[959eb01] | 1 | """ |
---|
| 2 | DANSE/SANS file reader |
---|
| 3 | """ |
---|
| 4 | ############################################################################ |
---|
| 5 | #This software was developed by the University of Tennessee as part of the |
---|
| 6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
[713a047] | 7 | #project funded by the US National Science Foundation. |
---|
[959eb01] | 8 | #If you use DANSE applications to do scientific research that leads to |
---|
| 9 | #publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | #following sentence: |
---|
| 11 | #This work benefited from DANSE software developed under NSF award DMR-0520547. |
---|
| 12 | #copyright 2008, University of Tennessee |
---|
| 13 | ############################################################################# |
---|
| 14 | import math |
---|
| 15 | import os |
---|
| 16 | import logging |
---|
[574adc7] | 17 | |
---|
| 18 | import numpy as np |
---|
| 19 | |
---|
| 20 | from ..data_info import plottable_2D, DataInfo, Detector |
---|
| 21 | from ..manipulations import reader2D_converter |
---|
| 22 | from ..file_reader_base_class import FileReader |
---|
| 23 | from ..loader_exceptions import FileContentsException, DataReaderException |
---|
[959eb01] | 24 | |
---|
| 25 | logger = logging.getLogger(__name__) |
---|
| 26 | |
---|
| 27 | # Look for unit converter |
---|
| 28 | has_converter = True |
---|
| 29 | try: |
---|
| 30 | from sas.sascalc.data_util.nxsunit import Converter |
---|
| 31 | except: |
---|
| 32 | has_converter = False |
---|
| 33 | |
---|
| 34 | |
---|
[713a047] | 35 | class Reader(FileReader): |
---|
[959eb01] | 36 | """ |
---|
| 37 | Example data manipulation |
---|
| 38 | """ |
---|
| 39 | ## File type |
---|
| 40 | type_name = "DANSE" |
---|
| 41 | ## Wildcards |
---|
| 42 | type = ["DANSE files (*.sans)|*.sans"] |
---|
| 43 | ## Extension |
---|
| 44 | ext = ['.sans', '.SANS'] |
---|
[713a047] | 45 | |
---|
| 46 | def get_file_contents(self): |
---|
| 47 | self.current_datainfo = DataInfo() |
---|
| 48 | self.current_dataset = plottable_2D() |
---|
| 49 | self.output = [] |
---|
| 50 | |
---|
| 51 | loaded_correctly = True |
---|
| 52 | error_message = "" |
---|
| 53 | |
---|
| 54 | # defaults |
---|
| 55 | # wavelength in Angstrom |
---|
| 56 | wavelength = 10.0 |
---|
| 57 | # Distance in meter |
---|
| 58 | distance = 11.0 |
---|
| 59 | # Pixel number of center in x |
---|
| 60 | center_x = 65 |
---|
| 61 | # Pixel number of center in y |
---|
| 62 | center_y = 65 |
---|
| 63 | # Pixel size [mm] |
---|
| 64 | pixel = 5.0 |
---|
| 65 | # Size in x, in pixels |
---|
| 66 | size_x = 128 |
---|
| 67 | # Size in y, in pixels |
---|
| 68 | size_y = 128 |
---|
| 69 | # Format version |
---|
| 70 | fversion = 1.0 |
---|
| 71 | |
---|
| 72 | self.current_datainfo.filename = os.path.basename(self.f_open.name) |
---|
| 73 | detector = Detector() |
---|
| 74 | self.current_datainfo.detector.append(detector) |
---|
| 75 | |
---|
| 76 | self.current_dataset.data = np.zeros([size_x, size_y]) |
---|
| 77 | self.current_dataset.err_data = np.zeros([size_x, size_y]) |
---|
| 78 | |
---|
| 79 | read_on = True |
---|
| 80 | data_start_line = 1 |
---|
| 81 | while read_on: |
---|
[af3e9f5] | 82 | line = self.nextline() |
---|
[713a047] | 83 | data_start_line += 1 |
---|
| 84 | if line.find("DATA:") >= 0: |
---|
| 85 | read_on = False |
---|
| 86 | break |
---|
| 87 | toks = line.split(':') |
---|
[959eb01] | 88 | try: |
---|
| 89 | if toks[0] == "FORMATVERSION": |
---|
| 90 | fversion = float(toks[1]) |
---|
[713a047] | 91 | elif toks[0] == "WAVELENGTH": |
---|
[959eb01] | 92 | wavelength = float(toks[1]) |
---|
| 93 | elif toks[0] == "DISTANCE": |
---|
| 94 | distance = float(toks[1]) |
---|
| 95 | elif toks[0] == "CENTER_X": |
---|
| 96 | center_x = float(toks[1]) |
---|
| 97 | elif toks[0] == "CENTER_Y": |
---|
| 98 | center_y = float(toks[1]) |
---|
| 99 | elif toks[0] == "PIXELSIZE": |
---|
| 100 | pixel = float(toks[1]) |
---|
| 101 | elif toks[0] == "SIZE_X": |
---|
| 102 | size_x = int(toks[1]) |
---|
| 103 | elif toks[0] == "SIZE_Y": |
---|
| 104 | size_y = int(toks[1]) |
---|
[713a047] | 105 | except ValueError as e: |
---|
| 106 | error_message += "Unable to parse {}. Default value used.\n".format(toks[0]) |
---|
| 107 | loaded_correctly = False |
---|
| 108 | |
---|
| 109 | # Read the data |
---|
| 110 | data = [] |
---|
| 111 | error = [] |
---|
| 112 | if not fversion >= 1.0: |
---|
| 113 | msg = "danse_reader can't read this file {}".format(self.f_open.name) |
---|
| 114 | raise FileContentsException(msg) |
---|
| 115 | |
---|
[af3e9f5] | 116 | for line_num, data_str in enumerate(self.nextlines()): |
---|
[713a047] | 117 | toks = data_str.split() |
---|
| 118 | try: |
---|
| 119 | val = float(toks[0]) |
---|
| 120 | err = float(toks[1]) |
---|
| 121 | data.append(val) |
---|
| 122 | error.append(err) |
---|
| 123 | except ValueError as exc: |
---|
| 124 | msg = "Unable to parse line {}: {}".format(line_num + data_start_line, data_str.strip()) |
---|
| 125 | raise FileContentsException(msg) |
---|
| 126 | |
---|
| 127 | num_pts = size_x * size_y |
---|
| 128 | if len(data) < num_pts: |
---|
| 129 | msg = "Not enough data points provided. Expected {} but got {}".format( |
---|
| 130 | size_x * size_y, len(data)) |
---|
| 131 | raise FileContentsException(msg) |
---|
| 132 | elif len(data) > num_pts: |
---|
| 133 | error_message += ("Too many data points provided. Expected {0} but" |
---|
| 134 | " got {1}. Only the first {0} will be used.\n").format(num_pts, len(data)) |
---|
| 135 | loaded_correctly = False |
---|
| 136 | data = data[:num_pts] |
---|
| 137 | error = error[:num_pts] |
---|
| 138 | |
---|
| 139 | # Qx and Qy vectors |
---|
| 140 | theta = pixel / distance / 100.0 |
---|
| 141 | i_x = np.arange(size_x) |
---|
| 142 | theta = (i_x - center_x + 1) * pixel / distance / 100.0 |
---|
| 143 | x_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
| 144 | xmin = x_vals.min() |
---|
| 145 | xmax = x_vals.max() |
---|
| 146 | |
---|
| 147 | i_y = np.arange(size_y) |
---|
| 148 | theta = (i_y - center_y + 1) * pixel / distance / 100.0 |
---|
| 149 | y_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
| 150 | ymin = y_vals.min() |
---|
| 151 | ymax = y_vals.max() |
---|
| 152 | |
---|
| 153 | self.current_dataset.data = np.array(data, dtype=np.float64).reshape((size_y, size_x)) |
---|
| 154 | if fversion > 1.0: |
---|
| 155 | self.current_dataset.err_data = np.array(error, dtype=np.float64).reshape((size_y, size_x)) |
---|
| 156 | |
---|
| 157 | # Store all data |
---|
| 158 | # Store wavelength |
---|
[2469df7] | 159 | if has_converter and self.current_datainfo.source.wavelength_unit != 'A': |
---|
[713a047] | 160 | conv = Converter('A') |
---|
| 161 | wavelength = conv(wavelength, |
---|
| 162 | units=self.current_datainfo.source.wavelength_unit) |
---|
| 163 | self.current_datainfo.source.wavelength = wavelength |
---|
| 164 | |
---|
| 165 | # Store distance |
---|
[2469df7] | 166 | if has_converter and detector.distance_unit != 'm': |
---|
[713a047] | 167 | conv = Converter('m') |
---|
| 168 | distance = conv(distance, units=detector.distance_unit) |
---|
| 169 | detector.distance = distance |
---|
| 170 | |
---|
| 171 | # Store pixel size |
---|
[2469df7] | 172 | if has_converter and detector.pixel_size_unit != 'mm': |
---|
[713a047] | 173 | conv = Converter('mm') |
---|
| 174 | pixel = conv(pixel, units=detector.pixel_size_unit) |
---|
| 175 | detector.pixel_size.x = pixel |
---|
| 176 | detector.pixel_size.y = pixel |
---|
| 177 | |
---|
| 178 | # Store beam center in distance units |
---|
| 179 | detector.beam_center.x = center_x * pixel |
---|
| 180 | detector.beam_center.y = center_y * pixel |
---|
| 181 | |
---|
[fc51d06] | 182 | self.current_dataset = self.set_default_2d_units(self.current_dataset) |
---|
[713a047] | 183 | self.current_dataset.x_bins = x_vals |
---|
| 184 | self.current_dataset.y_bins = y_vals |
---|
| 185 | |
---|
| 186 | # Reshape data |
---|
| 187 | x_vals = np.tile(x_vals, (size_y, 1)).flatten() |
---|
| 188 | y_vals = np.tile(y_vals, (size_x, 1)).T.flatten() |
---|
[a78a02f] | 189 | if (np.all(self.current_dataset.err_data == None) |
---|
| 190 | or np.any(self.current_dataset.err_data <= 0)): |
---|
[713a047] | 191 | new_err_data = np.sqrt(np.abs(self.current_dataset.data)) |
---|
| 192 | else: |
---|
| 193 | new_err_data = self.current_dataset.err_data.flatten() |
---|
| 194 | |
---|
| 195 | self.current_dataset.err_data = new_err_data |
---|
| 196 | self.current_dataset.qx_data = x_vals |
---|
| 197 | self.current_dataset.qy_data = y_vals |
---|
| 198 | self.current_dataset.q_data = np.sqrt(x_vals**2 + y_vals**2) |
---|
| 199 | self.current_dataset.mask = np.ones(len(x_vals), dtype=bool) |
---|
| 200 | |
---|
| 201 | # Store loading process information |
---|
| 202 | self.current_datainfo.meta_data['loader'] = self.type_name |
---|
| 203 | |
---|
| 204 | self.send_to_output() |
---|
[959eb01] | 205 | |
---|
[713a047] | 206 | if not loaded_correctly: |
---|
| 207 | raise DataReaderException(error_message) |
---|