1 | # pylint: disable=invalid-name |
---|
2 | ##################################################################### |
---|
3 | #This software was developed by the University of Tennessee as part of the |
---|
4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
5 | #project funded by the US National Science Foundation. |
---|
6 | #See the license text in license.txt |
---|
7 | #copyright 2010, University of Tennessee |
---|
8 | ###################################################################### |
---|
9 | |
---|
10 | """ |
---|
11 | This module implements invariant and its related computations. |
---|
12 | |
---|
13 | :author: Gervaise B. Alina/UTK |
---|
14 | :author: Mathieu Doucet/UTK |
---|
15 | :author: Jae Cho/UTK |
---|
16 | |
---|
17 | """ |
---|
18 | import math |
---|
19 | import numpy as np |
---|
20 | |
---|
21 | from sas.sascalc.dataloader.data_info import Data1D as LoaderData1D |
---|
22 | |
---|
23 | # The minimum q-value to be used when extrapolating |
---|
24 | Q_MINIMUM = 1e-5 |
---|
25 | |
---|
26 | # The maximum q-value to be used when extrapolating |
---|
27 | Q_MAXIMUM = 10 |
---|
28 | |
---|
29 | # Number of steps in the extrapolation |
---|
30 | INTEGRATION_NSTEPS = 1000 |
---|
31 | |
---|
32 | class Transform(object): |
---|
33 | """ |
---|
34 | Define interface that need to compute a function or an inverse |
---|
35 | function given some x, y |
---|
36 | """ |
---|
37 | |
---|
38 | def linearize_data(self, data): |
---|
39 | """ |
---|
40 | Linearize data so that a linear fit can be performed. |
---|
41 | Filter out the data that can't be transformed. |
---|
42 | |
---|
43 | :param data: LoadData1D instance |
---|
44 | |
---|
45 | """ |
---|
46 | # Check that the vector lengths are equal |
---|
47 | assert len(data.x) == len(data.y) |
---|
48 | if data.dy is not None: |
---|
49 | assert len(data.x) == len(data.dy) |
---|
50 | dy = data.dy |
---|
51 | else: |
---|
52 | dy = np.ones(len(data.y)) |
---|
53 | |
---|
54 | # Transform the data |
---|
55 | data_points = zip(data.x, data.y, dy) |
---|
56 | |
---|
57 | output_points = [(self.linearize_q_value(p[0]), |
---|
58 | math.log(p[1]), |
---|
59 | p[2] / p[1]) for p in data_points if p[0] > 0 and \ |
---|
60 | p[1] > 0 and p[2] > 0] |
---|
61 | |
---|
62 | x_out, y_out, dy_out = zip(*output_points) |
---|
63 | |
---|
64 | # Create Data1D object |
---|
65 | x_out = np.asarray(x_out) |
---|
66 | y_out = np.asarray(y_out) |
---|
67 | dy_out = np.asarray(dy_out) |
---|
68 | linear_data = LoaderData1D(x=x_out, y=y_out, dy=dy_out) |
---|
69 | |
---|
70 | return linear_data |
---|
71 | |
---|
72 | def get_allowed_bins(self, data): |
---|
73 | """ |
---|
74 | Goes through the data points and returns a list of boolean values |
---|
75 | to indicate whether each points is allowed by the model or not. |
---|
76 | |
---|
77 | :param data: Data1D object |
---|
78 | """ |
---|
79 | return [p[0] > 0 and p[1] > 0 and p[2] > 0 for p in zip(data.x, data.y, |
---|
80 | data.dy)] |
---|
81 | |
---|
82 | def linearize_q_value(self, value): |
---|
83 | """ |
---|
84 | Transform the input q-value for linearization |
---|
85 | """ |
---|
86 | return NotImplemented |
---|
87 | |
---|
88 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
89 | """ |
---|
90 | set private member |
---|
91 | """ |
---|
92 | return NotImplemented |
---|
93 | |
---|
94 | def evaluate_model(self, x): |
---|
95 | """ |
---|
96 | Returns an array f(x) values where f is the Transform function. |
---|
97 | """ |
---|
98 | return NotImplemented |
---|
99 | |
---|
100 | def evaluate_model_errors(self, x): |
---|
101 | """ |
---|
102 | Returns an array of I(q) errors |
---|
103 | """ |
---|
104 | return NotImplemented |
---|
105 | |
---|
106 | class Guinier(Transform): |
---|
107 | """ |
---|
108 | class of type Transform that performs operations related to guinier |
---|
109 | function |
---|
110 | """ |
---|
111 | def __init__(self, scale=1, radius=60): |
---|
112 | Transform.__init__(self) |
---|
113 | self.scale = scale |
---|
114 | self.radius = radius |
---|
115 | ## Uncertainty of scale parameter |
---|
116 | self.dscale = 0 |
---|
117 | ## Unvertainty of radius parameter |
---|
118 | self.dradius = 0 |
---|
119 | |
---|
120 | def linearize_q_value(self, value): |
---|
121 | """ |
---|
122 | Transform the input q-value for linearization |
---|
123 | |
---|
124 | :param value: q-value |
---|
125 | |
---|
126 | :return: q*q |
---|
127 | """ |
---|
128 | return value * value |
---|
129 | |
---|
130 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
131 | """ |
---|
132 | assign new value to the scale and the radius |
---|
133 | """ |
---|
134 | self.scale = math.exp(constant) |
---|
135 | if slope > 0: |
---|
136 | slope = 0.0 |
---|
137 | self.radius = math.sqrt(-3 * slope) |
---|
138 | # Errors |
---|
139 | self.dscale = math.exp(constant) * dconstant |
---|
140 | if slope == 0.0: |
---|
141 | n_zero = -1.0e-24 |
---|
142 | self.dradius = -3.0 / 2.0 / math.sqrt(-3 * n_zero) * dslope |
---|
143 | else: |
---|
144 | self.dradius = -3.0 / 2.0 / math.sqrt(-3 * slope) * dslope |
---|
145 | |
---|
146 | return [self.radius, self.scale], [self.dradius, self.dscale] |
---|
147 | |
---|
148 | def evaluate_model(self, x): |
---|
149 | """ |
---|
150 | return F(x)= scale* e-((radius*x)**2/3) |
---|
151 | """ |
---|
152 | return self._guinier(x) |
---|
153 | |
---|
154 | def evaluate_model_errors(self, x): |
---|
155 | """ |
---|
156 | Returns the error on I(q) for the given array of q-values |
---|
157 | |
---|
158 | :param x: array of q-values |
---|
159 | """ |
---|
160 | p1 = np.array([self.dscale * math.exp(-((self.radius * q) ** 2 / 3)) \ |
---|
161 | for q in x]) |
---|
162 | p2 = np.array([self.scale * math.exp(-((self.radius * q) ** 2 / 3))\ |
---|
163 | * (-(q ** 2 / 3)) * 2 * self.radius * self.dradius for q in x]) |
---|
164 | diq2 = p1 * p1 + p2 * p2 |
---|
165 | return np.array([math.sqrt(err) for err in diq2]) |
---|
166 | |
---|
167 | def _guinier(self, x): |
---|
168 | """ |
---|
169 | Retrieve the guinier function after apply an inverse guinier function |
---|
170 | to x |
---|
171 | Compute a F(x) = scale* e-((radius*x)**2/3). |
---|
172 | |
---|
173 | :param x: a vector of q values |
---|
174 | :param scale: the scale value |
---|
175 | :param radius: the guinier radius value |
---|
176 | |
---|
177 | :return: F(x) |
---|
178 | """ |
---|
179 | # transform the radius of coming from the inverse guinier function to a |
---|
180 | # a radius of a guinier function |
---|
181 | if self.radius <= 0: |
---|
182 | msg = "Rg expected positive value, but got %s" % self.radius |
---|
183 | raise ValueError(msg) |
---|
184 | value = np.array([math.exp(-((self.radius * i) ** 2 / 3)) for i in x]) |
---|
185 | return self.scale * value |
---|
186 | |
---|
187 | class PowerLaw(Transform): |
---|
188 | """ |
---|
189 | class of type transform that perform operation related to power_law |
---|
190 | function |
---|
191 | """ |
---|
192 | def __init__(self, scale=1, power=4): |
---|
193 | Transform.__init__(self) |
---|
194 | self.scale = scale |
---|
195 | self.power = power |
---|
196 | self.dscale = 0.0 |
---|
197 | self.dpower = 0.0 |
---|
198 | |
---|
199 | def linearize_q_value(self, value): |
---|
200 | """ |
---|
201 | Transform the input q-value for linearization |
---|
202 | |
---|
203 | :param value: q-value |
---|
204 | |
---|
205 | :return: log(q) |
---|
206 | """ |
---|
207 | return math.log(value) |
---|
208 | |
---|
209 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
210 | """ |
---|
211 | Assign new value to the scale and the power |
---|
212 | """ |
---|
213 | self.power = -slope |
---|
214 | self.scale = math.exp(constant) |
---|
215 | |
---|
216 | # Errors |
---|
217 | self.dscale = math.exp(constant) * dconstant |
---|
218 | self.dpower = -dslope |
---|
219 | |
---|
220 | return [self.power, self.scale], [self.dpower, self.dscale] |
---|
221 | |
---|
222 | def evaluate_model(self, x): |
---|
223 | """ |
---|
224 | given a scale and a radius transform x, y using a power_law |
---|
225 | function |
---|
226 | """ |
---|
227 | return self._power_law(x) |
---|
228 | |
---|
229 | def evaluate_model_errors(self, x): |
---|
230 | """ |
---|
231 | Returns the error on I(q) for the given array of q-values |
---|
232 | :param x: array of q-values |
---|
233 | """ |
---|
234 | p1 = np.array([self.dscale * math.pow(q, -self.power) for q in x]) |
---|
235 | p2 = np.array([self.scale * self.power * math.pow(q, -self.power - 1)\ |
---|
236 | * self.dpower for q in x]) |
---|
237 | diq2 = p1 * p1 + p2 * p2 |
---|
238 | return np.array([math.sqrt(err) for err in diq2]) |
---|
239 | |
---|
240 | def _power_law(self, x): |
---|
241 | """ |
---|
242 | F(x) = scale* (x)^(-power) |
---|
243 | when power= 4. the model is porod |
---|
244 | else power_law |
---|
245 | The model has three parameters: :: |
---|
246 | 1. x: a vector of q values |
---|
247 | 2. power: power of the function |
---|
248 | 3. scale : scale factor value |
---|
249 | |
---|
250 | :param x: array |
---|
251 | :return: F(x) |
---|
252 | """ |
---|
253 | if self.power <= 0: |
---|
254 | msg = "Power_law function expected positive power," |
---|
255 | msg += " but got %s" % self.power |
---|
256 | raise ValueError(msg) |
---|
257 | if self.scale <= 0: |
---|
258 | msg = "scale expected positive value, but got %s" % self.scale |
---|
259 | raise ValueError(msg) |
---|
260 | |
---|
261 | value = np.array([math.pow(i, -self.power) for i in x]) |
---|
262 | return self.scale * value |
---|
263 | |
---|
264 | class Extrapolator(object): |
---|
265 | """ |
---|
266 | Extrapolate I(q) distribution using a given model |
---|
267 | """ |
---|
268 | def __init__(self, data, model=None): |
---|
269 | """ |
---|
270 | Determine a and b given a linear equation y = ax + b |
---|
271 | |
---|
272 | If a model is given, it will be used to linearize the data before |
---|
273 | the extrapolation is performed. If None, |
---|
274 | a simple linear fit will be done. |
---|
275 | |
---|
276 | :param data: data containing x and y such as y = ax + b |
---|
277 | :param model: optional Transform object |
---|
278 | """ |
---|
279 | self.data = data |
---|
280 | self.model = model |
---|
281 | |
---|
282 | # Set qmin as the lowest non-zero value |
---|
283 | self.qmin = Q_MINIMUM |
---|
284 | for q_value in self.data.x: |
---|
285 | if q_value > 0: |
---|
286 | self.qmin = q_value |
---|
287 | break |
---|
288 | self.qmax = max(self.data.x) |
---|
289 | |
---|
290 | def fit(self, power=None, qmin=None, qmax=None): |
---|
291 | """ |
---|
292 | Fit data for y = ax + b return a and b |
---|
293 | |
---|
294 | :param power: a fixed, otherwise None |
---|
295 | :param qmin: Minimum Q-value |
---|
296 | :param qmax: Maximum Q-value |
---|
297 | """ |
---|
298 | if qmin is None: |
---|
299 | qmin = self.qmin |
---|
300 | if qmax is None: |
---|
301 | qmax = self.qmax |
---|
302 | |
---|
303 | # Identify the bin range for the fit |
---|
304 | idx = (self.data.x >= qmin) & (self.data.x <= qmax) |
---|
305 | |
---|
306 | fx = np.zeros(len(self.data.x)) |
---|
307 | |
---|
308 | # Uncertainty |
---|
309 | if type(self.data.dy) == np.ndarray and \ |
---|
310 | len(self.data.dy) == len(self.data.x) and \ |
---|
311 | np.all(self.data.dy > 0): |
---|
312 | sigma = self.data.dy |
---|
313 | else: |
---|
314 | sigma = np.ones(len(self.data.x)) |
---|
315 | |
---|
316 | # Compute theory data f(x) |
---|
317 | fx[idx] = self.data.y[idx] |
---|
318 | |
---|
319 | # Linearize the data |
---|
320 | if self.model is not None: |
---|
321 | linearized_data = self.model.linearize_data(\ |
---|
322 | LoaderData1D(self.data.x[idx], |
---|
323 | fx[idx], |
---|
324 | dy=sigma[idx])) |
---|
325 | else: |
---|
326 | linearized_data = LoaderData1D(self.data.x[idx], |
---|
327 | fx[idx], |
---|
328 | dy=sigma[idx]) |
---|
329 | |
---|
330 | ##power is given only for function = power_law |
---|
331 | if power is not None: |
---|
332 | sigma2 = linearized_data.dy * linearized_data.dy |
---|
333 | a = -(power) |
---|
334 | b = (np.sum(linearized_data.y / sigma2) \ |
---|
335 | - a * np.sum(linearized_data.x / sigma2)) / np.sum(1.0 / sigma2) |
---|
336 | |
---|
337 | |
---|
338 | deltas = linearized_data.x * a + \ |
---|
339 | np.ones(len(linearized_data.x)) * b - linearized_data.y |
---|
340 | residuals = np.sum(deltas * deltas / sigma2) |
---|
341 | |
---|
342 | err = math.fabs(residuals) / np.sum(1.0 / sigma2) |
---|
343 | return [a, b], [0, math.sqrt(err)] |
---|
344 | else: |
---|
345 | A = np.vstack([linearized_data.x / linearized_data.dy, 1.0 / linearized_data.dy]).T |
---|
346 | # CRUFT: numpy>=1.14.0 allows rcond=None for the following default |
---|
347 | rcond = np.finfo(float).eps * max(A.shape) |
---|
348 | p, residuals, _, _ = np.linalg.lstsq(A, linearized_data.y / linearized_data.dy, |
---|
349 | rcond=rcond) |
---|
350 | |
---|
351 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
352 | err = np.zeros(2) |
---|
353 | try: |
---|
354 | inv_cov = np.dot(A.transpose(), A) |
---|
355 | cov = np.linalg.pinv(inv_cov) |
---|
356 | err_matrix = math.fabs(residuals) * cov |
---|
357 | err = [math.sqrt(err_matrix[0][0]), math.sqrt(err_matrix[1][1])] |
---|
358 | except: |
---|
359 | err = [-1.0, -1.0] |
---|
360 | |
---|
361 | return p, err |
---|
362 | |
---|
363 | |
---|
364 | class InvariantCalculator(object): |
---|
365 | """ |
---|
366 | Compute invariant if data is given. |
---|
367 | Can provide volume fraction and surface area if the user provides |
---|
368 | Porod constant and contrast values. |
---|
369 | |
---|
370 | :precondition: the user must send a data of type DataLoader.Data1D |
---|
371 | the user provide background and scale values. |
---|
372 | |
---|
373 | :note: Some computations depends on each others. |
---|
374 | """ |
---|
375 | def __init__(self, data, background=0, scale=1): |
---|
376 | """ |
---|
377 | Initialize variables. |
---|
378 | |
---|
379 | :param data: data must be of type DataLoader.Data1D |
---|
380 | :param background: Background value. The data will be corrected |
---|
381 | before processing |
---|
382 | :param scale: Scaling factor for I(q). The data will be corrected |
---|
383 | before processing |
---|
384 | """ |
---|
385 | # Background and scale should be private data member if the only way to |
---|
386 | # change them are by instantiating a new object. |
---|
387 | self._background = background |
---|
388 | self._scale = scale |
---|
389 | # slit height for smeared data |
---|
390 | self._smeared = None |
---|
391 | # The data should be private |
---|
392 | self._data = self._get_data(data) |
---|
393 | # get the dxl if the data is smeared: This is done only once on init. |
---|
394 | if self._data.dxl is not None and self._data.dxl.all() > 0: |
---|
395 | # assumes constant dxl |
---|
396 | self._smeared = self._data.dxl[0] |
---|
397 | |
---|
398 | # Since there are multiple variants of Q*, you should force the |
---|
399 | # user to use the get method and keep Q* a private data member |
---|
400 | self._qstar = None |
---|
401 | |
---|
402 | # You should keep the error on Q* so you can reuse it without |
---|
403 | # recomputing the whole thing. |
---|
404 | self._qstar_err = 0 |
---|
405 | |
---|
406 | # Extrapolation parameters |
---|
407 | self._low_extrapolation_npts = 4 |
---|
408 | self._low_extrapolation_function = Guinier() |
---|
409 | self._low_extrapolation_power = None |
---|
410 | self._low_extrapolation_power_fitted = None |
---|
411 | |
---|
412 | self._high_extrapolation_npts = 4 |
---|
413 | self._high_extrapolation_function = PowerLaw() |
---|
414 | self._high_extrapolation_power = None |
---|
415 | self._high_extrapolation_power_fitted = None |
---|
416 | |
---|
417 | # Extrapolation range |
---|
418 | self._low_q_limit = Q_MINIMUM |
---|
419 | |
---|
420 | def _get_data(self, data): |
---|
421 | """ |
---|
422 | :note: this function must be call before computing any type |
---|
423 | of invariant |
---|
424 | |
---|
425 | :return: new data = self._scale *data - self._background |
---|
426 | """ |
---|
427 | if not issubclass(data.__class__, LoaderData1D): |
---|
428 | #Process only data that inherited from DataLoader.Data_info.Data1D |
---|
429 | raise ValueError("Data must be of type DataLoader.Data1D") |
---|
430 | #from copy import deepcopy |
---|
431 | new_data = (self._scale * data) - self._background |
---|
432 | |
---|
433 | # Check that the vector lengths are equal |
---|
434 | assert len(new_data.x) == len(new_data.y) |
---|
435 | |
---|
436 | # Verify that the errors are set correctly |
---|
437 | if new_data.dy is None or len(new_data.x) != len(new_data.dy) or \ |
---|
438 | (min(new_data.dy) == 0 and max(new_data.dy) == 0): |
---|
439 | new_data.dy = np.ones(len(new_data.x)) |
---|
440 | return new_data |
---|
441 | |
---|
442 | def _fit(self, model, qmin=Q_MINIMUM, qmax=Q_MAXIMUM, power=None): |
---|
443 | """ |
---|
444 | fit data with function using |
---|
445 | data = self._get_data() |
---|
446 | fx = Functor(data , function) |
---|
447 | y = data.y |
---|
448 | slope, constant = linalg.lstsq(y,fx) |
---|
449 | |
---|
450 | :param qmin: data first q value to consider during the fit |
---|
451 | :param qmax: data last q value to consider during the fit |
---|
452 | :param power : power value to consider for power-law |
---|
453 | :param function: the function to use during the fit |
---|
454 | |
---|
455 | :return a: the scale of the function |
---|
456 | :return b: the other parameter of the function for guinier will be radius |
---|
457 | for power_law will be the power value |
---|
458 | """ |
---|
459 | extrapolator = Extrapolator(data=self._data, model=model) |
---|
460 | p, dp = extrapolator.fit(power=power, qmin=qmin, qmax=qmax) |
---|
461 | |
---|
462 | return model.extract_model_parameters(constant=p[1], slope=p[0], |
---|
463 | dconstant=dp[1], dslope=dp[0]) |
---|
464 | |
---|
465 | def _get_qstar(self, data): |
---|
466 | """ |
---|
467 | Compute invariant for pinhole data. |
---|
468 | This invariant is given by: :: |
---|
469 | |
---|
470 | q_star = x0**2 *y0 *dx0 +x1**2 *y1 *dx1 |
---|
471 | + ..+ xn**2 *yn *dxn for non smeared data |
---|
472 | |
---|
473 | q_star = dxl0 *x0 *y0 *dx0 +dxl1 *x1 *y1 *dx1 |
---|
474 | + ..+ dlxn *xn *yn *dxn for smeared data |
---|
475 | |
---|
476 | where n >= len(data.x)-1 |
---|
477 | dxl = slit height dQl |
---|
478 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
479 | dx0 = (x1 - x0)/2 |
---|
480 | dxn = (xn - xn-1)/2 |
---|
481 | |
---|
482 | :param data: the data to use to compute invariant. |
---|
483 | |
---|
484 | :return q_star: invariant value for pinhole data. q_star > 0 |
---|
485 | """ |
---|
486 | if len(data.x) <= 1 or len(data.y) <= 1 or len(data.x) != len(data.y): |
---|
487 | msg = "Length x and y must be equal" |
---|
488 | msg += " and greater than 1; got x=%s, y=%s" % (len(data.x), len(data.y)) |
---|
489 | raise ValueError(msg) |
---|
490 | else: |
---|
491 | # Take care of smeared data |
---|
492 | if self._smeared is None: |
---|
493 | gx = data.x * data.x |
---|
494 | # assumes that len(x) == len(dxl). |
---|
495 | else: |
---|
496 | gx = data.dxl * data.x |
---|
497 | |
---|
498 | n = len(data.x) - 1 |
---|
499 | #compute the first delta q |
---|
500 | dx0 = (data.x[1] - data.x[0]) / 2 |
---|
501 | #compute the last delta q |
---|
502 | dxn = (data.x[n] - data.x[n - 1]) / 2 |
---|
503 | total = 0 |
---|
504 | total += gx[0] * data.y[0] * dx0 |
---|
505 | total += gx[n] * data.y[n] * dxn |
---|
506 | |
---|
507 | if len(data.x) == 2: |
---|
508 | return total |
---|
509 | else: |
---|
510 | #iterate between for element different |
---|
511 | #from the first and the last |
---|
512 | for i in range(1, n - 1): |
---|
513 | dxi = (data.x[i + 1] - data.x[i - 1]) / 2 |
---|
514 | total += gx[i] * data.y[i] * dxi |
---|
515 | return total |
---|
516 | |
---|
517 | def _get_qstar_uncertainty(self, data): |
---|
518 | """ |
---|
519 | Compute invariant uncertainty with with pinhole data. |
---|
520 | This uncertainty is given as follow: :: |
---|
521 | |
---|
522 | dq_star = math.sqrt[(x0**2*(dy0)*dx0)**2 + |
---|
523 | (x1**2 *(dy1)*dx1)**2 + ..+ (xn**2 *(dyn)*dxn)**2 ] |
---|
524 | where n >= len(data.x)-1 |
---|
525 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
526 | dx0 = (x1 - x0)/2 |
---|
527 | dxn = (xn - xn-1)/2 |
---|
528 | dyn: error on dy |
---|
529 | |
---|
530 | :param data: |
---|
531 | :note: if data doesn't contain dy assume dy= math.sqrt(data.y) |
---|
532 | """ |
---|
533 | if len(data.x) <= 1 or len(data.y) <= 1 or \ |
---|
534 | len(data.x) != len(data.y) or \ |
---|
535 | (data.dy is not None and (len(data.dy) != len(data.y))): |
---|
536 | msg = "Length of data.x and data.y must be equal" |
---|
537 | msg += " and greater than 1; got x=%s, y=%s" % (len(data.x), len(data.y)) |
---|
538 | raise ValueError(msg) |
---|
539 | else: |
---|
540 | #Create error for data without dy error |
---|
541 | if data.dy is None: |
---|
542 | dy = math.sqrt(data.y) |
---|
543 | else: |
---|
544 | dy = data.dy |
---|
545 | # Take care of smeared data |
---|
546 | if self._smeared is None: |
---|
547 | gx = data.x * data.x |
---|
548 | # assumes that len(x) == len(dxl). |
---|
549 | else: |
---|
550 | gx = data.dxl * data.x |
---|
551 | |
---|
552 | n = len(data.x) - 1 |
---|
553 | #compute the first delta |
---|
554 | dx0 = (data.x[1] - data.x[0]) / 2 |
---|
555 | #compute the last delta |
---|
556 | dxn = (data.x[n] - data.x[n - 1]) / 2 |
---|
557 | total = 0 |
---|
558 | total += (gx[0] * dy[0] * dx0) ** 2 |
---|
559 | total += (gx[n] * dy[n] * dxn) ** 2 |
---|
560 | if len(data.x) == 2: |
---|
561 | return math.sqrt(total) |
---|
562 | else: |
---|
563 | #iterate between for element different |
---|
564 | #from the first and the last |
---|
565 | for i in range(1, n - 1): |
---|
566 | dxi = (data.x[i + 1] - data.x[i - 1]) / 2 |
---|
567 | total += (gx[i] * dy[i] * dxi) ** 2 |
---|
568 | return math.sqrt(total) |
---|
569 | |
---|
570 | def _get_extrapolated_data(self, model, npts=INTEGRATION_NSTEPS, |
---|
571 | q_start=Q_MINIMUM, q_end=Q_MAXIMUM): |
---|
572 | """ |
---|
573 | :return: extrapolate data create from data |
---|
574 | """ |
---|
575 | #create new Data1D to compute the invariant |
---|
576 | q = np.linspace(start=q_start, |
---|
577 | stop=q_end, |
---|
578 | num=npts, |
---|
579 | endpoint=True) |
---|
580 | iq = model.evaluate_model(q) |
---|
581 | diq = model.evaluate_model_errors(q) |
---|
582 | |
---|
583 | result_data = LoaderData1D(x=q, y=iq, dy=diq) |
---|
584 | if self._smeared is not None: |
---|
585 | result_data.dxl = self._smeared * np.ones(len(q)) |
---|
586 | return result_data |
---|
587 | |
---|
588 | def get_data(self): |
---|
589 | """ |
---|
590 | :return: self._data |
---|
591 | """ |
---|
592 | return self._data |
---|
593 | |
---|
594 | def get_extrapolation_power(self, range='high'): |
---|
595 | """ |
---|
596 | :return: the fitted power for power law function for a given |
---|
597 | extrapolation range |
---|
598 | """ |
---|
599 | if range == 'low': |
---|
600 | return self._low_extrapolation_power_fitted |
---|
601 | return self._high_extrapolation_power_fitted |
---|
602 | |
---|
603 | def get_qstar_low(self): |
---|
604 | """ |
---|
605 | Compute the invariant for extrapolated data at low q range. |
---|
606 | |
---|
607 | Implementation: |
---|
608 | data = self._get_extra_data_low() |
---|
609 | return self._get_qstar() |
---|
610 | |
---|
611 | :return q_star: the invariant for data extrapolated at low q. |
---|
612 | """ |
---|
613 | # Data boundaries for fitting |
---|
614 | qmin = self._data.x[0] |
---|
615 | qmax = self._data.x[int(self._low_extrapolation_npts - 1)] |
---|
616 | |
---|
617 | # Extrapolate the low-Q data |
---|
618 | p, _ = self._fit(model=self._low_extrapolation_function, |
---|
619 | qmin=qmin, |
---|
620 | qmax=qmax, |
---|
621 | power=self._low_extrapolation_power) |
---|
622 | self._low_extrapolation_power_fitted = p[0] |
---|
623 | |
---|
624 | # Distribution starting point |
---|
625 | self._low_q_limit = Q_MINIMUM |
---|
626 | if Q_MINIMUM >= qmin: |
---|
627 | self._low_q_limit = qmin / 10 |
---|
628 | |
---|
629 | data = self._get_extrapolated_data(\ |
---|
630 | model=self._low_extrapolation_function, |
---|
631 | npts=INTEGRATION_NSTEPS, |
---|
632 | q_start=self._low_q_limit, q_end=qmin) |
---|
633 | |
---|
634 | # Systematic error |
---|
635 | # If we have smearing, the shape of the I(q) distribution at low Q will |
---|
636 | # may not be a Guinier or simple power law. The following is |
---|
637 | # a conservative estimation for the systematic error. |
---|
638 | err = qmin * qmin * math.fabs((qmin - self._low_q_limit) * \ |
---|
639 | (data.y[0] - data.y[INTEGRATION_NSTEPS - 1])) |
---|
640 | return self._get_qstar(data), self._get_qstar_uncertainty(data) + err |
---|
641 | |
---|
642 | def get_qstar_high(self): |
---|
643 | """ |
---|
644 | Compute the invariant for extrapolated data at high q range. |
---|
645 | |
---|
646 | Implementation: |
---|
647 | data = self._get_extra_data_high() |
---|
648 | return self._get_qstar() |
---|
649 | |
---|
650 | :return q_star: the invariant for data extrapolated at high q. |
---|
651 | """ |
---|
652 | # Data boundaries for fitting |
---|
653 | x_len = len(self._data.x) - 1 |
---|
654 | qmin = self._data.x[int(x_len - (self._high_extrapolation_npts - 1))] |
---|
655 | qmax = self._data.x[int(x_len)] |
---|
656 | |
---|
657 | # fit the data with a model to get the appropriate parameters |
---|
658 | p, _ = self._fit(model=self._high_extrapolation_function, |
---|
659 | qmin=qmin, |
---|
660 | qmax=qmax, |
---|
661 | power=self._high_extrapolation_power) |
---|
662 | self._high_extrapolation_power_fitted = p[0] |
---|
663 | |
---|
664 | #create new Data1D to compute the invariant |
---|
665 | data = self._get_extrapolated_data(\ |
---|
666 | model=self._high_extrapolation_function, |
---|
667 | npts=INTEGRATION_NSTEPS, |
---|
668 | q_start=qmax, q_end=Q_MAXIMUM) |
---|
669 | |
---|
670 | return self._get_qstar(data), self._get_qstar_uncertainty(data) |
---|
671 | |
---|
672 | def get_extra_data_low(self, npts_in=None, q_start=None, npts=20): |
---|
673 | """ |
---|
674 | Returns the extrapolated data used for the loew-Q invariant calculation. |
---|
675 | By default, the distribution will cover the data points used for the |
---|
676 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
677 | By default, the maximum q-value of the distribution will be |
---|
678 | the minimum q-value used when extrapolating for the purpose of the |
---|
679 | invariant calculation. |
---|
680 | |
---|
681 | :param npts_in: number of data points for which |
---|
682 | the extrapolated data overlap |
---|
683 | :param q_start: is the minimum value to uses for extrapolated data |
---|
684 | :param npts: the number of points in the extrapolated distribution |
---|
685 | |
---|
686 | """ |
---|
687 | # Get extrapolation range |
---|
688 | if q_start is None: |
---|
689 | q_start = self._low_q_limit |
---|
690 | |
---|
691 | if npts_in is None: |
---|
692 | npts_in = self._low_extrapolation_npts |
---|
693 | q_end = self._data.x[max(0, int(npts_in - 1))] |
---|
694 | |
---|
695 | if q_start >= q_end: |
---|
696 | return np.zeros(0), np.zeros(0) |
---|
697 | |
---|
698 | return self._get_extrapolated_data(\ |
---|
699 | model=self._low_extrapolation_function, |
---|
700 | npts=npts, |
---|
701 | q_start=q_start, q_end=q_end) |
---|
702 | |
---|
703 | def get_extra_data_high(self, npts_in=None, q_end=Q_MAXIMUM, npts=20): |
---|
704 | """ |
---|
705 | Returns the extrapolated data used for the high-Q invariant calculation. |
---|
706 | By default, the distribution will cover the data points used for the |
---|
707 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
708 | By default, the maximum q-value of the distribution will be Q_MAXIMUM, |
---|
709 | the maximum q-value used when extrapolating for the purpose of the |
---|
710 | invariant calculation. |
---|
711 | |
---|
712 | :param npts_in: number of data points for which the |
---|
713 | extrapolated data overlap |
---|
714 | :param q_end: is the maximum value to uses for extrapolated data |
---|
715 | :param npts: the number of points in the extrapolated distribution |
---|
716 | """ |
---|
717 | # Get extrapolation range |
---|
718 | if npts_in is None: |
---|
719 | npts_in = int(self._high_extrapolation_npts) |
---|
720 | _npts = len(self._data.x) |
---|
721 | q_start = self._data.x[min(_npts, int(_npts - npts_in))] |
---|
722 | |
---|
723 | if q_start >= q_end: |
---|
724 | return np.zeros(0), np.zeros(0) |
---|
725 | |
---|
726 | return self._get_extrapolated_data(\ |
---|
727 | model=self._high_extrapolation_function, |
---|
728 | npts=npts, |
---|
729 | q_start=q_start, q_end=q_end) |
---|
730 | |
---|
731 | def set_extrapolation(self, range, npts=4, function=None, power=None): |
---|
732 | """ |
---|
733 | Set the extrapolation parameters for the high or low Q-range. |
---|
734 | Note that this does not turn extrapolation on or off. |
---|
735 | |
---|
736 | :param range: a keyword set the type of extrapolation . type string |
---|
737 | :param npts: the numbers of q points of data to consider |
---|
738 | for extrapolation |
---|
739 | :param function: a keyword to select the function to use |
---|
740 | for extrapolation. |
---|
741 | of type string. |
---|
742 | :param power: an power to apply power_low function |
---|
743 | |
---|
744 | """ |
---|
745 | range = range.lower() |
---|
746 | if range not in ['high', 'low']: |
---|
747 | raise ValueError("Extrapolation range should be 'high' or 'low'") |
---|
748 | function = function.lower() |
---|
749 | if function not in ['power_law', 'guinier']: |
---|
750 | msg = "Extrapolation function should be 'guinier' or 'power_law'" |
---|
751 | raise ValueError(msg) |
---|
752 | |
---|
753 | if range == 'high': |
---|
754 | if function != 'power_law': |
---|
755 | msg = "Extrapolation only allows a power law at high Q" |
---|
756 | raise ValueError(msg) |
---|
757 | self._high_extrapolation_npts = npts |
---|
758 | self._high_extrapolation_power = power |
---|
759 | self._high_extrapolation_power_fitted = power |
---|
760 | else: |
---|
761 | if function == 'power_law': |
---|
762 | self._low_extrapolation_function = PowerLaw() |
---|
763 | else: |
---|
764 | self._low_extrapolation_function = Guinier() |
---|
765 | self._low_extrapolation_npts = npts |
---|
766 | self._low_extrapolation_power = power |
---|
767 | self._low_extrapolation_power_fitted = power |
---|
768 | |
---|
769 | def get_qstar(self, extrapolation=None): |
---|
770 | """ |
---|
771 | Compute the invariant of the local copy of data. |
---|
772 | |
---|
773 | :param extrapolation: string to apply optional extrapolation |
---|
774 | |
---|
775 | :return q_star: invariant of the data within data's q range |
---|
776 | |
---|
777 | :warning: When using setting data to Data1D , |
---|
778 | the user is responsible of |
---|
779 | checking that the scale and the background are |
---|
780 | properly apply to the data |
---|
781 | |
---|
782 | """ |
---|
783 | self._qstar = self._get_qstar(self._data) |
---|
784 | self._qstar_err = self._get_qstar_uncertainty(self._data) |
---|
785 | |
---|
786 | if extrapolation is None: |
---|
787 | return self._qstar |
---|
788 | |
---|
789 | # Compute invariant plus invariant of extrapolated data |
---|
790 | extrapolation = extrapolation.lower() |
---|
791 | if extrapolation == "low": |
---|
792 | qs_low, dqs_low = self.get_qstar_low() |
---|
793 | qs_hi, dqs_hi = 0, 0 |
---|
794 | |
---|
795 | elif extrapolation == "high": |
---|
796 | qs_low, dqs_low = 0, 0 |
---|
797 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
798 | |
---|
799 | elif extrapolation == "both": |
---|
800 | qs_low, dqs_low = self.get_qstar_low() |
---|
801 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
802 | |
---|
803 | self._qstar += qs_low + qs_hi |
---|
804 | self._qstar_err = math.sqrt(self._qstar_err * self._qstar_err \ |
---|
805 | + dqs_low * dqs_low + dqs_hi * dqs_hi) |
---|
806 | |
---|
807 | return self._qstar |
---|
808 | |
---|
809 | def get_surface(self, contrast, porod_const, extrapolation=None): |
---|
810 | """ |
---|
811 | Compute the specific surface from the data. |
---|
812 | |
---|
813 | Implementation:: |
---|
814 | |
---|
815 | V = self.get_volume_fraction(contrast, extrapolation) |
---|
816 | |
---|
817 | Compute the surface given by: |
---|
818 | surface = (2*pi *V(1- V)*porod_const)/ q_star |
---|
819 | |
---|
820 | :param contrast: contrast value to compute the volume |
---|
821 | :param porod_const: Porod constant to compute the surface |
---|
822 | :param extrapolation: string to apply optional extrapolation |
---|
823 | |
---|
824 | :return: specific surface |
---|
825 | """ |
---|
826 | # Compute the volume |
---|
827 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
828 | return 2 * math.pi * volume * (1 - volume) * \ |
---|
829 | float(porod_const) / self._qstar |
---|
830 | |
---|
831 | def get_volume_fraction(self, contrast, extrapolation=None): |
---|
832 | """ |
---|
833 | Compute volume fraction is deduced as follow: :: |
---|
834 | |
---|
835 | q_star = 2*(pi*contrast)**2* volume( 1- volume) |
---|
836 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
837 | we get 2 values of volume: |
---|
838 | with 1 - 4 * k >= 0 |
---|
839 | volume1 = (1- sqrt(1- 4*k))/2 |
---|
840 | volume2 = (1+ sqrt(1- 4*k))/2 |
---|
841 | |
---|
842 | q_star: the invariant value included extrapolation is applied |
---|
843 | unit 1/A^(3)*1/cm |
---|
844 | q_star = self.get_qstar() |
---|
845 | |
---|
846 | the result returned will be 0 <= volume <= 1 |
---|
847 | |
---|
848 | :param contrast: contrast value provides by the user of type float. |
---|
849 | contrast unit is 1/A^(2)= 10^(16)cm^(2) |
---|
850 | :param extrapolation: string to apply optional extrapolation |
---|
851 | |
---|
852 | :return: volume fraction |
---|
853 | |
---|
854 | :note: volume fraction must have no unit |
---|
855 | """ |
---|
856 | if contrast <= 0: |
---|
857 | raise ValueError("The contrast parameter must be greater than zero") |
---|
858 | |
---|
859 | # Make sure Q star is up to date |
---|
860 | self.get_qstar(extrapolation) |
---|
861 | |
---|
862 | if self._qstar <= 0: |
---|
863 | msg = "Invalid invariant: Invariant Q* must be greater than zero" |
---|
864 | raise RuntimeError(msg) |
---|
865 | |
---|
866 | # Compute intermediate constant |
---|
867 | k = 1.e-8 * self._qstar / (2 * (math.pi * math.fabs(float(contrast))) ** 2) |
---|
868 | # Check discriminant value |
---|
869 | discrim = 1 - 4 * k |
---|
870 | |
---|
871 | # Compute volume fraction |
---|
872 | if discrim < 0: |
---|
873 | msg = "Could not compute the volume fraction: negative discriminant" |
---|
874 | raise RuntimeError(msg) |
---|
875 | elif discrim == 0: |
---|
876 | return 1 / 2 |
---|
877 | else: |
---|
878 | volume1 = 0.5 * (1 - math.sqrt(discrim)) |
---|
879 | volume2 = 0.5 * (1 + math.sqrt(discrim)) |
---|
880 | |
---|
881 | if 0 <= volume1 and volume1 <= 1: |
---|
882 | return volume1 |
---|
883 | elif 0 <= volume2 and volume2 <= 1: |
---|
884 | return volume2 |
---|
885 | msg = "Could not compute the volume fraction: inconsistent results" |
---|
886 | raise RuntimeError(msg) |
---|
887 | |
---|
888 | def get_qstar_with_error(self, extrapolation=None): |
---|
889 | """ |
---|
890 | Compute the invariant uncertainty. |
---|
891 | This uncertainty computation depends on whether or not the data is |
---|
892 | smeared. |
---|
893 | |
---|
894 | :param extrapolation: string to apply optional extrapolation |
---|
895 | |
---|
896 | :return: invariant, the invariant uncertainty |
---|
897 | """ |
---|
898 | self.get_qstar(extrapolation) |
---|
899 | return self._qstar, self._qstar_err |
---|
900 | |
---|
901 | def get_volume_fraction_with_error(self, contrast, extrapolation=None): |
---|
902 | """ |
---|
903 | Compute uncertainty on volume value as well as the volume fraction |
---|
904 | This uncertainty is given by the following equation: :: |
---|
905 | |
---|
906 | dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star)) |
---|
907 | |
---|
908 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
909 | |
---|
910 | q_star: the invariant value including extrapolated value if existing |
---|
911 | dq_star: the invariant uncertainty |
---|
912 | dV: the volume uncertainty |
---|
913 | |
---|
914 | The uncertainty will be set to -1 if it can't be computed. |
---|
915 | |
---|
916 | :param contrast: contrast value |
---|
917 | :param extrapolation: string to apply optional extrapolation |
---|
918 | |
---|
919 | :return: V, dV = volume fraction, error on volume fraction |
---|
920 | """ |
---|
921 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
922 | |
---|
923 | # Compute error |
---|
924 | k = 1.e-8 * self._qstar / (2 * (math.pi * math.fabs(float(contrast))) ** 2) |
---|
925 | # Check value inside the sqrt function |
---|
926 | value = 1 - k * self._qstar |
---|
927 | if (value) <= 0: |
---|
928 | uncertainty = -1 |
---|
929 | # Compute uncertainty |
---|
930 | uncertainty = math.fabs((0.5 * 4 * k * \ |
---|
931 | self._qstar_err) / (2 * math.sqrt(1 - k * self._qstar))) |
---|
932 | |
---|
933 | return volume, uncertainty |
---|
934 | |
---|
935 | def get_surface_with_error(self, contrast, porod_const, extrapolation=None): |
---|
936 | """ |
---|
937 | Compute uncertainty of the surface value as well as the surface value. |
---|
938 | The uncertainty is given as follow: :: |
---|
939 | |
---|
940 | dS = porod_const *2*pi[( dV -2*V*dV)/q_star |
---|
941 | + dq_star(v-v**2) |
---|
942 | |
---|
943 | q_star: the invariant value |
---|
944 | dq_star: the invariant uncertainty |
---|
945 | V: the volume fraction value |
---|
946 | dV: the volume uncertainty |
---|
947 | |
---|
948 | :param contrast: contrast value |
---|
949 | :param porod_const: porod constant value |
---|
950 | :param extrapolation: string to apply optional extrapolation |
---|
951 | |
---|
952 | :return S, dS: the surface, with its uncertainty |
---|
953 | """ |
---|
954 | # We get the volume fraction, with error |
---|
955 | # get_volume_fraction_with_error calls get_volume_fraction |
---|
956 | # get_volume_fraction calls get_qstar |
---|
957 | # which computes Qstar and dQstar |
---|
958 | v, dv = self.get_volume_fraction_with_error(contrast, extrapolation) |
---|
959 | |
---|
960 | s = self.get_surface(contrast=contrast, porod_const=porod_const, |
---|
961 | extrapolation=extrapolation) |
---|
962 | ds = porod_const * 2 * math.pi * ((dv - 2 * v * dv) / self._qstar\ |
---|
963 | + self._qstar_err * (v - v ** 2)) |
---|
964 | |
---|
965 | return s, ds |
---|