1 | """ |
---|
2 | NXcanSAS 1/2D data reader for writing HDF5 formatted NXcanSAS files. |
---|
3 | """ |
---|
4 | |
---|
5 | import h5py |
---|
6 | import numpy as np |
---|
7 | import re |
---|
8 | import os |
---|
9 | |
---|
10 | from sas.sascalc.dataloader.readers.cansas_reader_HDF5 import Reader as Cansas2Reader |
---|
11 | from sas.sascalc.dataloader.data_info import Data1D, Data2D |
---|
12 | |
---|
13 | class NXcanSASWriter(Cansas2Reader): |
---|
14 | """ |
---|
15 | A class for writing in NXcanSAS data files. Any number of data sets may be |
---|
16 | written to the file. Currently 1D and 2D SAS data sets are supported |
---|
17 | |
---|
18 | NXcanSAS spec: http://download.nexusformat.org/sphinx/classes/contributed_definitions/NXcanSAS.html |
---|
19 | |
---|
20 | :Dependencies: |
---|
21 | The NXcanSAS writer requires h5py => v2.5.0 or later. |
---|
22 | """ |
---|
23 | |
---|
24 | def write(self, dataset, filename): |
---|
25 | """ |
---|
26 | Write an array of Data1d or Data2D objects to an NXcanSAS file, as |
---|
27 | one SASEntry with multiple SASData elements. The metadata of the first |
---|
28 | elememt in the array will be written as the SASentry metadata |
---|
29 | (detector, instrument, sample, etc). |
---|
30 | |
---|
31 | :param dataset: A list of Data1D or Data2D objects to write |
---|
32 | :param filename: Where to write the NXcanSAS file |
---|
33 | """ |
---|
34 | |
---|
35 | def _h5_string(string): |
---|
36 | """ |
---|
37 | Convert a string to a numpy string in a numpy array. This way it is |
---|
38 | written to the HDF5 file as a fixed length ASCII string and is |
---|
39 | compatible with the Reader read() method. |
---|
40 | """ |
---|
41 | if isinstance(string, np.ndarray): |
---|
42 | return string |
---|
43 | elif not isinstance(string, str): |
---|
44 | string = str(string) |
---|
45 | |
---|
46 | return np.array([np.string_(string)]) |
---|
47 | |
---|
48 | def _write_h5_string(entry, value, key): |
---|
49 | entry[key] = _h5_string(value) |
---|
50 | |
---|
51 | def _h5_float(x): |
---|
52 | if not (isinstance(x, list)): |
---|
53 | x = [x] |
---|
54 | return np.array(x, dtype=np.float32) |
---|
55 | |
---|
56 | def _write_h5_float(entry, value, key): |
---|
57 | entry.create_dataset(key, data=_h5_float(value)) |
---|
58 | |
---|
59 | def _write_h5_vector(entry, vector, names=['x_position', 'y_position'], |
---|
60 | units=None, write_fn=_write_h5_string): |
---|
61 | """ |
---|
62 | Write a vector to an h5 entry |
---|
63 | |
---|
64 | :param entry: The H5Py entry to write to |
---|
65 | :param vector: The Vector to write |
---|
66 | :param names: What to call the x,y and z components of the vector |
---|
67 | when writing to the H5Py entry |
---|
68 | :param units: The units of the vector (optional) |
---|
69 | :param write_fn: A function to convert the value to the required |
---|
70 | format and write it to the H5Py entry, of the form |
---|
71 | f(entry, value, name) (optional) |
---|
72 | """ |
---|
73 | if len(names) < 2: |
---|
74 | raise ValueError("Length of names must be >= 2.") |
---|
75 | |
---|
76 | if vector.x is not None: |
---|
77 | write_fn(entry, vector.x, names[0]) |
---|
78 | if units is not None: |
---|
79 | entry[names[0]].attrs['units'] = units |
---|
80 | if vector.y is not None: |
---|
81 | write_fn(entry, vector.y, names[1]) |
---|
82 | if units is not None: |
---|
83 | entry[names[1]].attrs['units'] = units |
---|
84 | if len(names) == 3 and vector.z is not None: |
---|
85 | write_fn(entry, vector.z, names[2]) |
---|
86 | if units is not None: |
---|
87 | entry[names[2]].attrs['units'] = units |
---|
88 | |
---|
89 | valid_data = all([issubclass(d.__class__, (Data1D, Data2D)) for d in dataset]) |
---|
90 | if not valid_data: |
---|
91 | raise ValueError("All entries of dataset must be Data1D or Data2D objects") |
---|
92 | |
---|
93 | # Get run name and number from first Data object |
---|
94 | data_info = dataset[0] |
---|
95 | run_number = '' |
---|
96 | run_name = '' |
---|
97 | if len(data_info.run) > 0: |
---|
98 | run_number = data_info.run[0] |
---|
99 | if len(data_info.run_name) > 0: |
---|
100 | run_name = data_info.run_name[run_number] |
---|
101 | |
---|
102 | f = h5py.File(filename, 'w') |
---|
103 | sasentry = f.create_group('sasentry01') |
---|
104 | sasentry['definition'] = _h5_string('NXcanSAS') |
---|
105 | sasentry['run'] = _h5_string(run_number) |
---|
106 | sasentry['run'].attrs['name'] = run_name |
---|
107 | sasentry['title'] = _h5_string(data_info.title) |
---|
108 | sasentry.attrs['canSAS_class'] = 'SASentry' |
---|
109 | sasentry.attrs['version'] = '1.0' |
---|
110 | |
---|
111 | i = 1 |
---|
112 | |
---|
113 | for data_obj in dataset: |
---|
114 | data_entry = sasentry.create_group("sasdata{0:0=2d}".format(i)) |
---|
115 | data_entry.attrs['canSAS_class'] = 'SASdata' |
---|
116 | if isinstance(data_obj, Data1D): |
---|
117 | self._write_1d_data(data_obj, data_entry) |
---|
118 | elif isinstance(data_obj, Data2D): |
---|
119 | self._write_2d_data(data_obj, data_entry) |
---|
120 | i += 1 |
---|
121 | |
---|
122 | data_info = dataset[0] |
---|
123 | # Sample metadata |
---|
124 | sample_entry = sasentry.create_group('sassample') |
---|
125 | sample_entry.attrs['canSAS_class'] = 'SASsample' |
---|
126 | sample_entry['ID'] = _h5_string(data_info.sample.name) |
---|
127 | sample_attrs = ['thickness', 'temperature', 'transmission'] |
---|
128 | for key in sample_attrs: |
---|
129 | if getattr(data_info.sample, key) is not None: |
---|
130 | sample_entry.create_dataset(key, |
---|
131 | data=_h5_float(getattr(data_info.sample, key))) |
---|
132 | _write_h5_vector(sample_entry, data_info.sample.position) |
---|
133 | # NXcanSAS doesn't save information about pitch, only roll |
---|
134 | # and yaw. The _write_h5_vector method writes vector.y, but we |
---|
135 | # need to write vector.z for yaw |
---|
136 | data_info.sample.orientation.y = data_info.sample.orientation.z |
---|
137 | _write_h5_vector(sample_entry, data_info.sample.orientation, |
---|
138 | names=['polar_angle', 'azimuthal_angle']) |
---|
139 | if data_info.sample.details is not None\ |
---|
140 | and data_info.sample.details != []: |
---|
141 | details = None |
---|
142 | if len(data_info.sample.details) > 1: |
---|
143 | details = [np.string_(d) for d in data_info.sample.details] |
---|
144 | details = np.array(details) |
---|
145 | elif data_info.sample.details != []: |
---|
146 | details = _h5_string(data_info.sample.details[0]) |
---|
147 | if details is not None: |
---|
148 | sample_entry.create_dataset('details', data=details) |
---|
149 | |
---|
150 | # Instrumment metadata |
---|
151 | instrument_entry = sasentry.create_group('sasinstrument') |
---|
152 | instrument_entry.attrs['canSAS_class'] = 'SASinstrument' |
---|
153 | instrument_entry['name'] = _h5_string(data_info.instrument) |
---|
154 | |
---|
155 | # Source metadata |
---|
156 | source_entry = instrument_entry.create_group('sassource') |
---|
157 | source_entry.attrs['canSAS_class'] = 'SASsource' |
---|
158 | if data_info.source.radiation is None: |
---|
159 | source_entry['radiation'] = _h5_string('neutron') |
---|
160 | else: |
---|
161 | source_entry['radiation'] = _h5_string(data_info.source.radiation) |
---|
162 | if data_info.source.beam_shape is not None: |
---|
163 | source_entry['beam_shape'] = _h5_string(data_info.source.beam_shape) |
---|
164 | wavelength_keys = { 'wavelength': 'incident_wavelength', |
---|
165 | 'wavelength_min':'wavelength_min', |
---|
166 | 'wavelength_max': 'wavelength_max', |
---|
167 | 'wavelength_spread': 'incident_wavelength_spread' } |
---|
168 | for sasname, nxname in wavelength_keys.items(): |
---|
169 | value = getattr(data_info.source, sasname) |
---|
170 | units = getattr(data_info.source, sasname + '_unit') |
---|
171 | if value is not None: |
---|
172 | source_entry[nxname] = _h5_float(value) |
---|
173 | source_entry[nxname].attrs['units'] = units |
---|
174 | _write_h5_vector(source_entry, data_info.source.beam_size, |
---|
175 | names=['beam_size_x', 'beam_size_y'], |
---|
176 | units=data_info.source.beam_size_unit, write_fn=_write_h5_float) |
---|
177 | |
---|
178 | # Collimation metadata |
---|
179 | if len(data_info.collimation) > 0: |
---|
180 | i = 1 |
---|
181 | for coll_info in data_info.collimation: |
---|
182 | collimation_entry = instrument_entry.create_group( |
---|
183 | 'sascollimation{0:0=2d}'.format(i)) |
---|
184 | collimation_entry.attrs['canSAS_class'] = 'SAScollimation' |
---|
185 | if coll_info.length is not None: |
---|
186 | _write_h5_float(collimation_entry, coll_info.length, 'SDD') |
---|
187 | collimation_entry['SDD'].attrs['units'] = coll_info.length_unit |
---|
188 | if coll_info.name is not None: |
---|
189 | collimation_entry['name'] = _h5_string(coll_info.name) |
---|
190 | else: |
---|
191 | # Create a blank one - at least 1 set of collimation metadata |
---|
192 | # required by format |
---|
193 | collimation_entry = instrument_entry.create_group('sascollimation01') |
---|
194 | |
---|
195 | # Detector metadata |
---|
196 | if len(data_info.detector) > 0: |
---|
197 | i = 1 |
---|
198 | for det_info in data_info.detector: |
---|
199 | detector_entry = instrument_entry.create_group( |
---|
200 | 'sasdetector{0:0=2d}'.format(i)) |
---|
201 | detector_entry.attrs['canSAS_class'] = 'SASdetector' |
---|
202 | if det_info.distance is not None: |
---|
203 | _write_h5_float(detector_entry, det_info.distance, 'SDD') |
---|
204 | detector_entry['SDD'].attrs['units'] = det_info.distance_unit |
---|
205 | if det_info.name is not None: |
---|
206 | detector_entry['name'] = _h5_string(det_info.name) |
---|
207 | else: |
---|
208 | detector_entry['name'] = _h5_string('') |
---|
209 | if det_info.slit_length is not None: |
---|
210 | _write_h5_float(detector_entry, det_info.slit_length, 'slit_length') |
---|
211 | detector_entry['slit_length'].attrs['units'] = det_info.slit_length_unit |
---|
212 | _write_h5_vector(detector_entry, det_info.offset) |
---|
213 | # NXcanSAS doesn't save information about pitch, only roll |
---|
214 | # and yaw. The _write_h5_vector method writes vector.y, but we |
---|
215 | # need to write vector.z for yaw |
---|
216 | det_info.orientation.y = det_info.orientation.z |
---|
217 | _write_h5_vector(detector_entry, det_info.orientation, |
---|
218 | names=['polar_angle', 'azimuthal_angle']) |
---|
219 | _write_h5_vector(detector_entry, det_info.beam_center, |
---|
220 | names=['beam_center_x', 'beam_center_y'], |
---|
221 | write_fn=_write_h5_float, units=det_info.beam_center_unit) |
---|
222 | _write_h5_vector(detector_entry, det_info.pixel_size, |
---|
223 | names=['x_pixel_size', 'y_pixel_size'], |
---|
224 | write_fn=_write_h5_float, units=det_info.pixel_size_unit) |
---|
225 | |
---|
226 | i += 1 |
---|
227 | else: |
---|
228 | # Create a blank one - at least 1 detector required by format |
---|
229 | detector_entry = instrument_entry.create_group('sasdetector01') |
---|
230 | detector_entry.attrs['canSAS_class'] = 'SASdetector' |
---|
231 | detector_entry.attrs['name'] = '' |
---|
232 | |
---|
233 | # Process meta data |
---|
234 | if len(data_info.process) > 0 and not data_info.process[0].is_empty(): |
---|
235 | i = 1 |
---|
236 | for process in data_info.process: |
---|
237 | process_entry = sasentry.create_group( |
---|
238 | 'sasprocess{0:0=2d}'.format(i)) |
---|
239 | process_entry.attrs['canSAS_class'] = 'SASprocess' |
---|
240 | if process.name: |
---|
241 | name = _h5_string(process.name) |
---|
242 | process_entry.create_dataset('name', data=name) |
---|
243 | if process.date: |
---|
244 | date = _h5_string(process.date) |
---|
245 | process_entry.create_dataset('date', data=date) |
---|
246 | if process.description: |
---|
247 | desc = _h5_string(process.description) |
---|
248 | process_entry.create_dataset('description', data=desc) |
---|
249 | j = 1 |
---|
250 | for term in process.term: |
---|
251 | if term: |
---|
252 | h5_term = _h5_string(term) |
---|
253 | process_entry.create_dataset('term{0:0=2d}'.format(j), |
---|
254 | data=h5_term) |
---|
255 | j += 1 |
---|
256 | j = 1 |
---|
257 | for note in process.notes: |
---|
258 | if note: |
---|
259 | h5_note = _h5_string(note) |
---|
260 | process_entry.create_dataset('note{0:0=2d}'.format(j), |
---|
261 | data=h5_note) |
---|
262 | j += 1 |
---|
263 | i += 1 |
---|
264 | |
---|
265 | # Transmission Spectrum |
---|
266 | if len(data_info.trans_spectrum) > 0: |
---|
267 | i = 1 |
---|
268 | for trans in data_info.trans_spectrum: |
---|
269 | trans_entry = sasentry.create_group( |
---|
270 | 'sastransmission_spectrum{0:0=2d}'.format(i)) |
---|
271 | trans_entry.attrs['canSAS_class'] = 'SAStransmission_spectrum' |
---|
272 | trans_entry.attrs['signal'] = 'T' |
---|
273 | trans_entry.attrs['T_axes'] = 'T' |
---|
274 | trans_entry.attrs['name'] = trans.name |
---|
275 | if trans.timestamp is not '': |
---|
276 | trans_entry.attrs['timestamp'] = trans.timestamp |
---|
277 | transmission = trans_entry.create_dataset( |
---|
278 | 'T', data=trans.transmission) |
---|
279 | transmission.attrs['unertainties'] = 'Tdev' |
---|
280 | trans_entry.create_dataset('Tdev', |
---|
281 | data = trans.transmission_deviation) |
---|
282 | trans_entry.create_dataset('lambda', data=trans.wavelength) |
---|
283 | |
---|
284 | note_entry = sasentry.create_group('sasnote'.format(i)) |
---|
285 | note_entry.attrs['canSAS_class'] = 'SASnote' |
---|
286 | notes = None |
---|
287 | if len(data_info.notes) > 1: |
---|
288 | notes = [np.string_(n) for n in data_info.notes] |
---|
289 | notes = np.array(notes) |
---|
290 | elif data_info.notes != []: |
---|
291 | notes = _h5_string(data_info.notes[0]) |
---|
292 | if notes is not None: |
---|
293 | note_entry.create_dataset('SASnote', data=notes) |
---|
294 | |
---|
295 | f.close() |
---|
296 | |
---|
297 | def _write_1d_data(self, data_obj, data_entry): |
---|
298 | """ |
---|
299 | Writes the contents of a Data1D object to a SASdata h5py Group |
---|
300 | |
---|
301 | :param data_obj: A Data1D object to write to the file |
---|
302 | :param data_entry: A h5py Group object representing the SASdata |
---|
303 | """ |
---|
304 | data_entry.attrs['signal'] = 'I' |
---|
305 | data_entry.attrs['I_axes'] = 'Q' |
---|
306 | data_entry.attrs['Q_indices'] = [0] |
---|
307 | q_entry = data_entry.create_dataset('Q', data=data_obj.x) |
---|
308 | q_entry.attrs['units'] = data_obj.x_unit |
---|
309 | i_entry = data_entry.create_dataset('I', data=data_obj.y) |
---|
310 | i_entry.attrs['units'] = data_obj.y_unit |
---|
311 | if data_obj.dy is not None: |
---|
312 | i_entry.attrs['uncertainties'] = 'Idev' |
---|
313 | i_dev_entry = data_entry.create_dataset('Idev', data=data_obj.dy) |
---|
314 | i_dev_entry.attrs['units'] = data_obj.y_unit |
---|
315 | if data_obj.dx is not None: |
---|
316 | q_entry.attrs['resolutions'] = 'dQ' |
---|
317 | dq_entry = data_entry.create_dataset('dQ', data=data_obj.dx) |
---|
318 | dq_entry.attrs['units'] = data_obj.x_unit |
---|
319 | elif data_obj.dxl is not None: |
---|
320 | q_entry.attrs['resolutions'] = ['dQl','dQw'] |
---|
321 | dql_entry = data_entry.create_dataset('dQl', data=data_obj.dxl) |
---|
322 | dql_entry.attrs['units'] = data_obj.x_unit |
---|
323 | dqw_entry = data_entry.create_dataset('dQw', data=data_obj.dxw) |
---|
324 | dqw_entry.attrs['units'] = data_obj.x_unit |
---|
325 | |
---|
326 | def _write_2d_data(self, data, data_entry): |
---|
327 | """ |
---|
328 | Writes the contents of a Data2D object to a SASdata h5py Group |
---|
329 | |
---|
330 | :param data: A Data2D object to write to the file |
---|
331 | :param data_entry: A h5py Group object representing the SASdata |
---|
332 | """ |
---|
333 | data_entry.attrs['signal'] = 'I' |
---|
334 | data_entry.attrs['I_axes'] = 'Qx,Qy' |
---|
335 | data_entry.attrs['Q_indices'] = [0,1] |
---|
336 | |
---|
337 | (n_rows, n_cols) = (len(data.y_bins), len(data.x_bins)) |
---|
338 | |
---|
339 | if n_rows == 0 and n_cols == 0: |
---|
340 | # Calculate rows and columns, assuming detector is square |
---|
341 | # Same logic as used in PlotPanel.py _get_bins |
---|
342 | n_cols = int(np.floor(np.sqrt(len(data.qy_data)))) |
---|
343 | n_rows = int(np.floor(len(data.qy_data) / n_cols)) |
---|
344 | |
---|
345 | if n_rows * n_cols != len(data.qy_data): |
---|
346 | raise ValueError("Unable to calculate dimensions of 2D data") |
---|
347 | |
---|
348 | intensity = np.reshape(data.data, (n_rows, n_cols)) |
---|
349 | qx = np.reshape(data.qx_data, (n_rows, n_cols)) |
---|
350 | qy = np.reshape(data.qy_data, (n_rows, n_cols)) |
---|
351 | |
---|
352 | i_entry = data_entry.create_dataset('I', data=intensity) |
---|
353 | i_entry.attrs['units'] = data.I_unit |
---|
354 | qx_entry = data_entry.create_dataset('Qx', data=qx) |
---|
355 | qx_entry.attrs['units'] = data.Q_unit |
---|
356 | qy_entry = data_entry.create_dataset('Qy', data=qy) |
---|
357 | qy_entry.attrs['units'] = data.Q_unit |
---|
358 | if data.err_data is not None and not all(data.err_data == [None]): |
---|
359 | d_i = np.reshape(data.err_data, (n_rows, n_cols)) |
---|
360 | i_entry.attrs['uncertainties'] = 'Idev' |
---|
361 | i_dev_entry = data_entry.create_dataset('Idev', data=d_i) |
---|
362 | i_dev_entry.attrs['units'] = data.I_unit |
---|
363 | if data.dqx_data is not None and not all(data.dqx_data == [None]): |
---|
364 | qx_entry.attrs['resolutions'] = 'dQx' |
---|
365 | dqx_entry = data_entry.create_dataset('dQx', data=data.dqx_data) |
---|
366 | dqx_entry.attrs['units'] = data.Q_unit |
---|
367 | if data.dqy_data is not None and not all(data.dqy_data == [None]): |
---|
368 | qy_entry.attrs['resolutions'] = 'dQy' |
---|
369 | dqy_entry = data_entry.create_dataset('dQy', data=data.dqy_data) |
---|
370 | dqy_entry.attrs['units'] = data.Q_unit |
---|