1 | """ |
---|
2 | DANSE/SANS file reader |
---|
3 | """ |
---|
4 | ############################################################################ |
---|
5 | #This software was developed by the University of Tennessee as part of the |
---|
6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
7 | #project funded by the US National Science Foundation. |
---|
8 | #If you use DANSE applications to do scientific research that leads to |
---|
9 | #publication, we ask that you acknowledge the use of the software with the |
---|
10 | #following sentence: |
---|
11 | #This work benefited from DANSE software developed under NSF award DMR-0520547. |
---|
12 | #copyright 2008, University of Tennessee |
---|
13 | ############################################################################# |
---|
14 | import math |
---|
15 | import os |
---|
16 | import numpy as np |
---|
17 | import logging |
---|
18 | from sas.sascalc.dataloader.data_info import plottable_2D, DataInfo, Detector |
---|
19 | from sas.sascalc.dataloader.manipulations import reader2D_converter |
---|
20 | from sas.sascalc.dataloader.file_reader_base_class import FileReader |
---|
21 | from sas.sascalc.dataloader.loader_exceptions import FileContentsException, DataReaderException |
---|
22 | |
---|
23 | logger = logging.getLogger(__name__) |
---|
24 | |
---|
25 | # Look for unit converter |
---|
26 | has_converter = True |
---|
27 | try: |
---|
28 | from sas.sascalc.data_util.nxsunit import Converter |
---|
29 | except: |
---|
30 | has_converter = False |
---|
31 | |
---|
32 | |
---|
33 | class Reader(FileReader): |
---|
34 | """ |
---|
35 | Example data manipulation |
---|
36 | """ |
---|
37 | ## File type |
---|
38 | type_name = "DANSE" |
---|
39 | ## Wildcards |
---|
40 | type = ["DANSE files (*.sans)|*.sans"] |
---|
41 | ## Extension |
---|
42 | ext = ['.sans', '.SANS'] |
---|
43 | |
---|
44 | def get_file_contents(self): |
---|
45 | self.current_datainfo = DataInfo() |
---|
46 | self.current_dataset = plottable_2D() |
---|
47 | self.output = [] |
---|
48 | |
---|
49 | loaded_correctly = True |
---|
50 | error_message = "" |
---|
51 | |
---|
52 | # defaults |
---|
53 | # wavelength in Angstrom |
---|
54 | wavelength = 10.0 |
---|
55 | # Distance in meter |
---|
56 | distance = 11.0 |
---|
57 | # Pixel number of center in x |
---|
58 | center_x = 65 |
---|
59 | # Pixel number of center in y |
---|
60 | center_y = 65 |
---|
61 | # Pixel size [mm] |
---|
62 | pixel = 5.0 |
---|
63 | # Size in x, in pixels |
---|
64 | size_x = 128 |
---|
65 | # Size in y, in pixels |
---|
66 | size_y = 128 |
---|
67 | # Format version |
---|
68 | fversion = 1.0 |
---|
69 | |
---|
70 | self.current_datainfo.filename = os.path.basename(self.f_open.name) |
---|
71 | detector = Detector() |
---|
72 | self.current_datainfo.detector.append(detector) |
---|
73 | |
---|
74 | self.current_dataset.data = np.zeros([size_x, size_y]) |
---|
75 | self.current_dataset.err_data = np.zeros([size_x, size_y]) |
---|
76 | |
---|
77 | read_on = True |
---|
78 | data_start_line = 1 |
---|
79 | while read_on: |
---|
80 | line = self.f_open.readline() |
---|
81 | data_start_line += 1 |
---|
82 | if line.find("DATA:") >= 0: |
---|
83 | read_on = False |
---|
84 | break |
---|
85 | toks = line.split(':') |
---|
86 | try: |
---|
87 | if toks[0] == "FORMATVERSION": |
---|
88 | fversion = float(toks[1]) |
---|
89 | elif toks[0] == "WAVELENGTH": |
---|
90 | wavelength = float(toks[1]) |
---|
91 | elif toks[0] == "DISTANCE": |
---|
92 | distance = float(toks[1]) |
---|
93 | elif toks[0] == "CENTER_X": |
---|
94 | center_x = float(toks[1]) |
---|
95 | elif toks[0] == "CENTER_Y": |
---|
96 | center_y = float(toks[1]) |
---|
97 | elif toks[0] == "PIXELSIZE": |
---|
98 | pixel = float(toks[1]) |
---|
99 | elif toks[0] == "SIZE_X": |
---|
100 | size_x = int(toks[1]) |
---|
101 | elif toks[0] == "SIZE_Y": |
---|
102 | size_y = int(toks[1]) |
---|
103 | except ValueError as e: |
---|
104 | error_message += "Unable to parse {}. Default value used.\n".format(toks[0]) |
---|
105 | loaded_correctly = False |
---|
106 | |
---|
107 | # Read the data |
---|
108 | data = [] |
---|
109 | error = [] |
---|
110 | if not fversion >= 1.0: |
---|
111 | msg = "danse_reader can't read this file {}".format(self.f_open.name) |
---|
112 | raise FileContentsException(msg) |
---|
113 | |
---|
114 | for line_num, data_str in enumerate(self.f_open.readlines()): |
---|
115 | toks = data_str.split() |
---|
116 | try: |
---|
117 | val = float(toks[0]) |
---|
118 | err = float(toks[1]) |
---|
119 | data.append(val) |
---|
120 | error.append(err) |
---|
121 | except ValueError as exc: |
---|
122 | msg = "Unable to parse line {}: {}".format(line_num + data_start_line, data_str.strip()) |
---|
123 | raise FileContentsException(msg) |
---|
124 | |
---|
125 | num_pts = size_x * size_y |
---|
126 | if len(data) < num_pts: |
---|
127 | msg = "Not enough data points provided. Expected {} but got {}".format( |
---|
128 | size_x * size_y, len(data)) |
---|
129 | raise FileContentsException(msg) |
---|
130 | elif len(data) > num_pts: |
---|
131 | error_message += ("Too many data points provided. Expected {0} but" |
---|
132 | " got {1}. Only the first {0} will be used.\n").format(num_pts, len(data)) |
---|
133 | loaded_correctly = False |
---|
134 | data = data[:num_pts] |
---|
135 | error = error[:num_pts] |
---|
136 | |
---|
137 | # Qx and Qy vectors |
---|
138 | theta = pixel / distance / 100.0 |
---|
139 | i_x = np.arange(size_x) |
---|
140 | theta = (i_x - center_x + 1) * pixel / distance / 100.0 |
---|
141 | x_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
142 | xmin = x_vals.min() |
---|
143 | xmax = x_vals.max() |
---|
144 | |
---|
145 | i_y = np.arange(size_y) |
---|
146 | theta = (i_y - center_y + 1) * pixel / distance / 100.0 |
---|
147 | y_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
148 | ymin = y_vals.min() |
---|
149 | ymax = y_vals.max() |
---|
150 | |
---|
151 | self.current_dataset.data = np.array(data, dtype=np.float64).reshape((size_y, size_x)) |
---|
152 | if fversion > 1.0: |
---|
153 | self.current_dataset.err_data = np.array(error, dtype=np.float64).reshape((size_y, size_x)) |
---|
154 | |
---|
155 | # Store all data |
---|
156 | # Store wavelength |
---|
157 | if has_converter == True and self.current_datainfo.source.wavelength_unit != 'A': |
---|
158 | conv = Converter('A') |
---|
159 | wavelength = conv(wavelength, |
---|
160 | units=self.current_datainfo.source.wavelength_unit) |
---|
161 | self.current_datainfo.source.wavelength = wavelength |
---|
162 | |
---|
163 | # Store distance |
---|
164 | if has_converter == True and detector.distance_unit != 'm': |
---|
165 | conv = Converter('m') |
---|
166 | distance = conv(distance, units=detector.distance_unit) |
---|
167 | detector.distance = distance |
---|
168 | |
---|
169 | # Store pixel size |
---|
170 | if has_converter == True and detector.pixel_size_unit != 'mm': |
---|
171 | conv = Converter('mm') |
---|
172 | pixel = conv(pixel, units=detector.pixel_size_unit) |
---|
173 | detector.pixel_size.x = pixel |
---|
174 | detector.pixel_size.y = pixel |
---|
175 | |
---|
176 | # Store beam center in distance units |
---|
177 | detector.beam_center.x = center_x * pixel |
---|
178 | detector.beam_center.y = center_y * pixel |
---|
179 | |
---|
180 | |
---|
181 | self.current_dataset.xaxis("\\rm{Q_{x}}", 'A^{-1}') |
---|
182 | self.current_dataset.yaxis("\\rm{Q_{y}}", 'A^{-1}') |
---|
183 | self.current_dataset.zaxis("\\rm{Intensity}", "cm^{-1}") |
---|
184 | |
---|
185 | self.current_dataset.x_bins = x_vals |
---|
186 | self.current_dataset.y_bins = y_vals |
---|
187 | |
---|
188 | # Reshape data |
---|
189 | x_vals = np.tile(x_vals, (size_y, 1)).flatten() |
---|
190 | y_vals = np.tile(y_vals, (size_x, 1)).T.flatten() |
---|
191 | if (np.all(self.current_dataset.err_data == None) |
---|
192 | or np.any(self.current_dataset.err_data <= 0)): |
---|
193 | new_err_data = np.sqrt(np.abs(self.current_dataset.data)) |
---|
194 | else: |
---|
195 | new_err_data = self.current_dataset.err_data.flatten() |
---|
196 | |
---|
197 | self.current_dataset.err_data = new_err_data |
---|
198 | self.current_dataset.qx_data = x_vals |
---|
199 | self.current_dataset.qy_data = y_vals |
---|
200 | self.current_dataset.q_data = np.sqrt(x_vals**2 + y_vals**2) |
---|
201 | self.current_dataset.mask = np.ones(len(x_vals), dtype=bool) |
---|
202 | |
---|
203 | # Store loading process information |
---|
204 | self.current_datainfo.meta_data['loader'] = self.type_name |
---|
205 | |
---|
206 | self.send_to_output() |
---|
207 | |
---|
208 | if not loaded_correctly: |
---|
209 | raise DataReaderException(error_message) |
---|