1 | """ |
---|
2 | ASCII reader |
---|
3 | """ |
---|
4 | ############################################################################ |
---|
5 | #This software was developed by the University of Tennessee as part of the |
---|
6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
7 | #project funded by the US National Science Foundation. |
---|
8 | #If you use DANSE applications to do scientific research that leads to |
---|
9 | #publication, we ask that you acknowledge the use of the software with the |
---|
10 | #following sentence: |
---|
11 | #This work benefited from DANSE software developed under NSF award DMR-0520547. |
---|
12 | #copyright 2008, University of Tennessee |
---|
13 | ############################################################################# |
---|
14 | |
---|
15 | |
---|
16 | import numpy as np |
---|
17 | import os |
---|
18 | from sas.sascalc.dataloader.data_info import Data1D |
---|
19 | |
---|
20 | # Check whether we have a converter available |
---|
21 | has_converter = True |
---|
22 | try: |
---|
23 | from sas.sascalc.data_util.nxsunit import Converter |
---|
24 | except: |
---|
25 | has_converter = False |
---|
26 | _ZERO = 1e-16 |
---|
27 | |
---|
28 | |
---|
29 | class Reader: |
---|
30 | """ |
---|
31 | Class to load ascii files (2, 3 or 4 columns). |
---|
32 | """ |
---|
33 | ## File type |
---|
34 | type_name = "ASCII" |
---|
35 | |
---|
36 | ## Wildcards |
---|
37 | type = ["ASCII files (*.txt)|*.txt", |
---|
38 | "ASCII files (*.dat)|*.dat", |
---|
39 | "ASCII files (*.abs)|*.abs", |
---|
40 | "CSV files (*.csv)|*.csv"] |
---|
41 | ## List of allowed extensions |
---|
42 | ext = ['.txt', '.TXT', '.dat', '.DAT', '.abs', '.ABS', 'csv', 'CSV'] |
---|
43 | |
---|
44 | ## Flag to bypass extension check |
---|
45 | allow_all = True |
---|
46 | |
---|
47 | def read(self, path): |
---|
48 | """ |
---|
49 | Load data file |
---|
50 | |
---|
51 | :param path: file path |
---|
52 | :return: Data1D object, or None |
---|
53 | |
---|
54 | :raise RuntimeError: when the file can't be opened |
---|
55 | :raise ValueError: when the length of the data vectors are inconsistent |
---|
56 | """ |
---|
57 | if os.path.isfile(path): |
---|
58 | basename = os.path.basename(path) |
---|
59 | _, extension = os.path.splitext(basename) |
---|
60 | if self.allow_all or extension.lower() in self.ext: |
---|
61 | try: |
---|
62 | # Read in binary mode since GRASP frequently has no-ascii |
---|
63 | # characters that breaks the open operation |
---|
64 | input_f = open(path,'rb') |
---|
65 | except: |
---|
66 | raise RuntimeError("ascii_reader: cannot open %s" % path) |
---|
67 | buff = input_f.read() |
---|
68 | lines = buff.splitlines() |
---|
69 | |
---|
70 | # Arrays for data storage |
---|
71 | tx = np.zeros(0) |
---|
72 | ty = np.zeros(0) |
---|
73 | tdy = np.zeros(0) |
---|
74 | tdx = np.zeros(0) |
---|
75 | |
---|
76 | # The first good line of data will define whether |
---|
77 | # we have 2-column or 3-column ascii |
---|
78 | has_error_dx = None |
---|
79 | has_error_dy = None |
---|
80 | |
---|
81 | #Initialize counters for data lines and header lines. |
---|
82 | is_data = False |
---|
83 | # More than "5" lines of data is considered as actual |
---|
84 | # data unless that is the only data |
---|
85 | min_data_pts = 5 |
---|
86 | # To count # of current data candidate lines |
---|
87 | candidate_lines = 0 |
---|
88 | # To count total # of previous data candidate lines |
---|
89 | candidate_lines_previous = 0 |
---|
90 | #minimum required number of columns of data |
---|
91 | lentoks = 2 |
---|
92 | for line in lines: |
---|
93 | toks = self.splitline(line) |
---|
94 | # To remember the # of columns in the current line of data |
---|
95 | new_lentoks = len(toks) |
---|
96 | try: |
---|
97 | if new_lentoks == 1 and not is_data: |
---|
98 | ## If only one item in list, no longer data |
---|
99 | raise ValueError |
---|
100 | elif new_lentoks == 0: |
---|
101 | ## If the line is blank, skip and continue on |
---|
102 | ## In case of breaks within data sets. |
---|
103 | continue |
---|
104 | elif new_lentoks != lentoks and is_data: |
---|
105 | ## If a footer is found, break the loop and save the data |
---|
106 | break |
---|
107 | elif new_lentoks != lentoks and not is_data: |
---|
108 | ## If header lines are numerical |
---|
109 | candidate_lines = 0 |
---|
110 | candidate_lines_previous = 0 |
---|
111 | |
---|
112 | #Make sure that all columns are numbers. |
---|
113 | for colnum in range(len(toks)): |
---|
114 | # Any non-floating point values throw ValueError |
---|
115 | float(toks[colnum]) |
---|
116 | |
---|
117 | candidate_lines += 1 |
---|
118 | _x = float(toks[0]) |
---|
119 | _y = float(toks[1]) |
---|
120 | _dx = None |
---|
121 | _dy = None |
---|
122 | |
---|
123 | #If 5 or more lines, this is considering the set data |
---|
124 | if candidate_lines >= min_data_pts: |
---|
125 | is_data = True |
---|
126 | |
---|
127 | # If a 3rd row is present, consider it dy |
---|
128 | if new_lentoks > 2: |
---|
129 | _dy = float(toks[2]) |
---|
130 | has_error_dy = False if _dy is None else True |
---|
131 | |
---|
132 | # If a 4th row is present, consider it dx |
---|
133 | if new_lentoks > 3: |
---|
134 | _dx = float(toks[3]) |
---|
135 | has_error_dx = False if _dx is None else True |
---|
136 | |
---|
137 | # Delete the previously stored lines of data candidates if |
---|
138 | # the list is not data |
---|
139 | if candidate_lines == 1 and -1 < candidate_lines_previous < min_data_pts and \ |
---|
140 | is_data == False: |
---|
141 | try: |
---|
142 | tx = np.zeros(0) |
---|
143 | ty = np.zeros(0) |
---|
144 | tdy = np.zeros(0) |
---|
145 | tdx = np.zeros(0) |
---|
146 | except: |
---|
147 | pass |
---|
148 | |
---|
149 | if has_error_dy == True: |
---|
150 | tdy = np.append(tdy, _dy) |
---|
151 | if has_error_dx == True: |
---|
152 | tdx = np.append(tdx, _dx) |
---|
153 | tx = np.append(tx, _x) |
---|
154 | ty = np.append(ty, _y) |
---|
155 | |
---|
156 | #To remember the # of columns on the current line |
---|
157 | # for the next line of data |
---|
158 | lentoks = new_lentoks |
---|
159 | candidate_lines_previous = candidate_lines |
---|
160 | except ValueError: |
---|
161 | # It is data and meet non - number, then stop reading |
---|
162 | if is_data == True: |
---|
163 | break |
---|
164 | lentoks = 2 |
---|
165 | has_error_dx = None |
---|
166 | has_error_dy = None |
---|
167 | #Reset # of lines of data candidates |
---|
168 | candidate_lines = 0 |
---|
169 | except: |
---|
170 | pass |
---|
171 | |
---|
172 | input_f.close() |
---|
173 | if not is_data: |
---|
174 | msg = "ascii_reader: x has no data" |
---|
175 | raise RuntimeError(msg) |
---|
176 | # Sanity check |
---|
177 | if has_error_dy == True and not len(ty) == len(tdy): |
---|
178 | msg = "ascii_reader: y and dy have different length" |
---|
179 | raise RuntimeError(msg) |
---|
180 | if has_error_dx == True and not len(tx) == len(tdx): |
---|
181 | msg = "ascii_reader: y and dy have different length" |
---|
182 | raise RuntimeError(msg) |
---|
183 | # If the data length is zero, consider this as |
---|
184 | # though we were not able to read the file. |
---|
185 | if len(tx) == 0: |
---|
186 | raise RuntimeError("ascii_reader: could not load file") |
---|
187 | |
---|
188 | #Let's re-order the data to make cal. |
---|
189 | # curve look better some cases |
---|
190 | ind = np.lexsort((ty, tx)) |
---|
191 | x = np.zeros(len(tx)) |
---|
192 | y = np.zeros(len(ty)) |
---|
193 | dy = np.zeros(len(tdy)) |
---|
194 | dx = np.zeros(len(tdx)) |
---|
195 | output = Data1D(x, y, dy=dy, dx=dx) |
---|
196 | self.filename = output.filename = basename |
---|
197 | |
---|
198 | for i in ind: |
---|
199 | x[i] = tx[ind[i]] |
---|
200 | y[i] = ty[ind[i]] |
---|
201 | if has_error_dy == True: |
---|
202 | dy[i] = tdy[ind[i]] |
---|
203 | if has_error_dx == True: |
---|
204 | dx[i] = tdx[ind[i]] |
---|
205 | # Zeros in dx, dy |
---|
206 | if has_error_dx: |
---|
207 | dx[dx == 0] = _ZERO |
---|
208 | if has_error_dy: |
---|
209 | dy[dy == 0] = _ZERO |
---|
210 | #Data |
---|
211 | output.x = x[x != 0] |
---|
212 | output.y = y[x != 0] |
---|
213 | output.dy = dy[x != 0] if has_error_dy == True\ |
---|
214 | else np.zeros(len(output.y)) |
---|
215 | output.dx = dx[x != 0] if has_error_dx == True\ |
---|
216 | else np.zeros(len(output.x)) |
---|
217 | |
---|
218 | output.xaxis("\\rm{Q}", 'A^{-1}') |
---|
219 | output.yaxis("\\rm{Intensity}", "cm^{-1}") |
---|
220 | |
---|
221 | # Store loading process information |
---|
222 | output.meta_data['loader'] = self.type_name |
---|
223 | if len(output.x) < 1: |
---|
224 | raise RuntimeError("%s is empty" % path) |
---|
225 | return output |
---|
226 | |
---|
227 | else: |
---|
228 | raise RuntimeError("%s is not a file" % path) |
---|
229 | return None |
---|
230 | |
---|
231 | def splitline(self, line): |
---|
232 | """ |
---|
233 | Splits a line into pieces based on common delimeters |
---|
234 | :param line: A single line of text |
---|
235 | :return: list of values |
---|
236 | """ |
---|
237 | # Initial try for CSV (split on ,) |
---|
238 | toks = line.split(',') |
---|
239 | # Now try SCSV (split on ;) |
---|
240 | if len(toks) < 2: |
---|
241 | toks = line.split(';') |
---|
242 | # Now go for whitespace |
---|
243 | if len(toks) < 2: |
---|
244 | toks = line.split() |
---|
245 | return toks |
---|