1 | |
---|
2 | import copy |
---|
3 | #import logging |
---|
4 | import sys |
---|
5 | import math |
---|
6 | import numpy as np |
---|
7 | |
---|
8 | from sas.sascalc.dataloader.data_info import Data1D |
---|
9 | from sas.sascalc.dataloader.data_info import Data2D |
---|
10 | _SMALLVALUE = 1.0e-10 |
---|
11 | |
---|
12 | class FitHandler(object): |
---|
13 | """ |
---|
14 | Abstract interface for fit thread handler. |
---|
15 | |
---|
16 | The methods in this class are called by the optimizer as the fit |
---|
17 | progresses. |
---|
18 | |
---|
19 | Note that it is up to the optimizer to call the fit handler correctly, |
---|
20 | reporting all status changes and maintaining the 'done' flag. |
---|
21 | """ |
---|
22 | done = False |
---|
23 | """True when the fit job is complete""" |
---|
24 | result = None |
---|
25 | """The current best result of the fit""" |
---|
26 | |
---|
27 | def improvement(self): |
---|
28 | """ |
---|
29 | Called when a result is observed which is better than previous |
---|
30 | results from the fit. |
---|
31 | |
---|
32 | result is a FitResult object, with parameters, #calls and fitness. |
---|
33 | """ |
---|
34 | def error(self, msg): |
---|
35 | """ |
---|
36 | Model had an error; print traceback |
---|
37 | """ |
---|
38 | def progress(self, current, expected): |
---|
39 | """ |
---|
40 | Called each cycle of the fit, reporting the current and the |
---|
41 | expected amount of work. The meaning of these values is |
---|
42 | optimizer dependent, but they can be converted into a percent |
---|
43 | complete using (100*current)//expected. |
---|
44 | |
---|
45 | Progress is updated each iteration of the fit, whatever that |
---|
46 | means for the particular optimization algorithm. It is called |
---|
47 | after any calls to improvement for the iteration so that the |
---|
48 | update handler can control I/O bandwidth by suppressing |
---|
49 | intermediate improvements until the fit is complete. |
---|
50 | """ |
---|
51 | def finalize(self): |
---|
52 | """ |
---|
53 | Fit is complete; best results are reported |
---|
54 | """ |
---|
55 | def abort(self): |
---|
56 | """ |
---|
57 | Fit was aborted. |
---|
58 | """ |
---|
59 | |
---|
60 | # TODO: not sure how these are used, but they are needed for running the fit |
---|
61 | def update_fit(self, last=False): pass |
---|
62 | def set_result(self, result=None): self.result = result |
---|
63 | |
---|
64 | class Model: |
---|
65 | """ |
---|
66 | Fit wrapper for SAS models. |
---|
67 | """ |
---|
68 | def __init__(self, sas_model, sas_data=None, **kw): |
---|
69 | """ |
---|
70 | :param sas_model: the sas model to wrap for fitting |
---|
71 | |
---|
72 | """ |
---|
73 | self.model = sas_model |
---|
74 | self.name = sas_model.name |
---|
75 | self.data = sas_data |
---|
76 | |
---|
77 | def get_params(self, fitparams): |
---|
78 | """ |
---|
79 | return a list of value of paramter to fit |
---|
80 | |
---|
81 | :param fitparams: list of paramaters name to fit |
---|
82 | |
---|
83 | """ |
---|
84 | return [self.model.getParam(k) for k in fitparams] |
---|
85 | |
---|
86 | def set_params(self, paramlist, params): |
---|
87 | """ |
---|
88 | Set value for parameters to fit |
---|
89 | |
---|
90 | :param params: list of value for parameters to fit |
---|
91 | |
---|
92 | """ |
---|
93 | for k,v in zip(paramlist, params): |
---|
94 | self.model.setParam(k,v) |
---|
95 | |
---|
96 | def set(self, **kw): |
---|
97 | self.set_params(*zip(*kw.items())) |
---|
98 | |
---|
99 | def eval(self, x): |
---|
100 | """ |
---|
101 | Override eval method of model. |
---|
102 | |
---|
103 | :param x: the x value used to compute a function |
---|
104 | """ |
---|
105 | try: |
---|
106 | return self.model.evalDistribution(x) |
---|
107 | except: |
---|
108 | raise |
---|
109 | |
---|
110 | def eval_derivs(self, x, pars=[]): |
---|
111 | """ |
---|
112 | Evaluate the model and derivatives wrt pars at x. |
---|
113 | |
---|
114 | pars is a list of the names of the parameters for which derivatives |
---|
115 | are desired. |
---|
116 | |
---|
117 | This method needs to be specialized in the model to evaluate the |
---|
118 | model function. Alternatively, the model can implement is own |
---|
119 | version of residuals which calculates the residuals directly |
---|
120 | instead of calling eval. |
---|
121 | """ |
---|
122 | raise NotImplementedError('no derivatives available') |
---|
123 | |
---|
124 | def __call__(self, x): |
---|
125 | return self.eval(x) |
---|
126 | |
---|
127 | class FitData1D(Data1D): |
---|
128 | """ |
---|
129 | Wrapper class for SAS data |
---|
130 | FitData1D inherits from DataLoader.data_info.Data1D. Implements |
---|
131 | a way to get residuals from data. |
---|
132 | """ |
---|
133 | def __init__(self, x, y, dx=None, dy=None, smearer=None, data=None, lam=None, dlam=None): |
---|
134 | """ |
---|
135 | :param smearer: is an object of class QSmearer or SlitSmearer |
---|
136 | that will smear the theory data (slit smearing or resolution |
---|
137 | smearing) when set. |
---|
138 | |
---|
139 | The proper way to set the smearing object would be to |
---|
140 | do the following: :: |
---|
141 | |
---|
142 | from sas.sascalc.data_util.qsmearing import smear_selection |
---|
143 | smearer = smear_selection(some_data) |
---|
144 | fitdata1d = FitData1D( x= [1,3,..,], |
---|
145 | y= [3,4,..,8], |
---|
146 | dx=None, |
---|
147 | dy=[1,2...], smearer= smearer) |
---|
148 | |
---|
149 | :Note: that some_data _HAS_ to be of |
---|
150 | class DataLoader.data_info.Data1D |
---|
151 | Setting it back to None will turn smearing off. |
---|
152 | |
---|
153 | """ |
---|
154 | Data1D.__init__(self, x=x, y=y, dx=dx, dy=dy, lam=lam, dlam=dlam) |
---|
155 | self.num_points = len(x) |
---|
156 | self.sas_data = data |
---|
157 | self.smearer = smearer |
---|
158 | self._first_unsmeared_bin = None |
---|
159 | self._last_unsmeared_bin = None |
---|
160 | # Check error bar; if no error bar found, set it constant(=1) |
---|
161 | # TODO: Should provide an option for users to set it like percent, |
---|
162 | # constant, or dy data |
---|
163 | if dy is None or dy == [] or dy.all() == 0: |
---|
164 | self.dy = np.ones(len(y)) |
---|
165 | else: |
---|
166 | self.dy = np.asarray(dy).copy() |
---|
167 | |
---|
168 | ## Min Q-value |
---|
169 | #Skip the Q=0 point, especially when y(q=0)=None at x[0]. |
---|
170 | if min(self.x) == 0.0 and self.x[0] == 0 and\ |
---|
171 | not np.isfinite(self.y[0]): |
---|
172 | self.qmin = min(self.x[self.x != 0]) |
---|
173 | else: |
---|
174 | self.qmin = min(self.x) |
---|
175 | ## Max Q-value |
---|
176 | self.qmax = max(self.x) |
---|
177 | |
---|
178 | # Range used for input to smearing |
---|
179 | self._qmin_unsmeared = self.qmin |
---|
180 | self._qmax_unsmeared = self.qmax |
---|
181 | # Identify the bin range for the unsmeared and smeared spaces |
---|
182 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
183 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
184 | & (self.x <= self._qmax_unsmeared) |
---|
185 | |
---|
186 | def set_fit_range(self, qmin=None, qmax=None): |
---|
187 | """ to set the fit range""" |
---|
188 | # Skip Q=0 point, (especially for y(q=0)=None at x[0]). |
---|
189 | # ToDo: Find better way to do it. |
---|
190 | if qmin == 0.0 and not np.isfinite(self.y[qmin]): |
---|
191 | self.qmin = min(self.x[self.x != 0]) |
---|
192 | elif qmin is not None: |
---|
193 | self.qmin = qmin |
---|
194 | if qmax is not None: |
---|
195 | self.qmax = qmax |
---|
196 | # Determine the range needed in unsmeared-Q to cover |
---|
197 | # the smeared Q range |
---|
198 | self._qmin_unsmeared = self.qmin |
---|
199 | self._qmax_unsmeared = self.qmax |
---|
200 | |
---|
201 | self._first_unsmeared_bin = 0 |
---|
202 | self._last_unsmeared_bin = len(self.x) - 1 |
---|
203 | |
---|
204 | if self.smearer is not None: |
---|
205 | self._first_unsmeared_bin, self._last_unsmeared_bin = \ |
---|
206 | self.smearer.get_bin_range(self.qmin, self.qmax) |
---|
207 | self._qmin_unsmeared = self.x[self._first_unsmeared_bin] |
---|
208 | self._qmax_unsmeared = self.x[self._last_unsmeared_bin] |
---|
209 | |
---|
210 | # Identify the bin range for the unsmeared and smeared spaces |
---|
211 | self.idx = (self.x >= self.qmin) & (self.x <= self.qmax) |
---|
212 | ## zero error can not participate for fitting |
---|
213 | self.idx = self.idx & (self.dy != 0) |
---|
214 | self.idx_unsmeared = (self.x >= self._qmin_unsmeared) \ |
---|
215 | & (self.x <= self._qmax_unsmeared) |
---|
216 | |
---|
217 | def get_fit_range(self): |
---|
218 | """ |
---|
219 | Return the range of data.x to fit |
---|
220 | """ |
---|
221 | return self.qmin, self.qmax |
---|
222 | |
---|
223 | def size(self): |
---|
224 | """ |
---|
225 | Number of measurement points in data set after masking, etc. |
---|
226 | """ |
---|
227 | return len(self.x) |
---|
228 | |
---|
229 | def residuals(self, fn): |
---|
230 | """ |
---|
231 | Compute residuals. |
---|
232 | |
---|
233 | If self.smearer has been set, use if to smear |
---|
234 | the data before computing chi squared. |
---|
235 | |
---|
236 | :param fn: function that return model value |
---|
237 | |
---|
238 | :return: residuals |
---|
239 | """ |
---|
240 | # Compute theory data f(x) |
---|
241 | fx = np.zeros(len(self.x)) |
---|
242 | fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared]) |
---|
243 | |
---|
244 | ## Smear theory data |
---|
245 | if self.smearer is not None: |
---|
246 | fx = self.smearer(fx, self._first_unsmeared_bin, |
---|
247 | self._last_unsmeared_bin) |
---|
248 | ## Sanity check |
---|
249 | if np.size(self.dy) != np.size(fx): |
---|
250 | msg = "FitData1D: invalid error array " |
---|
251 | msg += "%d <> %d" % (np.shape(self.dy), np.size(fx)) |
---|
252 | raise RuntimeError, msg |
---|
253 | return (self.y[self.idx] - fx[self.idx]) / self.dy[self.idx], fx[self.idx] |
---|
254 | |
---|
255 | def residuals_deriv(self, model, pars=[]): |
---|
256 | """ |
---|
257 | :return: residuals derivatives . |
---|
258 | |
---|
259 | :note: in this case just return empty array |
---|
260 | """ |
---|
261 | return [] |
---|
262 | |
---|
263 | |
---|
264 | class FitData2D(Data2D): |
---|
265 | """ |
---|
266 | Wrapper class for SAS data |
---|
267 | """ |
---|
268 | def __init__(self, sas_data2d, data=None, err_data=None): |
---|
269 | Data2D.__init__(self, data=data, err_data=err_data) |
---|
270 | # Data can be initialized with a sas plottable or with vectors. |
---|
271 | self.res_err_image = [] |
---|
272 | self.num_points = 0 # will be set by set_data |
---|
273 | self.idx = [] |
---|
274 | self.qmin = None |
---|
275 | self.qmax = None |
---|
276 | self.smearer = None |
---|
277 | self.radius = 0 |
---|
278 | self.res_err_data = [] |
---|
279 | self.sas_data = sas_data2d |
---|
280 | self.set_data(sas_data2d) |
---|
281 | |
---|
282 | def set_data(self, sas_data2d, qmin=None, qmax=None): |
---|
283 | """ |
---|
284 | Determine the correct qx_data and qy_data within range to fit |
---|
285 | """ |
---|
286 | self.data = sas_data2d.data |
---|
287 | self.err_data = sas_data2d.err_data |
---|
288 | self.qx_data = sas_data2d.qx_data |
---|
289 | self.qy_data = sas_data2d.qy_data |
---|
290 | self.mask = sas_data2d.mask |
---|
291 | |
---|
292 | x_max = max(math.fabs(sas_data2d.xmin), math.fabs(sas_data2d.xmax)) |
---|
293 | y_max = max(math.fabs(sas_data2d.ymin), math.fabs(sas_data2d.ymax)) |
---|
294 | |
---|
295 | ## fitting range |
---|
296 | if qmin is None: |
---|
297 | self.qmin = 1e-16 |
---|
298 | if qmax is None: |
---|
299 | self.qmax = math.sqrt(x_max * x_max + y_max * y_max) |
---|
300 | ## new error image for fitting purpose |
---|
301 | if self.err_data is None or self.err_data == []: |
---|
302 | self.res_err_data = np.ones(len(self.data)) |
---|
303 | else: |
---|
304 | self.res_err_data = copy.deepcopy(self.err_data) |
---|
305 | #self.res_err_data[self.res_err_data==0]=1 |
---|
306 | |
---|
307 | self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
308 | |
---|
309 | # Note: mask = True: for MASK while mask = False for NOT to mask |
---|
310 | self.idx = ((self.qmin <= self.radius) &\ |
---|
311 | (self.radius <= self.qmax)) |
---|
312 | self.idx = (self.idx) & (self.mask) |
---|
313 | self.idx = (self.idx) & (np.isfinite(self.data)) |
---|
314 | self.num_points = np.sum(self.idx) |
---|
315 | |
---|
316 | def set_smearer(self, smearer): |
---|
317 | """ |
---|
318 | Set smearer |
---|
319 | """ |
---|
320 | if smearer is None: |
---|
321 | return |
---|
322 | self.smearer = smearer |
---|
323 | self.smearer.set_index(self.idx) |
---|
324 | self.smearer.get_data() |
---|
325 | |
---|
326 | def set_fit_range(self, qmin=None, qmax=None): |
---|
327 | """ |
---|
328 | To set the fit range |
---|
329 | """ |
---|
330 | if qmin == 0.0: |
---|
331 | self.qmin = 1e-16 |
---|
332 | elif qmin is not None: |
---|
333 | self.qmin = qmin |
---|
334 | if qmax is not None: |
---|
335 | self.qmax = qmax |
---|
336 | self.radius = np.sqrt(self.qx_data**2 + self.qy_data**2) |
---|
337 | self.idx = ((self.qmin <= self.radius) &\ |
---|
338 | (self.radius <= self.qmax)) |
---|
339 | self.idx = (self.idx) & (self.mask) |
---|
340 | self.idx = (self.idx) & (np.isfinite(self.data)) |
---|
341 | self.idx = (self.idx) & (self.res_err_data != 0) |
---|
342 | |
---|
343 | def get_fit_range(self): |
---|
344 | """ |
---|
345 | return the range of data.x to fit |
---|
346 | """ |
---|
347 | return self.qmin, self.qmax |
---|
348 | |
---|
349 | def size(self): |
---|
350 | """ |
---|
351 | Number of measurement points in data set after masking, etc. |
---|
352 | """ |
---|
353 | return np.sum(self.idx) |
---|
354 | |
---|
355 | def residuals(self, fn): |
---|
356 | """ |
---|
357 | return the residuals |
---|
358 | """ |
---|
359 | if self.smearer is not None: |
---|
360 | fn.set_index(self.idx) |
---|
361 | gn = fn.get_value() |
---|
362 | else: |
---|
363 | gn = fn([self.qx_data[self.idx], |
---|
364 | self.qy_data[self.idx]]) |
---|
365 | # use only the data point within ROI range |
---|
366 | res = (self.data[self.idx] - gn) / self.res_err_data[self.idx] |
---|
367 | |
---|
368 | return res, gn |
---|
369 | |
---|
370 | def residuals_deriv(self, model, pars=[]): |
---|
371 | """ |
---|
372 | :return: residuals derivatives . |
---|
373 | |
---|
374 | :note: in this case just return empty array |
---|
375 | |
---|
376 | """ |
---|
377 | return [] |
---|
378 | |
---|
379 | |
---|
380 | class FitAbort(Exception): |
---|
381 | """ |
---|
382 | Exception raise to stop the fit |
---|
383 | """ |
---|
384 | #pass |
---|
385 | #print"Creating fit abort Exception" |
---|
386 | |
---|
387 | |
---|
388 | |
---|
389 | class FitEngine: |
---|
390 | def __init__(self): |
---|
391 | """ |
---|
392 | Base class for the fit engine |
---|
393 | """ |
---|
394 | #Dictionnary of fitArrange element (fit problems) |
---|
395 | self.fit_arrange_dict = {} |
---|
396 | self.fitter_id = None |
---|
397 | |
---|
398 | def set_model(self, model, id, pars=[], constraints=[], data=None): |
---|
399 | """ |
---|
400 | set a model on a given in the fit engine. |
---|
401 | |
---|
402 | :param model: sas.models type |
---|
403 | :param id: is the key of the fitArrange dictionary where model is saved as a value |
---|
404 | :param pars: the list of parameters to fit |
---|
405 | :param constraints: list of |
---|
406 | tuple (name of parameter, value of parameters) |
---|
407 | the value of parameter must be a string to constraint 2 different |
---|
408 | parameters. |
---|
409 | Example: |
---|
410 | we want to fit 2 model M1 and M2 both have parameters A and B. |
---|
411 | constraints can be ``constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,]`` |
---|
412 | |
---|
413 | |
---|
414 | :note: pars must contains only name of existing model's parameters |
---|
415 | |
---|
416 | """ |
---|
417 | if not pars: |
---|
418 | raise ValueError("no fitting parameters") |
---|
419 | |
---|
420 | if model is None: |
---|
421 | raise ValueError("no model to fit") |
---|
422 | |
---|
423 | if not issubclass(model.__class__, Model): |
---|
424 | model = Model(model, data) |
---|
425 | |
---|
426 | sasmodel = model.model |
---|
427 | available_parameters = sasmodel.getParamList() |
---|
428 | for p in pars: |
---|
429 | if p not in available_parameters: |
---|
430 | raise ValueError("parameter %s not available in model %s; use one of [%s] instead" |
---|
431 | %(p, sasmodel.name, ", ".join(available_parameters))) |
---|
432 | |
---|
433 | if id not in self.fit_arrange_dict: |
---|
434 | self.fit_arrange_dict[id] = FitArrange() |
---|
435 | |
---|
436 | self.fit_arrange_dict[id].set_model(model) |
---|
437 | self.fit_arrange_dict[id].pars = pars |
---|
438 | self.fit_arrange_dict[id].vals = [sasmodel.getParam(name) for name in pars] |
---|
439 | self.fit_arrange_dict[id].constraints = constraints |
---|
440 | |
---|
441 | def set_data(self, data, id, smearer=None, qmin=None, qmax=None): |
---|
442 | """ |
---|
443 | Receives plottable, creates a list of data to fit,set data |
---|
444 | in a FitArrange object and adds that object in a dictionary |
---|
445 | with key id. |
---|
446 | |
---|
447 | :param data: data added |
---|
448 | :param id: unique key corresponding to a fitArrange object with data |
---|
449 | """ |
---|
450 | if data.__class__.__name__ == 'Data2D': |
---|
451 | fitdata = FitData2D(sas_data2d=data, data=data.data, |
---|
452 | err_data=data.err_data) |
---|
453 | else: |
---|
454 | fitdata = FitData1D(x=data.x, y=data.y, |
---|
455 | dx=data.dx, dy=data.dy, smearer=smearer) |
---|
456 | fitdata.sas_data = data |
---|
457 | |
---|
458 | fitdata.set_fit_range(qmin=qmin, qmax=qmax) |
---|
459 | #A fitArrange is already created but contains model only at id |
---|
460 | if id in self.fit_arrange_dict: |
---|
461 | self.fit_arrange_dict[id].add_data(fitdata) |
---|
462 | else: |
---|
463 | #no fitArrange object has been create with this id |
---|
464 | fitproblem = FitArrange() |
---|
465 | fitproblem.add_data(fitdata) |
---|
466 | self.fit_arrange_dict[id] = fitproblem |
---|
467 | |
---|
468 | def get_model(self, id): |
---|
469 | """ |
---|
470 | :param id: id is key in the dictionary containing the model to return |
---|
471 | |
---|
472 | :return: a model at this id or None if no FitArrange element was |
---|
473 | created with this id |
---|
474 | """ |
---|
475 | if id in self.fit_arrange_dict: |
---|
476 | return self.fit_arrange_dict[id].get_model() |
---|
477 | else: |
---|
478 | return None |
---|
479 | |
---|
480 | def remove_fit_problem(self, id): |
---|
481 | """remove fitarrange in id""" |
---|
482 | if id in self.fit_arrange_dict: |
---|
483 | del self.fit_arrange_dict[id] |
---|
484 | |
---|
485 | def select_problem_for_fit(self, id, value): |
---|
486 | """ |
---|
487 | select a couple of model and data at the id position in dictionary |
---|
488 | and set in self.selected value to value |
---|
489 | |
---|
490 | :param value: the value to allow fitting. |
---|
491 | can only have the value one or zero |
---|
492 | """ |
---|
493 | if id in self.fit_arrange_dict: |
---|
494 | self.fit_arrange_dict[id].set_to_fit(value) |
---|
495 | |
---|
496 | def get_problem_to_fit(self, id): |
---|
497 | """ |
---|
498 | return the self.selected value of the fit problem of id |
---|
499 | |
---|
500 | :param id: the id of the problem |
---|
501 | """ |
---|
502 | if id in self.fit_arrange_dict: |
---|
503 | self.fit_arrange_dict[id].get_to_fit() |
---|
504 | |
---|
505 | |
---|
506 | class FitArrange: |
---|
507 | def __init__(self): |
---|
508 | """ |
---|
509 | Class FitArrange contains a set of data for a given model |
---|
510 | to perform the Fit.FitArrange must contain exactly one model |
---|
511 | and at least one data for the fit to be performed. |
---|
512 | |
---|
513 | model: the model selected by the user |
---|
514 | Ldata: a list of data what the user wants to fit |
---|
515 | |
---|
516 | """ |
---|
517 | self.model = None |
---|
518 | self.data_list = [] |
---|
519 | self.pars = [] |
---|
520 | self.vals = [] |
---|
521 | self.selected = 0 |
---|
522 | |
---|
523 | def set_model(self, model): |
---|
524 | """ |
---|
525 | set_model save a copy of the model |
---|
526 | |
---|
527 | :param model: the model being set |
---|
528 | """ |
---|
529 | self.model = model |
---|
530 | |
---|
531 | def add_data(self, data): |
---|
532 | """ |
---|
533 | add_data fill a self.data_list with data to fit |
---|
534 | |
---|
535 | :param data: Data to add in the list |
---|
536 | """ |
---|
537 | if not data in self.data_list: |
---|
538 | self.data_list.append(data) |
---|
539 | |
---|
540 | def get_model(self): |
---|
541 | """ |
---|
542 | :return: saved model |
---|
543 | """ |
---|
544 | return self.model |
---|
545 | |
---|
546 | def get_data(self): |
---|
547 | """ |
---|
548 | :return: list of data data_list |
---|
549 | """ |
---|
550 | return self.data_list[0] |
---|
551 | |
---|
552 | def remove_data(self, data): |
---|
553 | """ |
---|
554 | Remove one element from the list |
---|
555 | |
---|
556 | :param data: Data to remove from data_list |
---|
557 | """ |
---|
558 | if data in self.data_list: |
---|
559 | self.data_list.remove(data) |
---|
560 | |
---|
561 | def set_to_fit(self, value=0): |
---|
562 | """ |
---|
563 | set self.selected to 0 or 1 for other values raise an exception |
---|
564 | |
---|
565 | :param value: integer between 0 or 1 |
---|
566 | """ |
---|
567 | self.selected = value |
---|
568 | |
---|
569 | def get_to_fit(self): |
---|
570 | """ |
---|
571 | return self.selected value |
---|
572 | """ |
---|
573 | return self.selected |
---|
574 | |
---|
575 | class FResult(object): |
---|
576 | """ |
---|
577 | Storing fit result |
---|
578 | """ |
---|
579 | def __init__(self, model=None, param_list=None, data=None): |
---|
580 | self.calls = None |
---|
581 | self.fitness = None |
---|
582 | self.chisqr = None |
---|
583 | self.pvec = [] |
---|
584 | self.cov = [] |
---|
585 | self.info = None |
---|
586 | self.mesg = None |
---|
587 | self.success = None |
---|
588 | self.stderr = None |
---|
589 | self.residuals = [] |
---|
590 | self.index = [] |
---|
591 | self.model = model |
---|
592 | self.data = data |
---|
593 | self.theory = [] |
---|
594 | self.param_list = param_list |
---|
595 | self.iterations = 0 |
---|
596 | self.inputs = [] |
---|
597 | self.fitter_id = None |
---|
598 | if self.model is not None and self.data is not None: |
---|
599 | self.inputs = [(self.model, self.data)] |
---|
600 | |
---|
601 | def set_model(self, model): |
---|
602 | """ |
---|
603 | """ |
---|
604 | self.model = model |
---|
605 | |
---|
606 | def set_fitness(self, fitness): |
---|
607 | """ |
---|
608 | """ |
---|
609 | self.fitness = fitness |
---|
610 | |
---|
611 | def __str__(self): |
---|
612 | """ |
---|
613 | """ |
---|
614 | if self.pvec is None and self.model is None and self.param_list is None: |
---|
615 | return "No results" |
---|
616 | |
---|
617 | sasmodel = self.model.model |
---|
618 | pars = enumerate(sasmodel.getParamList()) |
---|
619 | msg1 = "[Iteration #: %s ]" % self.iterations |
---|
620 | msg3 = "=== goodness of fit: %s ===" % (str(self.fitness)) |
---|
621 | msg2 = ["P%-3d %s......|.....%s" % (i, v, sasmodel.getParam(v)) |
---|
622 | for i,v in pars if v in self.param_list] |
---|
623 | msg = [msg1, msg3] + msg2 |
---|
624 | return "\n".join(msg) |
---|
625 | |
---|
626 | def print_summary(self): |
---|
627 | """ |
---|
628 | """ |
---|
629 | print str(self) |
---|