[cb4ef58] | 1 | import copy |
---|
| 2 | |
---|
[9a5097c] | 3 | import numpy as np |
---|
[08959b8] | 4 | |
---|
| 5 | from sas.sascalc.calculator.BaseComponent import BaseComponent |
---|
[cb4ef58] | 6 | |
---|
[08959b8] | 7 | class MultiplicationModel(BaseComponent): |
---|
| 8 | r""" |
---|
| 9 | Use for P(Q)\*S(Q); function call must be in the order of P(Q) and then S(Q): |
---|
[fd62331] | 10 | The model parameters are combined from both models, P(Q) and S(Q), except 1) 'radius_effective' of S(Q) |
---|
| 11 | which will be calculated from P(Q) via calculate_ER(), |
---|
| 12 | and 2) 'scale' in P model which is synchronized w/ volfraction in S |
---|
[08959b8] | 13 | then P*S is multiplied by a new parameter, 'scale_factor'. |
---|
| 14 | The polydispersion is applicable only to P(Q), not to S(Q). |
---|
| 15 | |
---|
| 16 | .. note:: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'. |
---|
| 17 | """ |
---|
| 18 | def __init__(self, p_model, s_model ): |
---|
| 19 | BaseComponent.__init__(self) |
---|
| 20 | """ |
---|
| 21 | :param p_model: form factor, P(Q) |
---|
| 22 | :param s_model: structure factor, S(Q) |
---|
| 23 | """ |
---|
| 24 | |
---|
| 25 | ## Setting model name model description |
---|
| 26 | self.description = "" |
---|
| 27 | self.name = p_model.name +" * "+ s_model.name |
---|
| 28 | self.description= self.name + "\n" |
---|
| 29 | self.fill_description(p_model, s_model) |
---|
| 30 | |
---|
| 31 | ## Define parameters |
---|
| 32 | self.params = {} |
---|
| 33 | |
---|
| 34 | ## Parameter details [units, min, max] |
---|
| 35 | self.details = {} |
---|
[fd62331] | 36 | |
---|
| 37 | ## Define parameters to exclude from multiplication model |
---|
| 38 | self.excluded_params={'radius_effective','scale','background'} |
---|
| 39 | |
---|
| 40 | ##models |
---|
[08959b8] | 41 | self.p_model = p_model |
---|
[fd62331] | 42 | self.s_model = s_model |
---|
[08959b8] | 43 | self.magnetic_params = [] |
---|
| 44 | ## dispersion |
---|
| 45 | self._set_dispersion() |
---|
| 46 | ## Define parameters |
---|
| 47 | self._set_params() |
---|
| 48 | ## New parameter:Scaling factor |
---|
| 49 | self.params['scale_factor'] = 1 |
---|
[fd62331] | 50 | self.params['background'] = 0 |
---|
| 51 | |
---|
[08959b8] | 52 | ## Parameter details [units, min, max] |
---|
| 53 | self._set_details() |
---|
[9a5097c] | 54 | self.details['scale_factor'] = ['', 0.0, np.inf] |
---|
| 55 | self.details['background'] = ['',-np.inf,np.inf] |
---|
[fd62331] | 56 | |
---|
[08959b8] | 57 | #list of parameter that can be fitted |
---|
[fd62331] | 58 | self._set_fixed_params() |
---|
[08959b8] | 59 | ## parameters with orientation |
---|
| 60 | for item in self.p_model.orientation_params: |
---|
| 61 | self.orientation_params.append(item) |
---|
[fd62331] | 62 | for item in self.p_model.magnetic_params: |
---|
| 63 | self.magnetic_params.append(item) |
---|
[08959b8] | 64 | for item in self.s_model.orientation_params: |
---|
| 65 | if not item in self.orientation_params: |
---|
| 66 | self.orientation_params.append(item) |
---|
| 67 | # get multiplicity if model provide it, else 1. |
---|
| 68 | try: |
---|
| 69 | multiplicity = p_model.multiplicity |
---|
| 70 | except: |
---|
| 71 | multiplicity = 1 |
---|
| 72 | ## functional multiplicity of the model |
---|
[fd62331] | 73 | self.multiplicity = multiplicity |
---|
| 74 | |
---|
[08959b8] | 75 | # non-fittable parameters |
---|
[fd62331] | 76 | self.non_fittable = p_model.non_fittable |
---|
| 77 | self.multiplicity_info = [] |
---|
[08959b8] | 78 | self.fun_list = {} |
---|
| 79 | if self.non_fittable > 1: |
---|
| 80 | try: |
---|
[fd62331] | 81 | self.multiplicity_info = p_model.multiplicity_info |
---|
[08959b8] | 82 | self.fun_list = p_model.fun_list |
---|
[cb4ef58] | 83 | self.is_multiplicity_model = True |
---|
[08959b8] | 84 | except: |
---|
| 85 | pass |
---|
| 86 | else: |
---|
[cb4ef58] | 87 | self.is_multiplicity_model = False |
---|
| 88 | self.multiplicity_info = [0] |
---|
[fd62331] | 89 | |
---|
[08959b8] | 90 | def _clone(self, obj): |
---|
| 91 | """ |
---|
| 92 | Internal utility function to copy the internal data members to a |
---|
| 93 | fresh copy. |
---|
| 94 | """ |
---|
| 95 | obj.params = copy.deepcopy(self.params) |
---|
| 96 | obj.description = copy.deepcopy(self.description) |
---|
| 97 | obj.details = copy.deepcopy(self.details) |
---|
| 98 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
| 99 | obj.p_model = self.p_model.clone() |
---|
| 100 | obj.s_model = self.s_model.clone() |
---|
| 101 | #obj = copy.deepcopy(self) |
---|
| 102 | return obj |
---|
[fd62331] | 103 | |
---|
| 104 | |
---|
[08959b8] | 105 | def _set_dispersion(self): |
---|
| 106 | """ |
---|
| 107 | combine the two models' dispersions. Polydispersity should not be |
---|
| 108 | applied to s_model |
---|
| 109 | """ |
---|
[fd62331] | 110 | ##set dispersion only from p_model |
---|
[08959b8] | 111 | for name , value in self.p_model.dispersion.iteritems(): |
---|
[fd62331] | 112 | self.dispersion[name] = value |
---|
| 113 | |
---|
[08959b8] | 114 | def getProfile(self): |
---|
| 115 | """ |
---|
| 116 | Get SLD profile of p_model if exists |
---|
[fd62331] | 117 | |
---|
[08959b8] | 118 | :return: (r, beta) where r is a list of radius of the transition points\ |
---|
| 119 | beta is a list of the corresponding SLD values |
---|
| 120 | |
---|
| 121 | .. note:: This works only for func_shell num = 2 (exp function). |
---|
| 122 | """ |
---|
| 123 | try: |
---|
| 124 | x, y = self.p_model.getProfile() |
---|
| 125 | except: |
---|
| 126 | x = None |
---|
| 127 | y = None |
---|
[fd62331] | 128 | |
---|
[08959b8] | 129 | return x, y |
---|
[fd62331] | 130 | |
---|
[08959b8] | 131 | def _set_params(self): |
---|
| 132 | """ |
---|
| 133 | Concatenate the parameters of the two models to create |
---|
[fd62331] | 134 | these model parameters |
---|
[08959b8] | 135 | """ |
---|
| 136 | |
---|
| 137 | for name , value in self.p_model.params.iteritems(): |
---|
[fd62331] | 138 | if not name in self.params.keys() and name not in self.excluded_params: |
---|
[08959b8] | 139 | self.params[name] = value |
---|
[fd62331] | 140 | |
---|
[08959b8] | 141 | for name , value in self.s_model.params.iteritems(): |
---|
[fd62331] | 142 | #Remove the radius_effective from the (P*S) model parameters. |
---|
| 143 | if not name in self.params.keys() and name not in self.excluded_params: |
---|
[08959b8] | 144 | self.params[name] = value |
---|
[fd62331] | 145 | |
---|
[08959b8] | 146 | # Set "scale and effec_radius to P and S model as initializing |
---|
| 147 | # since run P*S comes from P and S separately. |
---|
[fd62331] | 148 | self._set_backgrounds() |
---|
[08959b8] | 149 | self._set_scale_factor() |
---|
[fd62331] | 150 | self._set_radius_effective() |
---|
| 151 | |
---|
[08959b8] | 152 | def _set_details(self): |
---|
| 153 | """ |
---|
| 154 | Concatenate details of the two models to create |
---|
[fd62331] | 155 | this model's details |
---|
[08959b8] | 156 | """ |
---|
| 157 | for name, detail in self.p_model.details.iteritems(): |
---|
[fd62331] | 158 | if name not in self.excluded_params: |
---|
[08959b8] | 159 | self.details[name] = detail |
---|
[fd62331] | 160 | |
---|
[08959b8] | 161 | for name , detail in self.s_model.details.iteritems(): |
---|
[fd62331] | 162 | if not name in self.details.keys() or name not in self.exluded_params: |
---|
[08959b8] | 163 | self.details[name] = detail |
---|
[fd62331] | 164 | |
---|
| 165 | def _set_backgrounds(self): |
---|
| 166 | """ |
---|
| 167 | Set component backgrounds to zero |
---|
| 168 | """ |
---|
[68669da] | 169 | if 'background' in self.p_model.params: |
---|
| 170 | self.p_model.setParam('background',0) |
---|
| 171 | if 'background' in self.s_model.params: |
---|
| 172 | self.s_model.setParam('background',0) |
---|
[fd62331] | 173 | |
---|
| 174 | |
---|
[08959b8] | 175 | def _set_scale_factor(self): |
---|
| 176 | """ |
---|
| 177 | Set scale=volfraction for P model |
---|
| 178 | """ |
---|
| 179 | value = self.params['volfraction'] |
---|
[fd62331] | 180 | if value != None: |
---|
[08959b8] | 181 | factor = self.p_model.calculate_VR() |
---|
| 182 | if factor == None or factor == NotImplemented or factor == 0.0: |
---|
| 183 | val = value |
---|
| 184 | else: |
---|
| 185 | val = value / factor |
---|
| 186 | self.p_model.setParam('scale', value) |
---|
| 187 | self.s_model.setParam('volfraction', val) |
---|
[fd62331] | 188 | |
---|
| 189 | def _set_radius_effective(self): |
---|
[08959b8] | 190 | """ |
---|
| 191 | Set effective radius to S(Q) model |
---|
| 192 | """ |
---|
[fd62331] | 193 | if not 'radius_effective' in self.s_model.params.keys(): |
---|
[08959b8] | 194 | return |
---|
| 195 | effective_radius = self.p_model.calculate_ER() |
---|
| 196 | #Reset the effective_radius of s_model just before the run |
---|
| 197 | if effective_radius != None and effective_radius != NotImplemented: |
---|
[fd62331] | 198 | self.s_model.setParam('radius_effective', effective_radius) |
---|
| 199 | |
---|
[08959b8] | 200 | def setParam(self, name, value): |
---|
[fd62331] | 201 | """ |
---|
[08959b8] | 202 | Set the value of a model parameter |
---|
[fd62331] | 203 | |
---|
[08959b8] | 204 | :param name: name of the parameter |
---|
| 205 | :param value: value of the parameter |
---|
| 206 | """ |
---|
| 207 | # set param to P*S model |
---|
| 208 | self._setParamHelper( name, value) |
---|
[fd62331] | 209 | |
---|
| 210 | ## setParam to p model |
---|
| 211 | # set 'scale' in P(Q) equal to volfraction |
---|
[08959b8] | 212 | if name == 'volfraction': |
---|
| 213 | self._set_scale_factor() |
---|
[fd62331] | 214 | elif name in self.p_model.getParamList() and name not in self.excluded_params: |
---|
[08959b8] | 215 | self.p_model.setParam( name, value) |
---|
[fd62331] | 216 | |
---|
| 217 | ## setParam to s model |
---|
| 218 | # This is a little bit abundant: Todo: find better way |
---|
| 219 | self._set_radius_effective() |
---|
| 220 | if name in self.s_model.getParamList() and name not in self.excluded_params: |
---|
[08959b8] | 221 | if name != 'volfraction': |
---|
| 222 | self.s_model.setParam( name, value) |
---|
[fd62331] | 223 | |
---|
[08959b8] | 224 | |
---|
| 225 | #self._setParamHelper( name, value) |
---|
[fd62331] | 226 | |
---|
[08959b8] | 227 | def _setParamHelper(self, name, value): |
---|
| 228 | """ |
---|
| 229 | Helper function to setparam |
---|
| 230 | """ |
---|
| 231 | # Look for dispersion parameters |
---|
| 232 | toks = name.split('.') |
---|
| 233 | if len(toks)==2: |
---|
| 234 | for item in self.dispersion.keys(): |
---|
| 235 | if item.lower()==toks[0].lower(): |
---|
| 236 | for par in self.dispersion[item]: |
---|
| 237 | if par.lower() == toks[1].lower(): |
---|
| 238 | self.dispersion[item][par] = value |
---|
| 239 | return |
---|
| 240 | else: |
---|
| 241 | # Look for standard parameter |
---|
| 242 | for item in self.params.keys(): |
---|
| 243 | if item.lower() == name.lower(): |
---|
| 244 | self.params[item] = value |
---|
| 245 | return |
---|
[fd62331] | 246 | |
---|
[08959b8] | 247 | raise ValueError, "Model does not contain parameter %s" % name |
---|
[fd62331] | 248 | |
---|
| 249 | |
---|
[08959b8] | 250 | def _set_fixed_params(self): |
---|
| 251 | """ |
---|
| 252 | Fill the self.fixed list with the p_model fixed list |
---|
| 253 | """ |
---|
| 254 | for item in self.p_model.fixed: |
---|
| 255 | self.fixed.append(item) |
---|
| 256 | |
---|
| 257 | self.fixed.sort() |
---|
[fd62331] | 258 | |
---|
| 259 | |
---|
[08959b8] | 260 | def run(self, x = 0.0): |
---|
[fd62331] | 261 | """ |
---|
[08959b8] | 262 | Evaluate the model |
---|
[fd62331] | 263 | |
---|
[08959b8] | 264 | :param x: input q-value (float or [float, float] as [r, theta]) |
---|
| 265 | :return: (scattering function value) |
---|
| 266 | """ |
---|
| 267 | # set effective radius and scaling factor before run |
---|
[fd62331] | 268 | self._set_radius_effective() |
---|
[08959b8] | 269 | self._set_scale_factor() |
---|
| 270 | return self.params['scale_factor'] * self.p_model.run(x) * \ |
---|
[fd62331] | 271 | self.s_model.run(x) + self.params['background'] |
---|
[08959b8] | 272 | |
---|
| 273 | def runXY(self, x = 0.0): |
---|
[fd62331] | 274 | """ |
---|
[08959b8] | 275 | Evaluate the model |
---|
[fd62331] | 276 | |
---|
[08959b8] | 277 | :param x: input q-value (float or [float, float] as [qx, qy]) |
---|
| 278 | :return: scattering function value |
---|
[fd62331] | 279 | """ |
---|
[08959b8] | 280 | # set effective radius and scaling factor before run |
---|
[fd62331] | 281 | self._set_radius_effective() |
---|
[08959b8] | 282 | self._set_scale_factor() |
---|
| 283 | out = self.params['scale_factor'] * self.p_model.runXY(x) * \ |
---|
[fd62331] | 284 | self.s_model.runXY(x) + self.params['background'] |
---|
[08959b8] | 285 | return out |
---|
[fd62331] | 286 | |
---|
| 287 | ## Now (May27,10) directly uses the model eval function |
---|
[08959b8] | 288 | ## instead of the for-loop in Base Component. |
---|
| 289 | def evalDistribution(self, x = []): |
---|
[fd62331] | 290 | """ |
---|
[08959b8] | 291 | Evaluate the model in cartesian coordinates |
---|
[fd62331] | 292 | |
---|
[08959b8] | 293 | :param x: input q[], or [qx[], qy[]] |
---|
| 294 | :return: scattering function P(q[]) |
---|
| 295 | """ |
---|
| 296 | # set effective radius and scaling factor before run |
---|
[fd62331] | 297 | self._set_radius_effective() |
---|
[08959b8] | 298 | self._set_scale_factor() |
---|
| 299 | out = self.params['scale_factor'] * self.p_model.evalDistribution(x) * \ |
---|
[fd62331] | 300 | self.s_model.evalDistribution(x) + self.params['background'] |
---|
[08959b8] | 301 | return out |
---|
| 302 | |
---|
| 303 | def set_dispersion(self, parameter, dispersion): |
---|
| 304 | """ |
---|
| 305 | Set the dispersion object for a model parameter |
---|
[fd62331] | 306 | |
---|
[08959b8] | 307 | :param parameter: name of the parameter [string] |
---|
| 308 | :dispersion: dispersion object of type DispersionModel |
---|
| 309 | """ |
---|
| 310 | value = None |
---|
| 311 | try: |
---|
| 312 | if parameter in self.p_model.dispersion.keys(): |
---|
| 313 | value = self.p_model.set_dispersion(parameter, dispersion) |
---|
| 314 | self._set_dispersion() |
---|
| 315 | return value |
---|
| 316 | except: |
---|
[fd62331] | 317 | raise |
---|
[08959b8] | 318 | |
---|
| 319 | def fill_description(self, p_model, s_model): |
---|
| 320 | """ |
---|
| 321 | Fill the description for P(Q)*S(Q) |
---|
| 322 | """ |
---|
| 323 | description = "" |
---|
[fd62331] | 324 | description += "Note:1) The radius_effective (effective radius) of %s \n"%\ |
---|
[08959b8] | 325 | (s_model.name) |
---|
| 326 | description += " is automatically calculated " |
---|
| 327 | description += "from size parameters (radius...).\n" |
---|
| 328 | description += " 2) For non-spherical shape, " |
---|
| 329 | description += "this approximation is valid \n" |
---|
| 330 | description += " only for limited systems. " |
---|
| 331 | description += "Thus, use it at your own risk.\n" |
---|
| 332 | description += "See %s description and %s description \n"% \ |
---|
| 333 | ( p_model.name, s_model.name ) |
---|
| 334 | description += " for details of individual models." |
---|
| 335 | self.description += description |
---|