the current data is valid
362        if self.is_valid() <= 0:
363            msg = "Invertor.invert: Data arrays are of different length"
[574adc7]364            raise RuntimeError(msg)
[3350ad6]365
[9a5097c]366        p = np.ones(nfunc)
[51f14603]367        t_0 = time.time()
[3350ad6]368        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
369
[51f14603]370        # Compute chi^2
371        res = self.pr_residuals(out)
372        chisqr = 0
373        for i in range(len(res)):
374            chisqr += res[i]
[3350ad6]375
[51f14603]376        self.chisqr = chisqr
[3350ad6]377
[51f14603]378        # Store computation time
379        self.elapsed = time.time() - t_0
380
381        return out, cov_x
[3350ad6]382
[51f14603]383    def pr_err(self, c, c_cov, r):
384        """
385        Returns the value of P(r) for a given r, and base function
386        coefficients, with error.
[3350ad6]387
[51f14603]388        :param c: base function coefficients
389        :param c_cov: covariance matrice of the base function coefficients
390        :param r: r-value to evaluate P(r) at
[3350ad6]391
[51f14603]392        :return: P(r)
[3350ad6]393
[51f14603]394        """
395        return self.get_pr_err(c, c_cov, r)
[3350ad6]396
[51f14603]397    def _accept_q(self, q):
398        """
399        Check q-value against user-defined range
400        """
[ac07a3a]401        if self.q_min is not None and q < self.q_min:
[51f14603]402            return False
[ac07a3a]403        if self.q_max is not None and q > self.q_max:
[51f14603]404            return False
405        return True
[3350ad6]406
[51f14603]407    def lstsq(self, nfunc=5, nr=20):
408        """
409        The problem is solved by posing the problem as  Ax = b,
410        where x is the set of coefficients we are looking for.
[3350ad6]411
[51f14603]412        Npts is the number of points.
[3350ad6]413
[51f14603]414        In the following i refers to the ith base function coefficient.
415        The matrix has its entries j in its first Npts rows set to ::
416
417            A[i][j] = (Fourier transformed base function for point j)
[3350ad6]418
[952ea1f]419        We then choose a number of r-points, n_r, to evaluate the second
[51f14603]420        derivative of P(r) at. This is used as our regularization term.
421        For a vector r of length n_r, the following n_r rows are set to ::
422
423            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
424            evaluated at r[j])
[3350ad6]425
[51f14603]426        The vector b has its first Npts entries set to ::
427
428            b[j] = (I(q) observed for point j)
[3350ad6]429
[51f14603]430        The following n_r entries are set to zero.
[3350ad6]431
[51f14603]432        The result is found by using scipy.linalg.basic.lstsq to invert
433        the matrix and find the coefficients x.
[3350ad6]434
[51f14603]435        :param nfunc: number of base functions to use.
436        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
437
438        If the result does not allow us to compute the covariance matrix,
439        a matrix filled with zeros will be returned.
440
441        """
442        # Note: To make sure an array is contiguous:
[9a5097c]443        # blah = np.ascontiguousarray(blah_original)
[51f14603]444        # ... before passing it to C
[3350ad6]445
[51f14603]446        if self.is_valid() < 0:
447            msg = "Invertor: invalid data; incompatible data lengths."
[574adc7]448            raise RuntimeError(msg)
[3350ad6]449
[51f14603]450        self.nfunc = nfunc
451        # a -- An M x N matrix.
452        # b -- An M x nrhs matrix or M vector.
453        npts = len(self.x)
[3350ad6]454        nq = nr
[51f14603]455        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
456        if sqrt_alpha < 0.0:
457            nq = 0
458
459        # If we need to fit the background, add a term
[2469df7]460        if self.est_bck:
[51f14603]461            nfunc_0 = nfunc
462            nfunc += 1
463
[9a5097c]464        a = np.zeros([npts + nq, nfunc])
465        b = np.zeros(npts + nq)
466        err = np.zeros([nfunc, nfunc])
[3350ad6]467
[51f14603]468        # Construct the a matrix and b vector that represent the problem
469        t_0 = time.time()
470        try:
471            self._get_matrix(nfunc, nq, a, b)
[d04ac05]472        except Exception as exc:
473            raise RuntimeError("Invertor: could not invert I(Q)\n  %s" % str(exc))
[3350ad6]474
[51f14603]475        # Perform the inversion (least square fit)
[57e48ca]476        c, chi2, _, _ = lstsq(a, b, rcond=-1)
[51f14603]477        # Sanity check
478        try:
479            float(chi2)
480        except:
481            chi2 = -1.0
482        self.chi2 = chi2
[3350ad6]483
[9a5097c]484        inv_cov = np.zeros([nfunc, nfunc])
[51f14603]485        # Get the covariance matrix, defined as inv_cov = a_transposed * a
486        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
[3350ad6]487
[51f14603]488        # Compute the reg term size for the output
489        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
[3350ad6]490
[51f14603]491        if math.fabs(self.alpha) > 0:
492            new_alpha = sum_sig / (sum_reg / self.alpha)
493        else:
494            new_alpha = 0.0
495        self.suggested_alpha = new_alpha
[3350ad6]496
[51f14603]497        try:
[9a5097c]498            cov = np.linalg.pinv(inv_cov)
[3e6829d]499            err = math.fabs(chi2 / (npts - nfunc)) * cov
[952ea1f]500        except Exception as exc:
[51f14603]501            # We were not able to estimate the errors
502            # Return an empty error matrix
[952ea1f]503            logger.error(exc)
[3350ad6]504
[51f14603]505        # Keep a copy of the last output
[2469df7]506        if not self.est_bck:
[51f14603]507            self.out = c
508            self.cov = err
509        else:
510            self.background = c[0]
[3350ad6]511
[9a5097c]512            err_0 = np.zeros([nfunc, nfunc])
513            c_0 = np.zeros(nfunc)
[3350ad6]514
[51f14603]515            for i in range(nfunc_0):
[3350ad6]516                c_0[i] = c[i + 1]
[51f14603]517                for j in range(nfunc_0):
[3350ad6]518                    err_0[i][j] = err[i + 1][j + 1]
519
[51f14603]520            self.out = c_0
521            self.cov = err_0
[3350ad6]522
[51f14603]523        # Store computation time
524        self.elapsed = time.time() - t_0
[3350ad6]525
[51f14603]526        return self.out, self.cov
[3350ad6]527
[51f14603]528    def estimate_numterms(self, isquit_func=None):
529        """
530        Returns a reasonable guess for the
531        number of terms
[3350ad6]532
[51f14603]533        :param isquit_func:
534          reference to thread function to call to check whether the computation needs to
535          be stopped.
[3350ad6]536
[51f14603]537        :return: number of terms, alpha, message
[3350ad6]538
[51f14603]539        """
[952ea1f]540        from .num_term import NTermEstimator
[5f8fc78]541        estimator = NTermEstimator(self.clone())
[51f14603]542        try:
543            return estimator.num_terms(isquit_func)
[952ea1f]544        except Exception as exc:
[51f14603]545            # If we fail, estimate alpha and return the default
546            # number of terms
547            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
[952ea1f]548            logger.warning("Invertor.estimate_numterms: %s" % exc)
[51f14603]549            return self.nfunc, best_alpha, "Could not estimate number of terms"
[3350ad6]550
[51f14603]551    def estimate_alpha(self, nfunc):
552        """
553        Returns a reasonable guess for the
554        regularization constant alpha
[3350ad6]555
[51f14603]556        :param nfunc: number of terms to use in the expansion.
[3350ad6]557
[51f14603]558        :return: alpha, message, elapsed
[3350ad6]559
[51f14603]560        where alpha is the estimate for alpha,
561        message is a message for the user,
562        elapsed is the computation time
563        """
564        #import time
565        try:
566            pr = self.clone()
[3350ad6]567
[51f14603]568            # T_0 for computation time
569            starttime = time.time()
570            elapsed = 0
[3350ad6]571
[51f14603]572            # If the current alpha is zero, try
573            # another value
574            if pr.alpha <= 0:
575                pr.alpha = 0.0001
[3350ad6]576
[51f14603]577            # Perform inversion to find the largest alpha
578            out, _ = pr.invert(nfunc)
579            elapsed = time.time() - starttime
580            initial_alpha = pr.alpha
581            initial_peaks = pr.get_peaks(out)
[3350ad6]582
[51f14603]583            # Try the inversion with the estimated alpha
584            pr.alpha = pr.suggested_alpha
585            out, _ = pr.invert(nfunc)
[3350ad6]586
[51f14603]587            npeaks = pr.get_peaks(out)
588            # if more than one peak to start with
589            # just return the estimate
590            if npeaks > 1:
591                #message = "Your P(r) is not smooth,
592                #please check your inversion parameters"
593                message = None
594                return pr.suggested_alpha, message, elapsed
595            else:
[3350ad6]596
[51f14603]597                # Look at smaller values
598                # We assume that for the suggested alpha, we have 1 peak
599                # if not, send a message to change parameters
600                alpha = pr.suggested_alpha
601                best_alpha = pr.suggested_alpha
602                found = False
603                for i in range(10):
[3350ad6]604                    pr.alpha = (0.33) ** (i + 1) * alpha
[51f14603]605                    out, _ = pr.invert(nfunc)
[3350ad6]606
[51f14603]607                    peaks = pr.get_peaks(out)
608                    if peaks > 1:
609                        found = True
610                        break
611                    best_alpha = pr.alpha
[3350ad6]612
[51f14603]613                # If we didn't find a turning point for alpha and
614                # the initial alpha already had only one peak,
615                # just return that
616                if not found and initial_peaks == 1 and \
617                    initial_alpha < best_alpha:
618                    best_alpha = initial_alpha
[3350ad6]619
[51f14603]620                # Check whether the size makes sense
621                message = ''
[3350ad6]622
[51f14603]623                if not found:
624                    message = None
625                elif best_alpha >= 0.5 * pr.suggested_alpha:
626                    # best alpha is too big, return a
627                    # reasonable value
[3350ad6]628                    message = "The estimated alpha for your system is too "
[51f14603]629                    message += "large. "
630                    message += "Try increasing your maximum distance."
[3350ad6]631
[51f14603]632                return best_alpha, message, elapsed
[3350ad6]633
[952ea1f]634        except Exception as exc:
635            message = "Invertor.estimate_alpha: %s" % exc
[51f14603]636            return 0, message, elapsed
[3350ad6]637
[51f14603]638    def to_file(self, path, npts=100):
639        """
640        Save the state to a file that will be readable
641        by SliceView.
[3350ad6]642
[51f14603]643        :param path: path of the file to write
644        :param npts: number of P(r) points to be written
[3350ad6]645
[51f14603]646        """
647        file = open(path, 'w')
648        file.write("#d_max=%g\n" % self.d_max)
649        file.write("#nfunc=%g\n" % self.nfunc)
650        file.write("#alpha=%g\n" % self.alpha)
651        file.write("#chi2=%g\n" % self.chi2)
652        file.write("#elapsed=%g\n" % self.elapsed)
653        file.write("#qmin=%s\n" % str(self.q_min))
654        file.write("#qmax=%s\n" % str(self.q_max))
655        file.write("#slit_height=%g\n" % self.slit_height)
656        file.write("#slit_width=%g\n" % self.slit_width)
657        file.write("#background=%g\n" % self.background)
[2469df7]658        if self.est_bck:
[51f14603]659            file.write("#has_bck=1\n")
660        else:
661            file.write("#has_bck=0\n")
662        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
[45dffa69]663        if self.out is not None:
[51f14603]664            if len(self.out) == len(self.cov):
665                for i in range(len(self.out)):
666                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
[3350ad6]667                                                   str(self.cov[i][i])))
[51f14603]668        file.write("<r>  <Pr>  <dPr>\n")
[9a5097c]669        r = np.arange(0.0, self.d_max, self.d_max / npts)
[3350ad6]670
[51f14603]671        for r_i in r:
672            (value, err) = self.pr_err(self.out, self.cov, r_i)
673            file.write("%g  %g  %g\n" % (r_i, value, err))
[3350ad6]674
[51f14603]675        file.close()
[3350ad6]676
[51f14603]677    def from_file(self, path):
678        """
679        Load the state of the Invertor from a file,
680        to be able to generate P(r) from a set of
681        parameters.
[3350ad6]682
[51f14603]683        :param path: path of the file to load
[3350ad6]684
[51f14603]685        """
686        #import os
687        #import re
688        if os.path.isfile(path):
689            try:
690                fd = open(path, 'r')
[3350ad6]691
[51f14603]692                buff = fd.read()
693                lines = buff.split('\n')
694                for line in lines:
695                    if line.startswith('#d_max='):
696                        toks = line.split('=')
697                        self.d_max = float(toks[1])
698                    elif line.startswith('#nfunc='):
699                        toks = line.split('=')
700                        self.nfunc = int(toks[1])
[9a5097c]701                        self.out = np.zeros(self.nfunc)
702                        self.cov = np.zeros([self.nfunc, self.nfunc])
[51f14603]703                    elif line.startswith('#alpha='):
704                        toks = line.split('=')
705                        self.alpha = float(toks[1])
706                    elif line.startswith('#chi2='):
707                        toks = line.split('=')
708                        self.chi2 = float(toks[1])
709                    elif line.startswith('#elapsed='):
710                        toks = line.split('=')
711                        self.elapsed = float(toks[1])
712                    elif line.startswith('#alpha_estimate='):
713                        toks = line.split('=')
714                        self.suggested_alpha = float(toks[1])
715                    elif line.startswith('#qmin='):
716                        toks = line.split('=')
717                        try:
718                            self.q_min = float(toks[1])
719                        except:
720                            self.q_min = None
721                    elif line.startswith('#qmax='):
722                        toks = line.split('=')
723                        try:
724                            self.q_max = float(toks[1])
725                        except:
726                            self.q_max = None
727                    elif line.startswith('#slit_height='):
728                        toks = line.split('=')
729                        self.slit_height = float(toks[1])
730                    elif line.startswith('#slit_width='):
731                        toks = line.split('=')
732                        self.slit_width = float(toks[1])
733                    elif line.startswith('#background='):
734                        toks = line.split('=')
735                        self.background = float(toks[1])
736                    elif line.startswith('#has_bck='):
737                        toks = line.split('=')
[2469df7]738                        self.est_bck = int(toks[1]) == 1
[3350ad6]739
[51f14603]740                    # Now read in the parameters
741                    elif line.startswith('#C_'):
742                        toks = line.split('=')
743                        p = re.compile('#C_([0-9]+)')
744                        m = p.search(toks[0])
745                        toks2 = toks[1].split('+-')
746                        i = int(m.group(1))
747                        self.out[i] = float(toks2[0])
[3350ad6]748
[51f14603]749                        self.cov[i][i] = float(toks2[1])
[3350ad6]750
[952ea1f]751            except Exception as exc:
752                msg = "Invertor.from_file: corrupted file\n%s" % exc
[574adc7]753                raise RuntimeError(msg)
[51f14603]754        else:
755            msg = "Invertor.from_file: '%s' is not a file" % str(path)
[574adc7]756            raise RuntimeError(msg)
Note: See TracBrowser for help on using the repository browser.