[959eb01] | 1 | """ |
---|
| 2 | DANSE/SANS file reader |
---|
| 3 | """ |
---|
| 4 | ############################################################################ |
---|
| 5 | #This software was developed by the University of Tennessee as part of the |
---|
| 6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
[713a047] | 7 | #project funded by the US National Science Foundation. |
---|
[959eb01] | 8 | #If you use DANSE applications to do scientific research that leads to |
---|
| 9 | #publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | #following sentence: |
---|
| 11 | #This work benefited from DANSE software developed under NSF award DMR-0520547. |
---|
| 12 | #copyright 2008, University of Tennessee |
---|
| 13 | ############################################################################# |
---|
| 14 | import math |
---|
| 15 | import os |
---|
| 16 | import numpy as np |
---|
| 17 | import logging |
---|
[713a047] | 18 | from sas.sascalc.dataloader.data_info import plottable_2D, DataInfo, Detector |
---|
[959eb01] | 19 | from sas.sascalc.dataloader.manipulations import reader2D_converter |
---|
[713a047] | 20 | from sas.sascalc.dataloader.file_reader_base_class import FileReader |
---|
| 21 | from sas.sascalc.dataloader.loader_exceptions import FileContentsException, DataReaderException |
---|
[959eb01] | 22 | |
---|
| 23 | logger = logging.getLogger(__name__) |
---|
| 24 | |
---|
| 25 | # Look for unit converter |
---|
| 26 | has_converter = True |
---|
| 27 | try: |
---|
| 28 | from sas.sascalc.data_util.nxsunit import Converter |
---|
| 29 | except: |
---|
| 30 | has_converter = False |
---|
| 31 | |
---|
| 32 | |
---|
[713a047] | 33 | class Reader(FileReader): |
---|
[959eb01] | 34 | """ |
---|
| 35 | Example data manipulation |
---|
| 36 | """ |
---|
| 37 | ## File type |
---|
| 38 | type_name = "DANSE" |
---|
| 39 | ## Wildcards |
---|
| 40 | type = ["DANSE files (*.sans)|*.sans"] |
---|
| 41 | ## Extension |
---|
| 42 | ext = ['.sans', '.SANS'] |
---|
[713a047] | 43 | |
---|
| 44 | def get_file_contents(self): |
---|
| 45 | self.current_datainfo = DataInfo() |
---|
| 46 | self.current_dataset = plottable_2D() |
---|
| 47 | self.output = [] |
---|
| 48 | |
---|
| 49 | loaded_correctly = True |
---|
| 50 | error_message = "" |
---|
| 51 | |
---|
| 52 | # defaults |
---|
| 53 | # wavelength in Angstrom |
---|
| 54 | wavelength = 10.0 |
---|
| 55 | # Distance in meter |
---|
| 56 | distance = 11.0 |
---|
| 57 | # Pixel number of center in x |
---|
| 58 | center_x = 65 |
---|
| 59 | # Pixel number of center in y |
---|
| 60 | center_y = 65 |
---|
| 61 | # Pixel size [mm] |
---|
| 62 | pixel = 5.0 |
---|
| 63 | # Size in x, in pixels |
---|
| 64 | size_x = 128 |
---|
| 65 | # Size in y, in pixels |
---|
| 66 | size_y = 128 |
---|
| 67 | # Format version |
---|
| 68 | fversion = 1.0 |
---|
| 69 | |
---|
| 70 | self.current_datainfo.filename = os.path.basename(self.f_open.name) |
---|
| 71 | detector = Detector() |
---|
| 72 | self.current_datainfo.detector.append(detector) |
---|
| 73 | |
---|
| 74 | self.current_dataset.data = np.zeros([size_x, size_y]) |
---|
| 75 | self.current_dataset.err_data = np.zeros([size_x, size_y]) |
---|
| 76 | |
---|
| 77 | read_on = True |
---|
| 78 | data_start_line = 1 |
---|
| 79 | while read_on: |
---|
| 80 | line = self.f_open.readline() |
---|
| 81 | data_start_line += 1 |
---|
| 82 | if line.find("DATA:") >= 0: |
---|
| 83 | read_on = False |
---|
| 84 | break |
---|
| 85 | toks = line.split(':') |
---|
[959eb01] | 86 | try: |
---|
| 87 | if toks[0] == "FORMATVERSION": |
---|
| 88 | fversion = float(toks[1]) |
---|
[713a047] | 89 | elif toks[0] == "WAVELENGTH": |
---|
[959eb01] | 90 | wavelength = float(toks[1]) |
---|
| 91 | elif toks[0] == "DISTANCE": |
---|
| 92 | distance = float(toks[1]) |
---|
| 93 | elif toks[0] == "CENTER_X": |
---|
| 94 | center_x = float(toks[1]) |
---|
| 95 | elif toks[0] == "CENTER_Y": |
---|
| 96 | center_y = float(toks[1]) |
---|
| 97 | elif toks[0] == "PIXELSIZE": |
---|
| 98 | pixel = float(toks[1]) |
---|
| 99 | elif toks[0] == "SIZE_X": |
---|
| 100 | size_x = int(toks[1]) |
---|
| 101 | elif toks[0] == "SIZE_Y": |
---|
| 102 | size_y = int(toks[1]) |
---|
[713a047] | 103 | except ValueError as e: |
---|
| 104 | error_message += "Unable to parse {}. Default value used.\n".format(toks[0]) |
---|
| 105 | loaded_correctly = False |
---|
| 106 | |
---|
| 107 | # Read the data |
---|
| 108 | data = [] |
---|
| 109 | error = [] |
---|
| 110 | if not fversion >= 1.0: |
---|
| 111 | msg = "danse_reader can't read this file {}".format(self.f_open.name) |
---|
| 112 | raise FileContentsException(msg) |
---|
| 113 | |
---|
| 114 | for line_num, data_str in enumerate(self.f_open.readlines()): |
---|
| 115 | toks = data_str.split() |
---|
| 116 | try: |
---|
| 117 | val = float(toks[0]) |
---|
| 118 | err = float(toks[1]) |
---|
| 119 | data.append(val) |
---|
| 120 | error.append(err) |
---|
| 121 | except ValueError as exc: |
---|
| 122 | msg = "Unable to parse line {}: {}".format(line_num + data_start_line, data_str.strip()) |
---|
| 123 | raise FileContentsException(msg) |
---|
| 124 | |
---|
| 125 | num_pts = size_x * size_y |
---|
| 126 | if len(data) < num_pts: |
---|
| 127 | msg = "Not enough data points provided. Expected {} but got {}".format( |
---|
| 128 | size_x * size_y, len(data)) |
---|
| 129 | raise FileContentsException(msg) |
---|
| 130 | elif len(data) > num_pts: |
---|
| 131 | error_message += ("Too many data points provided. Expected {0} but" |
---|
| 132 | " got {1}. Only the first {0} will be used.\n").format(num_pts, len(data)) |
---|
| 133 | loaded_correctly = False |
---|
| 134 | data = data[:num_pts] |
---|
| 135 | error = error[:num_pts] |
---|
| 136 | |
---|
| 137 | # Qx and Qy vectors |
---|
| 138 | theta = pixel / distance / 100.0 |
---|
| 139 | i_x = np.arange(size_x) |
---|
| 140 | theta = (i_x - center_x + 1) * pixel / distance / 100.0 |
---|
| 141 | x_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
| 142 | xmin = x_vals.min() |
---|
| 143 | xmax = x_vals.max() |
---|
| 144 | |
---|
| 145 | i_y = np.arange(size_y) |
---|
| 146 | theta = (i_y - center_y + 1) * pixel / distance / 100.0 |
---|
| 147 | y_vals = 4.0 * np.pi / wavelength * np.sin(theta / 2.0) |
---|
| 148 | ymin = y_vals.min() |
---|
| 149 | ymax = y_vals.max() |
---|
| 150 | |
---|
| 151 | self.current_dataset.data = np.array(data, dtype=np.float64).reshape((size_y, size_x)) |
---|
| 152 | if fversion > 1.0: |
---|
| 153 | self.current_dataset.err_data = np.array(error, dtype=np.float64).reshape((size_y, size_x)) |
---|
| 154 | |
---|
| 155 | # Store all data |
---|
| 156 | # Store wavelength |
---|
| 157 | if has_converter == True and self.current_datainfo.source.wavelength_unit != 'A': |
---|
| 158 | conv = Converter('A') |
---|
| 159 | wavelength = conv(wavelength, |
---|
| 160 | units=self.current_datainfo.source.wavelength_unit) |
---|
| 161 | self.current_datainfo.source.wavelength = wavelength |
---|
| 162 | |
---|
| 163 | # Store distance |
---|
| 164 | if has_converter == True and detector.distance_unit != 'm': |
---|
| 165 | conv = Converter('m') |
---|
| 166 | distance = conv(distance, units=detector.distance_unit) |
---|
| 167 | detector.distance = distance |
---|
| 168 | |
---|
| 169 | # Store pixel size |
---|
| 170 | if has_converter == True and detector.pixel_size_unit != 'mm': |
---|
| 171 | conv = Converter('mm') |
---|
| 172 | pixel = conv(pixel, units=detector.pixel_size_unit) |
---|
| 173 | detector.pixel_size.x = pixel |
---|
| 174 | detector.pixel_size.y = pixel |
---|
| 175 | |
---|
| 176 | # Store beam center in distance units |
---|
| 177 | detector.beam_center.x = center_x * pixel |
---|
| 178 | detector.beam_center.y = center_y * pixel |
---|
| 179 | |
---|
| 180 | |
---|
| 181 | self.current_dataset.xaxis("\\rm{Q_{x}}", 'A^{-1}') |
---|
| 182 | self.current_dataset.yaxis("\\rm{Q_{y}}", 'A^{-1}') |
---|
| 183 | self.current_dataset.zaxis("\\rm{Intensity}", "cm^{-1}") |
---|
| 184 | |
---|
| 185 | self.current_dataset.x_bins = x_vals |
---|
| 186 | self.current_dataset.y_bins = y_vals |
---|
| 187 | |
---|
| 188 | # Reshape data |
---|
| 189 | x_vals = np.tile(x_vals, (size_y, 1)).flatten() |
---|
| 190 | y_vals = np.tile(y_vals, (size_x, 1)).T.flatten() |
---|
| 191 | if self.current_dataset.err_data == np.all(np.array(None)) or np.any(self.current_dataset.err_data <= 0): |
---|
| 192 | new_err_data = np.sqrt(np.abs(self.current_dataset.data)) |
---|
| 193 | else: |
---|
| 194 | new_err_data = self.current_dataset.err_data.flatten() |
---|
| 195 | |
---|
| 196 | self.current_dataset.err_data = new_err_data |
---|
| 197 | self.current_dataset.qx_data = x_vals |
---|
| 198 | self.current_dataset.qy_data = y_vals |
---|
| 199 | self.current_dataset.q_data = np.sqrt(x_vals**2 + y_vals**2) |
---|
| 200 | self.current_dataset.mask = np.ones(len(x_vals), dtype=bool) |
---|
| 201 | |
---|
| 202 | # Store loading process information |
---|
| 203 | self.current_datainfo.meta_data['loader'] = self.type_name |
---|
| 204 | |
---|
| 205 | self.send_to_output() |
---|
[959eb01] | 206 | |
---|
[713a047] | 207 | if not loaded_correctly: |
---|
| 208 | raise DataReaderException(error_message) |
---|