source: sasview/src/sas/sascalc/pr/fit/AbstractFitEngine.py @ 4cbb2f5

magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1249
Last change on this file since 4cbb2f5 was 20fa5fe, checked in by Stuart Prescott <stuart@…>, 7 years ago

Fix lots more typos in comments and docs

  • Property mode set to 100644
File size: 19.7 KB
Line 
1from __future__ import print_function
2
3import  copy
4#import logging
5import sys
6import math
7import numpy as np
8
9from sas.sascalc.dataloader.data_info import Data1D
10from sas.sascalc.dataloader.data_info import Data2D
11_SMALLVALUE = 1.0e-10
12
13class FitHandler(object):
14    """
15    Abstract interface for fit thread handler.
16
17    The methods in this class are called by the optimizer as the fit
18    progresses.
19
20    Note that it is up to the optimizer to call the fit handler correctly,
21    reporting all status changes and maintaining the 'done' flag.
22    """
23    done = False
24    """True when the fit job is complete"""
25    result = None
26    """The current best result of the fit"""
27
28    def improvement(self):
29        """
30        Called when a result is observed which is better than previous
31        results from the fit.
32
33        result is a FitResult object, with parameters, #calls and fitness.
34        """
35    def error(self, msg):
36        """
37        Model had an error; print traceback
38        """
39    def progress(self, current, expected):
40        """
41        Called each cycle of the fit, reporting the current and the
42        expected amount of work.   The meaning of these values is
43        optimizer dependent, but they can be converted into a percent
44        complete using (100*current)//expected.
45
46        Progress is updated each iteration of the fit, whatever that
47        means for the particular optimization algorithm.  It is called
48        after any calls to improvement for the iteration so that the
49        update handler can control I/O bandwidth by suppressing
50        intermediate improvements until the fit is complete.
51        """
52    def finalize(self):
53        """
54        Fit is complete; best results are reported
55        """
56    def abort(self):
57        """
58        Fit was aborted.
59        """
60
61    # TODO: not sure how these are used, but they are needed for running the fit
62    def update_fit(self, last=False): pass
63    def set_result(self, result=None): self.result = result
64
65class Model:
66    """
67    Fit wrapper for SAS models.
68    """
69    def __init__(self, sas_model, sas_data=None, **kw):
70        """
71        :param sas_model: the sas model to wrap for fitting
72
73        """
74        self.model = sas_model
75        self.name = sas_model.name
76        self.data = sas_data
77
78    def get_params(self, fitparams):
79        """
80        return a list of value of parameter to fit
81
82        :param fitparams: list of parameters name to fit
83
84        """
85        return [self.model.getParam(k) for k in fitparams]
86
87    def set_params(self, paramlist, params):
88        """
89        Set value for parameters to fit
90
91        :param params: list of value for parameters to fit
92
93        """
94        for k,v in zip(paramlist, params):
95            self.model.setParam(k,v)
96
97    def set(self, **kw):
98        self.set_params(*zip(*kw.items()))
99
100    def eval(self, x):
101        """
102            Override eval method of model.
103
104            :param x: the x value used to compute a function
105        """
106        try:
107            return self.model.evalDistribution(x)
108        except:
109            raise
110
111    def eval_derivs(self, x, pars=[]):
112        """
113        Evaluate the model and derivatives wrt pars at x.
114
115        pars is a list of the names of the parameters for which derivatives
116        are desired.
117
118        This method needs to be specialized in the model to evaluate the
119        model function.  Alternatively, the model can implement is own
120        version of residuals which calculates the residuals directly
121        instead of calling eval.
122        """
123        raise NotImplementedError('no derivatives available')
124
125    def __call__(self, x):
126        return self.eval(x)
127
128class FitData1D(Data1D):
129    """
130        Wrapper class  for SAS data
131        FitData1D inherits from DataLoader.data_info.Data1D. Implements
132        a way to get residuals from data.
133    """
134    def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None):
135        """
136            :param smearer: is an object of class QSmearer or SlitSmearer
137               that will smear the theory data (slit smearing or resolution
138               smearing) when set.
139
140            The proper way to set the smearing object would be to
141            do the following: ::
142
143                from sas.sascalc.fit.qsmearing import smear_selection
144                smearer = smear_selection(some_data)
145                fitdata1d = FitData1D( x= [1,3,..,],
146                                        y= [3,4,..,8],
147                                        dx=None,
148                                        dy=[1,2...], smearer= smearer)
149
150            :Note: that some_data _HAS_ to be of
151                class DataLoader.data_info.Data1D
152                Setting it back to None will turn smearing off.
153
154        """
155        Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy)
156        self.num_points = len(x)
157        self.sas_data = data
158        self.smearer = smearer
159        self._first_unsmeared_bin = None
160        self._last_unsmeared_bin = None
161        # Check error bar; if no error bar found, set it constant(=1)
162        # TODO: Should provide an option for users to set it like percent,
163        # constant, or dy data
164        if dy is None or dy == [] or dy.all() == 0:
165            self.dy = np.ones(len(y))
166        else:
167            self.dy = np.asarray(dy).copy()
168
169        ## Min Q-value
170        #Skip the Q=0 point, especially when y(q=0)=None at x[0].
171        if min(self.x) == 0.0 and self.x[0] == 0 and\
172                     not np.isfinite(self.y[0]):
173            self.qmin = min(self.x[self.x != 0])
174        else:
175            self.qmin = min(self.x)
176        ## Max Q-value
177        self.qmax = max(self.x)
178
179        # Range used for input to smearing
180        self._qmin_unsmeared = self.qmin
181        self._qmax_unsmeared = self.qmax
182        # Identify the bin range for the unsmeared and smeared spaces
183        self.idx = (self.x >= self.qmin) & (self.x <= self.qmax)
184        self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \
185                            & (self.x <= self._qmax_unsmeared)
186
187    def set_fit_range(self, qmin=None, qmax=None):
188        """ to set the fit range"""
189        # Skip Q=0 point, (especially for y(q=0)=None at x[0]).
190        # ToDo: Find better way to do it.
191        if qmin == 0.0 and not np.isfinite(self.y[qmin]):
192            self.qmin = min(self.x[self.x != 0])
193        elif qmin is not None:
194            self.qmin = qmin
195        if qmax is not None:
196            self.qmax = qmax
197        # Determine the range needed in unsmeared-Q to cover
198        # the smeared Q range
199        self._qmin_unsmeared = self.qmin
200        self._qmax_unsmeared = self.qmax
201
202        self._first_unsmeared_bin = 0
203        self._last_unsmeared_bin = len(self.x) - 1
204
205        if self.smearer is not None:
206            self._first_unsmeared_bin, self._last_unsmeared_bin = \
207                    self.smearer.get_bin_range(self.qmin, self.qmax)
208            self._qmin_unsmeared = self.x[self._first_unsmeared_bin]
209            self._qmax_unsmeared = self.x[self._last_unsmeared_bin]
210
211        # Identify the bin range for the unsmeared and smeared spaces
212        self.idx = (self.x >= self.qmin) & (self.x <= self.qmax)
213        ## zero error can not participate for fitting
214        self.idx = self.idx & (self.dy != 0)
215        self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \
216                            & (self.x <= self._qmax_unsmeared)
217
218    def get_fit_range(self):
219        """
220            Return the range of data.x to fit
221        """
222        return self.qmin, self.qmax
223
224    def size(self):
225        """
226        Number of measurement points in data set after masking, etc.
227        """
228        return len(self.x)
229
230    def residuals(self, fn):
231        """
232            Compute residuals.
233
234            If self.smearer has been set, use if to smear
235            the data before computing chi squared.
236
237            :param fn: function that return model value
238
239            :return: residuals
240        """
241        # Compute theory data f(x)
242        fx = np.zeros(len(self.x))
243        fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared])
244
245        ## Smear theory data
246        if self.smearer is not None:
247            fx = self.smearer(fx, self._first_unsmeared_bin,
248                              self._last_unsmeared_bin)
249        ## Sanity check
250        if np.size(self.dy) != np.size(fx):
251            msg = "FitData1D: invalid error array "
252            msg += "%d <> %d" % (np.shape(self.dy), np.size(fx))
253            raise RuntimeError(msg)
254        return (self.y[self.idx] - fx[self.idx]) / self.dy[self.idx], fx[self.idx]
255
256    def residuals_deriv(self, model, pars=[]):
257        """
258            :return: residuals derivatives .
259
260            :note: in this case just return empty array
261        """
262        return []
263
264
265class FitData2D(Data2D):
266    """
267        Wrapper class  for SAS data
268    """
269    def __init__(self, sas_data2d, data=None, err_data=None):
270        Data2D.__init__(self, data=data, err_data=err_data)
271        # Data can be initialized with a sas plottable or with vectors.
272        self.res_err_image = []
273        self.num_points = 0 # will be set by set_data
274        self.idx = []
275        self.qmin = None
276        self.qmax = None
277        self.smearer = None
278        self.radius = 0
279        self.res_err_data = []
280        self.sas_data = sas_data2d
281        self.set_data(sas_data2d)
282
283    def set_data(self, sas_data2d, qmin=None, qmax=None):
284        """
285            Determine the correct qx_data and qy_data within range to fit
286        """
287        self.data = sas_data2d.data
288        self.err_data = sas_data2d.err_data
289        self.qx_data = sas_data2d.qx_data
290        self.qy_data = sas_data2d.qy_data
291        self.mask = sas_data2d.mask
292
293        x_max = max(math.fabs(sas_data2d.xmin), math.fabs(sas_data2d.xmax))
294        y_max = max(math.fabs(sas_data2d.ymin), math.fabs(sas_data2d.ymax))
295
296        ## fitting range
297        if qmin is None:
298            self.qmin = 1e-16
299        if qmax is None:
300            self.qmax = math.sqrt(x_max * x_max + y_max * y_max)
301        ## new error image for fitting purpose
302        if self.err_data is None or self.err_data == []:
303            self.res_err_data = np.ones(len(self.data))
304        else:
305            self.res_err_data = copy.deepcopy(self.err_data)
306        #self.res_err_data[self.res_err_data==0]=1
307
308        self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2)
309
310        # Note: mask = True: for MASK while mask = False for NOT to mask
311        self.idx = ((self.qmin <= self.radius) &\
312                            (self.radius <= self.qmax))
313        self.idx = (self.idx) & (self.mask)
314        self.idx = (self.idx) & (np.isfinite(self.data))
315        self.num_points = np.sum(self.idx)
316
317    def set_smearer(self, smearer):
318        """
319            Set smearer
320        """
321        if smearer is None:
322            return
323        self.smearer = smearer
324        self.smearer.set_index(self.idx)
325        self.smearer.get_data()
326
327    def set_fit_range(self, qmin=None, qmax=None):
328        """
329            To set the fit range
330        """
331        if qmin == 0.0:
332            self.qmin = 1e-16
333        elif qmin is not None:
334            self.qmin = qmin
335        if qmax is not None:
336            self.qmax = qmax
337        self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2)
338        self.idx = ((self.qmin <= self.radius) &\
339                            (self.radius <= self.qmax))
340        self.idx = (self.idx) & (self.mask)
341        self.idx = (self.idx) & (np.isfinite(self.data))
342        self.idx = (self.idx) & (self.res_err_data != 0)
343
344    def get_fit_range(self):
345        """
346        return the range of data.x to fit
347        """
348        return self.qmin, self.qmax
349
350    def size(self):
351        """
352        Number of measurement points in data set after masking, etc.
353        """
354        return np.sum(self.idx)
355
356    def residuals(self, fn):
357        """
358        return the residuals
359        """
360        if self.smearer is not None:
361            fn.set_index(self.idx)
362            # Get necessary data from self.data and set the data for smearing
363            fn.get_data()
364
365            gn = fn.get_value()
366        else:
367            gn = fn([self.qx_data[self.idx],
368                     self.qy_data[self.idx]])
369        # use only the data point within ROI range
370        res = (self.data[self.idx] - gn) / self.res_err_data[self.idx]
371
372        return res, gn
373
374    def residuals_deriv(self, model, pars=[]):
375        """
376        :return: residuals derivatives .
377
378        :note: in this case just return empty array
379
380        """
381        return []
382
383
384class FitAbort(Exception):
385    """
386    Exception raise to stop the fit
387    """
388    #pass
389    #print"Creating fit abort Exception"
390
391
392
393class FitEngine:
394    def __init__(self):
395        """
396        Base class for the fit engine
397        """
398        #Dictionnary of fitArrange element (fit problems)
399        self.fit_arrange_dict = {}
400        self.fitter_id = None
401
402    def set_model(self, model, id, pars=[], constraints=[], data=None):
403        """
404        set a model on a given  in the fit engine.
405
406        :param model: sas.models type
407        :param id: is the key of the fitArrange dictionary where model is saved as a value
408        :param pars: the list of parameters to fit
409        :param constraints: list of
410            tuple (name of parameter, value of parameters)
411            the value of parameter must be a string to constraint 2 different
412            parameters.
413            Example:
414            we want to fit 2 model M1 and M2 both have parameters A and B.
415            constraints can be ``constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]``
416
417
418        :note: pars must contains only name of existing model's parameters
419
420        """
421        if not pars:
422            raise ValueError("no fitting parameters")
423
424        if model is None:
425            raise ValueError("no model to fit")
426
427        if not issubclass(model.__class__, Model):
428            model = Model(model, data)
429
430        sasmodel = model.model
431        available_parameters = sasmodel.getParamList()
432        for p in pars:
433            if p not in available_parameters:
434                raise ValueError("parameter %s not available in model %s; use one of [%s] instead"
435                                 %(p, sasmodel.name, ", ".join(available_parameters)))
436
437        if id not in self.fit_arrange_dict:
438            self.fit_arrange_dict[id] = FitArrange()
439
440        self.fit_arrange_dict[id].set_model(model)
441        self.fit_arrange_dict[id].pars = pars
442        self.fit_arrange_dict[id].vals = [sasmodel.getParam(name) for name in pars]
443        self.fit_arrange_dict[id].constraints = constraints
444
445    def set_data(self, data, id, smearer=None, qmin=None, qmax=None):
446        """
447        Receives plottable, creates a list of data to fit,set data
448        in a FitArrange object and adds that object in a dictionary
449        with key id.
450
451        :param data: data added
452        :param id: unique key corresponding to a fitArrange object with data
453        """
454        if data.__class__.__name__ == 'Data2D':
455            fitdata = FitData2D(sas_data2d=data, data=data.data,
456                                 err_data=data.err_data)
457        else:
458            fitdata = FitData1D(x=data.x, y=data.y,
459                                 dx=data.dx, dy=data.dy, smearer=smearer)
460        fitdata.sas_data = data
461
462        fitdata.set_fit_range(qmin=qmin, qmax=qmax)
463        #A fitArrange is already created but contains model only at id
464        if id in self.fit_arrange_dict:
465            self.fit_arrange_dict[id].add_data(fitdata)
466        else:
467        #no fitArrange object has been create with this id
468            fitproblem = FitArrange()
469            fitproblem.add_data(fitdata)
470            self.fit_arrange_dict[id] = fitproblem
471
472    def get_model(self, id):
473        """
474        :param id: id is key in the dictionary containing the model to return
475
476        :return:  a model at this id or None if no FitArrange element was
477            created with this id
478        """
479        if id in self.fit_arrange_dict:
480            return self.fit_arrange_dict[id].get_model()
481        else:
482            return None
483
484    def remove_fit_problem(self, id):
485        """remove   fitarrange in id"""
486        if id in self.fit_arrange_dict:
487            del self.fit_arrange_dict[id]
488
489    def select_problem_for_fit(self, id, value):
490        """
491        select a couple of model and data at the id position in dictionary
492        and set in self.selected value to value
493
494        :param value: the value to allow fitting.
495                can only have the value one or zero
496        """
497        if id in self.fit_arrange_dict:
498            self.fit_arrange_dict[id].set_to_fit(value)
499
500    def get_problem_to_fit(self, id):
501        """
502        return the self.selected value of the fit problem of id
503
504        :param id: the id of the problem
505        """
506        if id in self.fit_arrange_dict:
507            self.fit_arrange_dict[id].get_to_fit()
508
509
510class FitArrange:
511    def __init__(self):
512        """
513        Class FitArrange contains a set of data for a given model
514        to perform the Fit.FitArrange must contain exactly one model
515        and at least one data for the fit to be performed.
516
517        model: the model selected by the user
518        Ldata: a list of data what the user wants to fit
519
520        """
521        self.model = None
522        self.data_list = []
523        self.pars = []
524        self.vals = []
525        self.selected = 0
526
527    def set_model(self, model):
528        """
529        set_model save a copy of the model
530
531        :param model: the model being set
532        """
533        self.model = model
534
535    def add_data(self, data):
536        """
537        add_data fill a self.data_list with data to fit
538
539        :param data: Data to add in the list
540        """
541        if not data in self.data_list:
542            self.data_list.append(data)
543
544    def get_model(self):
545        """
546        :return: saved model
547        """
548        return self.model
549
550    def get_data(self):
551        """
552        :return: list of data data_list
553        """
554        return self.data_list[0]
555
556    def remove_data(self, data):
557        """
558        Remove one element from the list
559
560        :param data: Data to remove from data_list
561        """
562        if data in self.data_list:
563            self.data_list.remove(data)
564
565    def set_to_fit(self, value=0):
566        """
567        set self.selected to 0 or 1  for other values raise an exception
568
569        :param value: integer between 0 or 1
570        """
571        self.selected = value
572
573    def get_to_fit(self):
574        """
575        return self.selected value
576        """
577        return self.selected
578
579class FResult(object):
580    """
581    Storing fit result
582    """
583    def __init__(self, model=None, param_list=None, data=None):
584        self.calls = None
585        self.fitness = None
586        self.chisqr = None
587        self.pvec = []
588        self.cov = []
589        self.info = None
590        self.mesg = None
591        self.success = None
592        self.stderr = None
593        self.residuals = []
594        self.index = []
595        self.model = model
596        self.data = data
597        self.theory = []
598        self.param_list = param_list
599        self.iterations = 0
600        self.inputs = []
601        self.fitter_id = None
602        if self.model is not None and self.data is not None:
603            self.inputs = [(self.model, self.data)]
604
605    def set_model(self, model):
606        """
607        """
608        self.model = model
609
610    def set_fitness(self, fitness):
611        """
612        """
613        self.fitness = fitness
614
615    def __str__(self):
616        """
617        """
618        if self.pvec is None and self.model is None and self.param_list is None:
619            return "No results"
620
621        sasmodel = self.model.model
622        pars = enumerate(sasmodel.getParamList())
623        msg1 = "[Iteration #: %s ]" % self.iterations
624        msg3 = "=== goodness of fit: %s ===" % (str(self.fitness))
625        msg2 = ["P%-3d  %s......|.....%s" % (i, v, sasmodel.getParam(v))
626                for i,v in pars if v in self.param_list]
627        msg = [msg1, msg3] + msg2
628        return "\n".join(msg)
629
630    def print_summary(self):
631        """
632        """
633        print(str(self))
Note: See TracBrowser for help on using the repository browser.