1 | from __future__ import division |
---|
2 | """ |
---|
3 | Data manipulations for 2D data sets. |
---|
4 | Using the meta data information, various types of averaging |
---|
5 | are performed in Q-space |
---|
6 | |
---|
7 | To test this module use: |
---|
8 | ``` |
---|
9 | cd test |
---|
10 | PYTHONPATH=../src/ python2 -m sasdataloader.test.utest_averaging DataInfoTests.test_sectorphi_quarter |
---|
11 | ``` |
---|
12 | """ |
---|
13 | ##################################################################### |
---|
14 | # This software was developed by the University of Tennessee as part of the |
---|
15 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
16 | # project funded by the US National Science Foundation. |
---|
17 | # See the license text in license.txt |
---|
18 | # copyright 2008, University of Tennessee |
---|
19 | ###################################################################### |
---|
20 | |
---|
21 | |
---|
22 | # TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
23 | import math |
---|
24 | import numpy as np |
---|
25 | import sys |
---|
26 | |
---|
27 | #from data_info import plottable_2D |
---|
28 | from .data_info import Data1D |
---|
29 | |
---|
30 | |
---|
31 | def get_q(dx, dy, det_dist, wavelength): |
---|
32 | """ |
---|
33 | :param dx: x-distance from beam center [mm] |
---|
34 | :param dy: y-distance from beam center [mm] |
---|
35 | :return: q-value at the given position |
---|
36 | """ |
---|
37 | # Distance from beam center in the plane of detector |
---|
38 | plane_dist = math.sqrt(dx * dx + dy * dy) |
---|
39 | # Half of the scattering angle |
---|
40 | theta = 0.5 * math.atan(plane_dist / det_dist) |
---|
41 | return (4.0 * math.pi / wavelength) * math.sin(theta) |
---|
42 | |
---|
43 | |
---|
44 | def get_q_compo(dx, dy, det_dist, wavelength, compo=None): |
---|
45 | """ |
---|
46 | This reduces tiny error at very large q. |
---|
47 | Implementation of this func is not started yet.<--ToDo |
---|
48 | """ |
---|
49 | if dy == 0: |
---|
50 | if dx >= 0: |
---|
51 | angle_xy = 0 |
---|
52 | else: |
---|
53 | angle_xy = math.pi |
---|
54 | else: |
---|
55 | angle_xy = math.atan(dx / dy) |
---|
56 | |
---|
57 | if compo == "x": |
---|
58 | out = get_q(dx, dy, det_dist, wavelength) * math.cos(angle_xy) |
---|
59 | elif compo == "y": |
---|
60 | out = get_q(dx, dy, det_dist, wavelength) * math.sin(angle_xy) |
---|
61 | else: |
---|
62 | out = get_q(dx, dy, det_dist, wavelength) |
---|
63 | return out |
---|
64 | |
---|
65 | |
---|
66 | def flip_phi(phi): |
---|
67 | """ |
---|
68 | Correct phi to within the 0 <= to <= 2pi range |
---|
69 | |
---|
70 | :return: phi in >=0 and <=2Pi |
---|
71 | """ |
---|
72 | Pi = math.pi |
---|
73 | if phi < 0: |
---|
74 | phi_out = phi + (2 * Pi) |
---|
75 | elif phi > (2 * Pi): |
---|
76 | phi_out = phi - (2 * Pi) |
---|
77 | else: |
---|
78 | phi_out = phi |
---|
79 | return phi_out |
---|
80 | |
---|
81 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
82 | """ |
---|
83 | Return the fraction of the length |
---|
84 | from xmin to x.:: |
---|
85 | |
---|
86 | A B |
---|
87 | +-----------+---------+ |
---|
88 | xmin x xmax |
---|
89 | |
---|
90 | :param x: x-value |
---|
91 | :param xmin: minimum x for the length considered |
---|
92 | :param xmax: minimum x for the length considered |
---|
93 | :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
94 | |
---|
95 | """ |
---|
96 | if x <= xmin: |
---|
97 | return 0.0 |
---|
98 | if x > xmin and x < xmax: |
---|
99 | return (x - xmin) / (xmax - xmin) |
---|
100 | else: |
---|
101 | return 1.0 |
---|
102 | |
---|
103 | def get_intercept(q, q_0, q_1): |
---|
104 | """ |
---|
105 | Returns the fraction of the side at which the |
---|
106 | q-value intercept the pixel, None otherwise. |
---|
107 | The values returned is the fraction ON THE SIDE |
---|
108 | OF THE LOWEST Q. :: |
---|
109 | |
---|
110 | A B |
---|
111 | +-----------+--------+ <--- pixel size |
---|
112 | 0 1 |
---|
113 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
114 | if Q_1 > Q_0, A is returned |
---|
115 | if Q_1 < Q_0, B is returned |
---|
116 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
117 | |
---|
118 | """ |
---|
119 | if q_1 > q_0: |
---|
120 | if q > q_0 and q <= q_1: |
---|
121 | return (q - q_0) / (q_1 - q_0) |
---|
122 | else: |
---|
123 | if q > q_1 and q <= q_0: |
---|
124 | return (q - q_1) / (q_0 - q_1) |
---|
125 | return None |
---|
126 | |
---|
127 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
128 | """ |
---|
129 | Returns the fraction of the pixel defined by |
---|
130 | the four corners (q_00, q_01, q_10, q_11) that |
---|
131 | has q < qmax.:: |
---|
132 | |
---|
133 | q_01 q_11 |
---|
134 | y=1 +--------------+ |
---|
135 | | | |
---|
136 | | | |
---|
137 | | | |
---|
138 | y=0 +--------------+ |
---|
139 | q_00 q_10 |
---|
140 | |
---|
141 | x=0 x=1 |
---|
142 | |
---|
143 | """ |
---|
144 | # y side for x = minx |
---|
145 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
146 | # y side for x = maxx |
---|
147 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
148 | |
---|
149 | # x side for y = miny |
---|
150 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
151 | # x side for y = maxy |
---|
152 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
153 | |
---|
154 | # surface fraction for a 1x1 pixel |
---|
155 | frac_max = 0 |
---|
156 | |
---|
157 | if x_0 and x_1: |
---|
158 | frac_max = (x_0 + x_1) / 2.0 |
---|
159 | elif y_0 and y_1: |
---|
160 | frac_max = (y_0 + y_1) / 2.0 |
---|
161 | elif x_0 and y_0: |
---|
162 | if q_00 < q_10: |
---|
163 | frac_max = x_0 * y_0 / 2.0 |
---|
164 | else: |
---|
165 | frac_max = 1.0 - x_0 * y_0 / 2.0 |
---|
166 | elif x_0 and y_1: |
---|
167 | if q_00 < q_10: |
---|
168 | frac_max = x_0 * y_1 / 2.0 |
---|
169 | else: |
---|
170 | frac_max = 1.0 - x_0 * y_1 / 2.0 |
---|
171 | elif x_1 and y_0: |
---|
172 | if q_00 > q_10: |
---|
173 | frac_max = x_1 * y_0 / 2.0 |
---|
174 | else: |
---|
175 | frac_max = 1.0 - x_1 * y_0 / 2.0 |
---|
176 | elif x_1 and y_1: |
---|
177 | if q_00 < q_10: |
---|
178 | frac_max = 1.0 - (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
179 | else: |
---|
180 | frac_max = (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
181 | |
---|
182 | # If we make it here, there is no intercept between |
---|
183 | # this pixel and the constant-q ring. We only need |
---|
184 | # to know if we have to include it or exclude it. |
---|
185 | elif (q_00 + q_01 + q_10 + q_11) / 4.0 < qmax: |
---|
186 | frac_max = 1.0 |
---|
187 | |
---|
188 | return frac_max |
---|
189 | |
---|
190 | def get_dq_data(data2D): |
---|
191 | ''' |
---|
192 | Get the dq for resolution averaging |
---|
193 | The pinholes and det. pix contribution present |
---|
194 | in both direction of the 2D which must be subtracted when |
---|
195 | converting to 1D: dq_overlap should calculated ideally at |
---|
196 | q = 0. Note This method works on only pinhole geometry. |
---|
197 | Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. |
---|
198 | ''' |
---|
199 | z_max = max(data2D.q_data) |
---|
200 | z_min = min(data2D.q_data) |
---|
201 | dqx_at_z_max = data2D.dqx_data[np.argmax(data2D.q_data)] |
---|
202 | dqx_at_z_min = data2D.dqx_data[np.argmin(data2D.q_data)] |
---|
203 | dqy_at_z_max = data2D.dqy_data[np.argmax(data2D.q_data)] |
---|
204 | dqy_at_z_min = data2D.dqy_data[np.argmin(data2D.q_data)] |
---|
205 | # Find qdx at q = 0 |
---|
206 | dq_overlap_x = (dqx_at_z_min * z_max - dqx_at_z_max * z_min) / (z_max - z_min) |
---|
207 | # when extrapolation goes wrong |
---|
208 | if dq_overlap_x > min(data2D.dqx_data): |
---|
209 | dq_overlap_x = min(data2D.dqx_data) |
---|
210 | dq_overlap_x *= dq_overlap_x |
---|
211 | # Find qdx at q = 0 |
---|
212 | dq_overlap_y = (dqy_at_z_min * z_max - dqy_at_z_max * z_min) / (z_max - z_min) |
---|
213 | # when extrapolation goes wrong |
---|
214 | if dq_overlap_y > min(data2D.dqy_data): |
---|
215 | dq_overlap_y = min(data2D.dqy_data) |
---|
216 | # get dq at q=0. |
---|
217 | dq_overlap_y *= dq_overlap_y |
---|
218 | |
---|
219 | dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) |
---|
220 | # Final protection of dq |
---|
221 | if dq_overlap < 0: |
---|
222 | dq_overlap = dqy_at_z_min |
---|
223 | dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] |
---|
224 | dqy_data = data2D.dqy_data[np.isfinite( |
---|
225 | data2D.data)] - dq_overlap |
---|
226 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
227 | # Convert dq 2D to 1D here |
---|
228 | dq_data = np.sqrt(dqx_data**2 + dqx_data**2) |
---|
229 | return dq_data |
---|
230 | |
---|
231 | ################################################################################ |
---|
232 | |
---|
233 | def reader2D_converter(data2d=None): |
---|
234 | """ |
---|
235 | convert old 2d format opened by IhorReader or danse_reader |
---|
236 | to new Data2D format |
---|
237 | This is mainly used by the Readers |
---|
238 | |
---|
239 | :param data2d: 2d array of Data2D object |
---|
240 | :return: 1d arrays of Data2D object |
---|
241 | |
---|
242 | """ |
---|
243 | if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: |
---|
244 | raise ValueError("Can't convert this data: data=None...") |
---|
245 | new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1)) |
---|
246 | new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1)) |
---|
247 | new_y = new_y.swapaxes(0, 1) |
---|
248 | |
---|
249 | new_data = data2d.data.flatten() |
---|
250 | qx_data = new_x.flatten() |
---|
251 | qy_data = new_y.flatten() |
---|
252 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
253 | if data2d.err_data is None or np.any(data2d.err_data <= 0): |
---|
254 | new_err_data = np.sqrt(np.abs(new_data)) |
---|
255 | else: |
---|
256 | new_err_data = data2d.err_data.flatten() |
---|
257 | mask = np.ones(len(new_data), dtype=bool) |
---|
258 | |
---|
259 | # TODO: make sense of the following two lines... |
---|
260 | #from sas.sascalc.dataloader.data_info import Data2D |
---|
261 | #output = Data2D() |
---|
262 | output = data2d |
---|
263 | output.data = new_data |
---|
264 | output.err_data = new_err_data |
---|
265 | output.qx_data = qx_data |
---|
266 | output.qy_data = qy_data |
---|
267 | output.q_data = q_data |
---|
268 | output.mask = mask |
---|
269 | |
---|
270 | return output |
---|
271 | |
---|
272 | ################################################################################ |
---|
273 | |
---|
274 | class Binning(object): |
---|
275 | ''' |
---|
276 | This class just creates a binning object |
---|
277 | either linear or log |
---|
278 | ''' |
---|
279 | |
---|
280 | def __init__(self, min_value, max_value, n_bins, base=None): |
---|
281 | ''' |
---|
282 | if base is None: Linear binning |
---|
283 | ''' |
---|
284 | self.min = min_value if min_value > 0 else 0.0001 |
---|
285 | self.max = max_value |
---|
286 | self.n_bins = n_bins |
---|
287 | self.base = base |
---|
288 | |
---|
289 | def get_bin_index(self, value): |
---|
290 | ''' |
---|
291 | The general formula logarithm binning is: |
---|
292 | bin = floor(N * (log(x) - log(min)) / (log(max) - log(min))) |
---|
293 | ''' |
---|
294 | if self.base: |
---|
295 | temp_x = self.n_bins * (math.log(value, self.base) - math.log(self.min, self.base)) |
---|
296 | temp_y = math.log(self.max, self.base) - math.log(self.min, self.base) |
---|
297 | else: |
---|
298 | temp_x = self.n_bins * (value - self.min) |
---|
299 | temp_y = self.max - self.min |
---|
300 | # Bin index calulation |
---|
301 | return int(math.floor(temp_x / temp_y)) |
---|
302 | |
---|
303 | |
---|
304 | ################################################################################ |
---|
305 | |
---|
306 | class _Slab(object): |
---|
307 | """ |
---|
308 | Compute average I(Q) for a region of interest |
---|
309 | """ |
---|
310 | |
---|
311 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, |
---|
312 | y_max=0.0, bin_width=0.001): |
---|
313 | # Minimum Qx value [A-1] |
---|
314 | self.x_min = x_min |
---|
315 | # Maximum Qx value [A-1] |
---|
316 | self.x_max = x_max |
---|
317 | # Minimum Qy value [A-1] |
---|
318 | self.y_min = y_min |
---|
319 | # Maximum Qy value [A-1] |
---|
320 | self.y_max = y_max |
---|
321 | # Bin width (step size) [A-1] |
---|
322 | self.bin_width = bin_width |
---|
323 | # If True, I(|Q|) will be return, otherwise, |
---|
324 | # negative q-values are allowed |
---|
325 | self.fold = False |
---|
326 | |
---|
327 | def __call__(self, data2D): |
---|
328 | return NotImplemented |
---|
329 | |
---|
330 | def _avg(self, data2D, maj): |
---|
331 | """ |
---|
332 | Compute average I(Q_maj) for a region of interest. |
---|
333 | The major axis is defined as the axis of Q_maj. |
---|
334 | The minor axis is the axis that we average over. |
---|
335 | |
---|
336 | :param data2D: Data2D object |
---|
337 | :param maj_min: min value on the major axis |
---|
338 | :return: Data1D object |
---|
339 | """ |
---|
340 | if len(data2D.detector) > 1: |
---|
341 | msg = "_Slab._avg: invalid number of " |
---|
342 | msg += " detectors: %g" % len(data2D.detector) |
---|
343 | raise RuntimeError(msg) |
---|
344 | |
---|
345 | # Get data |
---|
346 | data = data2D.data[np.isfinite(data2D.data)] |
---|
347 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
348 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
349 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
350 | |
---|
351 | # Build array of Q intervals |
---|
352 | if maj == 'x': |
---|
353 | if self.fold: |
---|
354 | x_min = 0 |
---|
355 | else: |
---|
356 | x_min = self.x_min |
---|
357 | nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) |
---|
358 | elif maj == 'y': |
---|
359 | if self.fold: |
---|
360 | y_min = 0 |
---|
361 | else: |
---|
362 | y_min = self.y_min |
---|
363 | nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) |
---|
364 | else: |
---|
365 | raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj)) |
---|
366 | |
---|
367 | x = np.zeros(nbins) |
---|
368 | y = np.zeros(nbins) |
---|
369 | err_y = np.zeros(nbins) |
---|
370 | y_counts = np.zeros(nbins) |
---|
371 | |
---|
372 | # Average pixelsize in q space |
---|
373 | for npts in range(len(data)): |
---|
374 | # default frac |
---|
375 | frac_x = 0 |
---|
376 | frac_y = 0 |
---|
377 | # get ROI |
---|
378 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
379 | frac_x = 1 |
---|
380 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
381 | frac_y = 1 |
---|
382 | frac = frac_x * frac_y |
---|
383 | |
---|
384 | if frac == 0: |
---|
385 | continue |
---|
386 | # binning: find axis of q |
---|
387 | if maj == 'x': |
---|
388 | q_value = qx_data[npts] |
---|
389 | min_value = x_min |
---|
390 | if maj == 'y': |
---|
391 | q_value = qy_data[npts] |
---|
392 | min_value = y_min |
---|
393 | if self.fold and q_value < 0: |
---|
394 | q_value = -q_value |
---|
395 | # bin |
---|
396 | i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 |
---|
397 | |
---|
398 | # skip outside of max bins |
---|
399 | if i_q < 0 or i_q >= nbins: |
---|
400 | continue |
---|
401 | |
---|
402 | # TODO: find better definition of x[i_q] based on q_data |
---|
403 | # min_value + (i_q + 1) * self.bin_width / 2.0 |
---|
404 | x[i_q] += frac * q_value |
---|
405 | y[i_q] += frac * data[npts] |
---|
406 | |
---|
407 | if err_data is None or err_data[npts] == 0.0: |
---|
408 | if data[npts] < 0: |
---|
409 | data[npts] = -data[npts] |
---|
410 | err_y[i_q] += frac * frac * data[npts] |
---|
411 | else: |
---|
412 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
413 | y_counts[i_q] += frac |
---|
414 | |
---|
415 | # Average the sums |
---|
416 | for n in range(nbins): |
---|
417 | err_y[n] = math.sqrt(err_y[n]) |
---|
418 | |
---|
419 | err_y = err_y / y_counts |
---|
420 | y = y / y_counts |
---|
421 | x = x / y_counts |
---|
422 | idx = (np.isfinite(y) & np.isfinite(x)) |
---|
423 | |
---|
424 | if not idx.any(): |
---|
425 | msg = "Average Error: No points inside ROI to average..." |
---|
426 | raise ValueError(msg) |
---|
427 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
428 | |
---|
429 | |
---|
430 | class SlabY(_Slab): |
---|
431 | """ |
---|
432 | Compute average I(Qy) for a region of interest |
---|
433 | """ |
---|
434 | |
---|
435 | def __call__(self, data2D): |
---|
436 | """ |
---|
437 | Compute average I(Qy) for a region of interest |
---|
438 | |
---|
439 | :param data2D: Data2D object |
---|
440 | :return: Data1D object |
---|
441 | """ |
---|
442 | return self._avg(data2D, 'y') |
---|
443 | |
---|
444 | |
---|
445 | class SlabX(_Slab): |
---|
446 | """ |
---|
447 | Compute average I(Qx) for a region of interest |
---|
448 | """ |
---|
449 | |
---|
450 | def __call__(self, data2D): |
---|
451 | """ |
---|
452 | Compute average I(Qx) for a region of interest |
---|
453 | :param data2D: Data2D object |
---|
454 | :return: Data1D object |
---|
455 | """ |
---|
456 | return self._avg(data2D, 'x') |
---|
457 | |
---|
458 | ################################################################################ |
---|
459 | |
---|
460 | class Boxsum(object): |
---|
461 | """ |
---|
462 | Perform the sum of counts in a 2D region of interest. |
---|
463 | """ |
---|
464 | |
---|
465 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
466 | # Minimum Qx value [A-1] |
---|
467 | self.x_min = x_min |
---|
468 | # Maximum Qx value [A-1] |
---|
469 | self.x_max = x_max |
---|
470 | # Minimum Qy value [A-1] |
---|
471 | self.y_min = y_min |
---|
472 | # Maximum Qy value [A-1] |
---|
473 | self.y_max = y_max |
---|
474 | |
---|
475 | def __call__(self, data2D): |
---|
476 | """ |
---|
477 | Perform the sum in the region of interest |
---|
478 | |
---|
479 | :param data2D: Data2D object |
---|
480 | :return: number of counts, error on number of counts, |
---|
481 | number of points summed |
---|
482 | """ |
---|
483 | y, err_y, y_counts = self._sum(data2D) |
---|
484 | |
---|
485 | # Average the sums |
---|
486 | counts = 0 if y_counts == 0 else y |
---|
487 | error = 0 if y_counts == 0 else math.sqrt(err_y) |
---|
488 | |
---|
489 | # Added y_counts to return, SMK & PDB, 04/03/2013 |
---|
490 | return counts, error, y_counts |
---|
491 | |
---|
492 | def _sum(self, data2D): |
---|
493 | """ |
---|
494 | Perform the sum in the region of interest |
---|
495 | |
---|
496 | :param data2D: Data2D object |
---|
497 | :return: number of counts, |
---|
498 | error on number of counts, number of entries summed |
---|
499 | """ |
---|
500 | if len(data2D.detector) > 1: |
---|
501 | msg = "Circular averaging: invalid number " |
---|
502 | msg += "of detectors: %g" % len(data2D.detector) |
---|
503 | raise RuntimeError(msg) |
---|
504 | # Get data |
---|
505 | data = data2D.data[np.isfinite(data2D.data)] |
---|
506 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
507 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
508 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
509 | |
---|
510 | y = 0.0 |
---|
511 | err_y = 0.0 |
---|
512 | y_counts = 0.0 |
---|
513 | |
---|
514 | # Average pixelsize in q space |
---|
515 | for npts in range(len(data)): |
---|
516 | # default frac |
---|
517 | frac_x = 0 |
---|
518 | frac_y = 0 |
---|
519 | |
---|
520 | # get min and max at each points |
---|
521 | qx = qx_data[npts] |
---|
522 | qy = qy_data[npts] |
---|
523 | |
---|
524 | # get the ROI |
---|
525 | if self.x_min <= qx and self.x_max > qx: |
---|
526 | frac_x = 1 |
---|
527 | if self.y_min <= qy and self.y_max > qy: |
---|
528 | frac_y = 1 |
---|
529 | # Find the fraction along each directions |
---|
530 | frac = frac_x * frac_y |
---|
531 | if frac == 0: |
---|
532 | continue |
---|
533 | y += frac * data[npts] |
---|
534 | if err_data is None or err_data[npts] == 0.0: |
---|
535 | if data[npts] < 0: |
---|
536 | data[npts] = -data[npts] |
---|
537 | err_y += frac * frac * data[npts] |
---|
538 | else: |
---|
539 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
540 | y_counts += frac |
---|
541 | return y, err_y, y_counts |
---|
542 | |
---|
543 | |
---|
544 | class Boxavg(Boxsum): |
---|
545 | """ |
---|
546 | Perform the average of counts in a 2D region of interest. |
---|
547 | """ |
---|
548 | |
---|
549 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
550 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, |
---|
551 | y_min=y_min, y_max=y_max) |
---|
552 | |
---|
553 | def __call__(self, data2D): |
---|
554 | """ |
---|
555 | Perform the sum in the region of interest |
---|
556 | |
---|
557 | :param data2D: Data2D object |
---|
558 | :return: average counts, error on average counts |
---|
559 | |
---|
560 | """ |
---|
561 | y, err_y, y_counts = self._sum(data2D) |
---|
562 | |
---|
563 | # Average the sums |
---|
564 | counts = 0 if y_counts == 0 else y / y_counts |
---|
565 | error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts |
---|
566 | |
---|
567 | return counts, error |
---|
568 | |
---|
569 | ################################################################################ |
---|
570 | |
---|
571 | class CircularAverage(object): |
---|
572 | """ |
---|
573 | Perform circular averaging on 2D data |
---|
574 | |
---|
575 | The data returned is the distribution of counts |
---|
576 | as a function of Q |
---|
577 | """ |
---|
578 | |
---|
579 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
580 | # Minimum radius included in the average [A-1] |
---|
581 | self.r_min = r_min |
---|
582 | # Maximum radius included in the average [A-1] |
---|
583 | self.r_max = r_max |
---|
584 | # Bin width (step size) [A-1] |
---|
585 | self.bin_width = bin_width |
---|
586 | |
---|
587 | def __call__(self, data2D, ismask=False): |
---|
588 | """ |
---|
589 | Perform circular averaging on the data |
---|
590 | |
---|
591 | :param data2D: Data2D object |
---|
592 | :return: Data1D object |
---|
593 | """ |
---|
594 | # Get data W/ finite values |
---|
595 | data = data2D.data[np.isfinite(data2D.data)] |
---|
596 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
597 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
598 | mask_data = data2D.mask[np.isfinite(data2D.data)] |
---|
599 | |
---|
600 | dq_data = None |
---|
601 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
602 | dq_data = get_dq_data(data2D) |
---|
603 | |
---|
604 | if len(q_data) == 0: |
---|
605 | msg = "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
606 | raise RuntimeError(msg) |
---|
607 | |
---|
608 | # Build array of Q intervals |
---|
609 | nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) |
---|
610 | |
---|
611 | x = np.zeros(nbins) |
---|
612 | y = np.zeros(nbins) |
---|
613 | err_y = np.zeros(nbins) |
---|
614 | err_x = np.zeros(nbins) |
---|
615 | y_counts = np.zeros(nbins) |
---|
616 | |
---|
617 | for npt in range(len(data)): |
---|
618 | |
---|
619 | if ismask and not mask_data[npt]: |
---|
620 | continue |
---|
621 | |
---|
622 | frac = 0 |
---|
623 | |
---|
624 | # q-value at the pixel (j,i) |
---|
625 | q_value = q_data[npt] |
---|
626 | data_n = data[npt] |
---|
627 | |
---|
628 | # No need to calculate the frac when all data are within range |
---|
629 | if self.r_min >= self.r_max: |
---|
630 | raise ValueError("Limit Error: min > max") |
---|
631 | |
---|
632 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
633 | frac = 1 |
---|
634 | if frac == 0: |
---|
635 | continue |
---|
636 | i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) |
---|
637 | |
---|
638 | # Take care of the edge case at phi = 2pi. |
---|
639 | if i_q == nbins: |
---|
640 | i_q = nbins - 1 |
---|
641 | y[i_q] += frac * data_n |
---|
642 | # Take dqs from data to get the q_average |
---|
643 | x[i_q] += frac * q_value |
---|
644 | if err_data is None or err_data[npt] == 0.0: |
---|
645 | if data_n < 0: |
---|
646 | data_n = -data_n |
---|
647 | err_y[i_q] += frac * frac * data_n |
---|
648 | else: |
---|
649 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
650 | if dq_data is not None: |
---|
651 | # To be consistent with dq calculation in 1d reduction, |
---|
652 | # we need just the averages (not quadratures) because |
---|
653 | # it should not depend on the number of the q points |
---|
654 | # in the qr bins. |
---|
655 | err_x[i_q] += frac * dq_data[npt] |
---|
656 | else: |
---|
657 | err_x = None |
---|
658 | y_counts[i_q] += frac |
---|
659 | |
---|
660 | # Average the sums |
---|
661 | for n in range(nbins): |
---|
662 | if err_y[n] < 0: |
---|
663 | err_y[n] = -err_y[n] |
---|
664 | err_y[n] = math.sqrt(err_y[n]) |
---|
665 | # if err_x is not None: |
---|
666 | # err_x[n] = math.sqrt(err_x[n]) |
---|
667 | |
---|
668 | err_y = err_y / y_counts |
---|
669 | err_y[err_y == 0] = np.average(err_y) |
---|
670 | y = y / y_counts |
---|
671 | x = x / y_counts |
---|
672 | idx = (np.isfinite(y)) & (np.isfinite(x)) |
---|
673 | |
---|
674 | if err_x is not None: |
---|
675 | d_x = err_x[idx] / y_counts[idx] |
---|
676 | else: |
---|
677 | d_x = None |
---|
678 | |
---|
679 | if not idx.any(): |
---|
680 | msg = "Average Error: No points inside ROI to average..." |
---|
681 | raise ValueError(msg) |
---|
682 | |
---|
683 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) |
---|
684 | |
---|
685 | ################################################################################ |
---|
686 | |
---|
687 | class Ring(object): |
---|
688 | """ |
---|
689 | Defines a ring on a 2D data set. |
---|
690 | The ring is defined by r_min, r_max, and |
---|
691 | the position of the center of the ring. |
---|
692 | |
---|
693 | The data returned is the distribution of counts |
---|
694 | around the ring as a function of phi. |
---|
695 | |
---|
696 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
697 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
698 | """ |
---|
699 | # Todo: remove center. |
---|
700 | |
---|
701 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): |
---|
702 | # Minimum radius |
---|
703 | self.r_min = r_min |
---|
704 | # Maximum radius |
---|
705 | self.r_max = r_max |
---|
706 | # Center of the ring in x |
---|
707 | self.center_x = center_x |
---|
708 | # Center of the ring in y |
---|
709 | self.center_y = center_y |
---|
710 | # Number of angular bins |
---|
711 | self.nbins_phi = nbins |
---|
712 | |
---|
713 | def __call__(self, data2D): |
---|
714 | """ |
---|
715 | Apply the ring to the data set. |
---|
716 | Returns the angular distribution for a given q range |
---|
717 | |
---|
718 | :param data2D: Data2D object |
---|
719 | |
---|
720 | :return: Data1D object |
---|
721 | """ |
---|
722 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
723 | raise RuntimeError("Ring averaging only take plottable_2D objects") |
---|
724 | |
---|
725 | Pi = math.pi |
---|
726 | |
---|
727 | # Get data |
---|
728 | data = data2D.data[np.isfinite(data2D.data)] |
---|
729 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
730 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
731 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
732 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
733 | |
---|
734 | # Set space for 1d outputs |
---|
735 | phi_bins = np.zeros(self.nbins_phi) |
---|
736 | phi_counts = np.zeros(self.nbins_phi) |
---|
737 | phi_values = np.zeros(self.nbins_phi) |
---|
738 | phi_err = np.zeros(self.nbins_phi) |
---|
739 | |
---|
740 | # Shift to apply to calculated phi values in order |
---|
741 | # to center first bin at zero |
---|
742 | phi_shift = Pi / self.nbins_phi |
---|
743 | |
---|
744 | for npt in range(len(data)): |
---|
745 | frac = 0 |
---|
746 | # q-value at the point (npt) |
---|
747 | q_value = q_data[npt] |
---|
748 | data_n = data[npt] |
---|
749 | |
---|
750 | # phi-value at the point (npt) |
---|
751 | phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi |
---|
752 | |
---|
753 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
754 | frac = 1 |
---|
755 | if frac == 0: |
---|
756 | continue |
---|
757 | # binning |
---|
758 | i_phi = int(math.floor((self.nbins_phi) * |
---|
759 | (phi_value + phi_shift) / (2 * Pi))) |
---|
760 | |
---|
761 | # Take care of the edge case at phi = 2pi. |
---|
762 | if i_phi >= self.nbins_phi: |
---|
763 | i_phi = 0 |
---|
764 | phi_bins[i_phi] += frac * data[npt] |
---|
765 | |
---|
766 | if err_data is None or err_data[npt] == 0.0: |
---|
767 | if data_n < 0: |
---|
768 | data_n = -data_n |
---|
769 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
770 | else: |
---|
771 | phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] |
---|
772 | phi_counts[i_phi] += frac |
---|
773 | |
---|
774 | for i in range(self.nbins_phi): |
---|
775 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
776 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
777 | phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) |
---|
778 | |
---|
779 | idx = (np.isfinite(phi_bins)) |
---|
780 | |
---|
781 | if not idx.any(): |
---|
782 | msg = "Average Error: No points inside ROI to average..." |
---|
783 | raise ValueError(msg) |
---|
784 | # elif len(phi_bins[idx])!= self.nbins_phi: |
---|
785 | # print "resulted",self.nbins_phi- len(phi_bins[idx]) |
---|
786 | #,"empty bin(s) due to tight binning..." |
---|
787 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
788 | |
---|
789 | |
---|
790 | class _Sector(object): |
---|
791 | """ |
---|
792 | Defines a sector region on a 2D data set. |
---|
793 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
794 | and the position of the center of the ring |
---|
795 | where phi_min and phi_max are defined by the right |
---|
796 | and left lines wrt central line |
---|
797 | and phi_max could be less than phi_min. |
---|
798 | |
---|
799 | Phi is defined between 0 and 2*pi in anti-clockwise |
---|
800 | starting from the x- axis on the left-hand side |
---|
801 | """ |
---|
802 | |
---|
803 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20, |
---|
804 | base=None): |
---|
805 | ''' |
---|
806 | :param base: must be a valid base for an algorithm, i.e., |
---|
807 | a positive number |
---|
808 | ''' |
---|
809 | self.r_min = r_min |
---|
810 | self.r_max = r_max |
---|
811 | self.phi_min = phi_min |
---|
812 | self.phi_max = phi_max |
---|
813 | self.nbins = nbins |
---|
814 | self.base = base |
---|
815 | |
---|
816 | def _agv(self, data2D, run='phi'): |
---|
817 | """ |
---|
818 | Perform sector averaging. |
---|
819 | |
---|
820 | :param data2D: Data2D object |
---|
821 | :param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
822 | |
---|
823 | :return: Data1D object |
---|
824 | """ |
---|
825 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
826 | raise RuntimeError("Ring averaging only take plottable_2D objects") |
---|
827 | |
---|
828 | # Get the all data & info |
---|
829 | data = data2D.data[np.isfinite(data2D.data)] |
---|
830 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
831 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
832 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
833 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
834 | |
---|
835 | dq_data = None |
---|
836 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
837 | dq_data = get_dq_data(data2D) |
---|
838 | |
---|
839 | # set space for 1d outputs |
---|
840 | x = np.zeros(self.nbins) |
---|
841 | y = np.zeros(self.nbins) |
---|
842 | y_err = np.zeros(self.nbins) |
---|
843 | x_err = np.zeros(self.nbins) |
---|
844 | y_counts = np.zeros(self.nbins) # Cycle counts (for the mean) |
---|
845 | |
---|
846 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
847 | phi_min = flip_phi(self.phi_min) |
---|
848 | phi_max = flip_phi(self.phi_max) |
---|
849 | |
---|
850 | # binning object |
---|
851 | if run.lower() == 'phi': |
---|
852 | binning = Binning(self.phi_min, self.phi_max, self.nbins, self.base) |
---|
853 | else: |
---|
854 | binning = Binning(self.r_min, self.r_max, self.nbins, self.base) |
---|
855 | |
---|
856 | for n in range(len(data)): |
---|
857 | |
---|
858 | # q-value at the pixel (j,i) |
---|
859 | q_value = q_data[n] |
---|
860 | data_n = data[n] |
---|
861 | |
---|
862 | # Is pixel within range? |
---|
863 | is_in = False |
---|
864 | |
---|
865 | # phi-value of the pixel (j,i) |
---|
866 | phi_value = math.atan2(qy_data[n], qx_data[n]) + math.pi |
---|
867 | |
---|
868 | # No need to calculate: data outside of the radius |
---|
869 | if self.r_min > q_value or q_value > self.r_max: |
---|
870 | continue |
---|
871 | |
---|
872 | # In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
873 | if run.lower() == 'q2': |
---|
874 | # For minor sector wing |
---|
875 | # Calculate the minor wing phis |
---|
876 | phi_min_minor = flip_phi(phi_min - math.pi) |
---|
877 | phi_max_minor = flip_phi(phi_max - math.pi) |
---|
878 | # Check if phis of the minor ring is within 0 to 2pi |
---|
879 | if phi_min_minor > phi_max_minor: |
---|
880 | is_in = (phi_value > phi_min_minor or |
---|
881 | phi_value < phi_max_minor) |
---|
882 | else: |
---|
883 | is_in = (phi_value > phi_min_minor and |
---|
884 | phi_value < phi_max_minor) |
---|
885 | |
---|
886 | # For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
887 | # Find pixels within ROI |
---|
888 | if phi_min > phi_max: |
---|
889 | is_in = is_in or (phi_value > phi_min or |
---|
890 | phi_value < phi_max) |
---|
891 | else: |
---|
892 | is_in = is_in or (phi_value >= phi_min and |
---|
893 | phi_value < phi_max) |
---|
894 | |
---|
895 | # data oustide of the phi range |
---|
896 | if not is_in: |
---|
897 | continue |
---|
898 | |
---|
899 | # Get the binning index |
---|
900 | if run.lower() == 'phi': |
---|
901 | i_bin = binning.get_bin_index(phi_value) |
---|
902 | else: |
---|
903 | i_bin = binning.get_bin_index(q_value) |
---|
904 | |
---|
905 | # Take care of the edge case at phi = 2pi. |
---|
906 | if i_bin == self.nbins: |
---|
907 | i_bin = self.nbins - 1 |
---|
908 | |
---|
909 | # Get the total y |
---|
910 | y[i_bin] += data_n |
---|
911 | x[i_bin] += q_value |
---|
912 | if err_data[n] is None or err_data[n] == 0.0: |
---|
913 | if data_n < 0: |
---|
914 | data_n = -data_n |
---|
915 | y_err[i_bin] += data_n |
---|
916 | else: |
---|
917 | y_err[i_bin] += err_data[n]**2 |
---|
918 | |
---|
919 | if dq_data is not None: |
---|
920 | # To be consistent with dq calculation in 1d reduction, |
---|
921 | # we need just the averages (not quadratures) because |
---|
922 | # it should not depend on the number of the q points |
---|
923 | # in the qr bins. |
---|
924 | x_err[i_bin] += dq_data[n] |
---|
925 | else: |
---|
926 | x_err = None |
---|
927 | y_counts[i_bin] += 1 |
---|
928 | |
---|
929 | # Organize the results |
---|
930 | with np.errstate(divide='ignore', invalid='ignore'): |
---|
931 | y = y/y_counts |
---|
932 | y_err = np.sqrt(y_err)/y_counts |
---|
933 | # The type of averaging: phi, q2, or q |
---|
934 | # Calculate x values at the center of the bin |
---|
935 | if run.lower() == 'phi': |
---|
936 | step = (self.phi_max - self.phi_min) / self.nbins |
---|
937 | x = (np.arange(self.nbins) + 0.5) * step + self.phi_min |
---|
938 | else: |
---|
939 | # set q to the average of the q values within each bin |
---|
940 | x = x/y_counts |
---|
941 | |
---|
942 | ### Alternate algorithm |
---|
943 | ## We take the center of ring area, not radius. |
---|
944 | ## This is more accurate than taking the radial center of ring. |
---|
945 | #step = (self.r_max - self.r_min) / self.nbins |
---|
946 | #r_inner = self.r_min + step * np.arange(self.nbins) |
---|
947 | #x = math.sqrt((r_inner**2 + (r_inner + step)**2) / 2) |
---|
948 | |
---|
949 | idx = (np.isfinite(y) & np.isfinite(y_err)) |
---|
950 | if x_err is not None: |
---|
951 | d_x = x_err[idx] / y_counts[idx] |
---|
952 | else: |
---|
953 | d_x = None |
---|
954 | if not idx.any(): |
---|
955 | msg = "Average Error: No points inside sector of ROI to average..." |
---|
956 | raise ValueError(msg) |
---|
957 | # elif len(y[idx])!= self.nbins: |
---|
958 | # print "resulted",self.nbins- len(y[idx]), |
---|
959 | # "empty bin(s) due to tight binning..." |
---|
960 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx], dx=d_x) |
---|
961 | |
---|
962 | |
---|
963 | class SectorPhi(_Sector): |
---|
964 | """ |
---|
965 | Sector average as a function of phi. |
---|
966 | I(phi) is return and the data is averaged over Q. |
---|
967 | |
---|
968 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
969 | The number of bin in phi also has to be defined. |
---|
970 | """ |
---|
971 | |
---|
972 | def __call__(self, data2D): |
---|
973 | """ |
---|
974 | Perform sector average and return I(phi). |
---|
975 | |
---|
976 | :param data2D: Data2D object |
---|
977 | :return: Data1D object |
---|
978 | """ |
---|
979 | return self._agv(data2D, 'phi') |
---|
980 | |
---|
981 | |
---|
982 | class SectorQ(_Sector): |
---|
983 | """ |
---|
984 | Sector average as a function of Q for both symatric wings. |
---|
985 | I(Q) is return and the data is averaged over phi. |
---|
986 | |
---|
987 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
988 | r_min, r_max, phi_min, phi_max >0. |
---|
989 | The number of bin in Q also has to be defined. |
---|
990 | """ |
---|
991 | |
---|
992 | def __call__(self, data2D): |
---|
993 | """ |
---|
994 | Perform sector average and return I(Q). |
---|
995 | |
---|
996 | :param data2D: Data2D object |
---|
997 | |
---|
998 | :return: Data1D object |
---|
999 | """ |
---|
1000 | return self._agv(data2D, 'q2') |
---|
1001 | |
---|
1002 | ################################################################################ |
---|
1003 | |
---|
1004 | class Ringcut(object): |
---|
1005 | """ |
---|
1006 | Defines a ring on a 2D data set. |
---|
1007 | The ring is defined by r_min, r_max, and |
---|
1008 | the position of the center of the ring. |
---|
1009 | |
---|
1010 | The data returned is the region inside the ring |
---|
1011 | |
---|
1012 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
1013 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
1014 | """ |
---|
1015 | |
---|
1016 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0): |
---|
1017 | # Minimum radius |
---|
1018 | self.r_min = r_min |
---|
1019 | # Maximum radius |
---|
1020 | self.r_max = r_max |
---|
1021 | # Center of the ring in x |
---|
1022 | self.center_x = center_x |
---|
1023 | # Center of the ring in y |
---|
1024 | self.center_y = center_y |
---|
1025 | |
---|
1026 | def __call__(self, data2D): |
---|
1027 | """ |
---|
1028 | Apply the ring to the data set. |
---|
1029 | Returns the angular distribution for a given q range |
---|
1030 | |
---|
1031 | :param data2D: Data2D object |
---|
1032 | |
---|
1033 | :return: index array in the range |
---|
1034 | """ |
---|
1035 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
1036 | raise RuntimeError("Ring cut only take plottable_2D objects") |
---|
1037 | |
---|
1038 | # Get data |
---|
1039 | qx_data = data2D.qx_data |
---|
1040 | qy_data = data2D.qy_data |
---|
1041 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
1042 | |
---|
1043 | # check whether or not the data point is inside ROI |
---|
1044 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
1045 | return out |
---|
1046 | |
---|
1047 | ################################################################################ |
---|
1048 | |
---|
1049 | class Boxcut(object): |
---|
1050 | """ |
---|
1051 | Find a rectangular 2D region of interest. |
---|
1052 | """ |
---|
1053 | |
---|
1054 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
1055 | # Minimum Qx value [A-1] |
---|
1056 | self.x_min = x_min |
---|
1057 | # Maximum Qx value [A-1] |
---|
1058 | self.x_max = x_max |
---|
1059 | # Minimum Qy value [A-1] |
---|
1060 | self.y_min = y_min |
---|
1061 | # Maximum Qy value [A-1] |
---|
1062 | self.y_max = y_max |
---|
1063 | |
---|
1064 | def __call__(self, data2D): |
---|
1065 | """ |
---|
1066 | Find a rectangular 2D region of interest. |
---|
1067 | |
---|
1068 | :param data2D: Data2D object |
---|
1069 | :return: mask, 1d array (len = len(data)) |
---|
1070 | with Trues where the data points are inside ROI, otherwise False |
---|
1071 | """ |
---|
1072 | mask = self._find(data2D) |
---|
1073 | |
---|
1074 | return mask |
---|
1075 | |
---|
1076 | def _find(self, data2D): |
---|
1077 | """ |
---|
1078 | Find a rectangular 2D region of interest. |
---|
1079 | |
---|
1080 | :param data2D: Data2D object |
---|
1081 | |
---|
1082 | :return: out, 1d array (length = len(data)) |
---|
1083 | with Trues where the data points are inside ROI, otherwise Falses |
---|
1084 | """ |
---|
1085 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
1086 | raise RuntimeError("Boxcut take only plottable_2D objects") |
---|
1087 | # Get qx_ and qy_data |
---|
1088 | qx_data = data2D.qx_data |
---|
1089 | qy_data = data2D.qy_data |
---|
1090 | |
---|
1091 | # check whether or not the data point is inside ROI |
---|
1092 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
1093 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
1094 | |
---|
1095 | return outx & outy |
---|
1096 | |
---|
1097 | ################################################################################ |
---|
1098 | |
---|
1099 | class Sectorcut(object): |
---|
1100 | """ |
---|
1101 | Defines a sector (major + minor) region on a 2D data set. |
---|
1102 | The sector is defined by phi_min, phi_max, |
---|
1103 | where phi_min and phi_max are defined by the right |
---|
1104 | and left lines wrt central line. |
---|
1105 | |
---|
1106 | Phi_min and phi_max are given in units of radian |
---|
1107 | and (phi_max-phi_min) should not be larger than pi |
---|
1108 | """ |
---|
1109 | |
---|
1110 | def __init__(self, phi_min=0, phi_max=math.pi): |
---|
1111 | self.phi_min = phi_min |
---|
1112 | self.phi_max = phi_max |
---|
1113 | |
---|
1114 | def __call__(self, data2D): |
---|
1115 | """ |
---|
1116 | Find a rectangular 2D region of interest. |
---|
1117 | |
---|
1118 | :param data2D: Data2D object |
---|
1119 | |
---|
1120 | :return: mask, 1d array (len = len(data)) |
---|
1121 | |
---|
1122 | with Trues where the data points are inside ROI, otherwise False |
---|
1123 | """ |
---|
1124 | mask = self._find(data2D) |
---|
1125 | |
---|
1126 | return mask |
---|
1127 | |
---|
1128 | def _find(self, data2D): |
---|
1129 | """ |
---|
1130 | Find a rectangular 2D region of interest. |
---|
1131 | |
---|
1132 | :param data2D: Data2D object |
---|
1133 | |
---|
1134 | :return: out, 1d array (length = len(data)) |
---|
1135 | |
---|
1136 | with Trues where the data points are inside ROI, otherwise Falses |
---|
1137 | """ |
---|
1138 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
1139 | raise RuntimeError("Sectorcut take only plottable_2D objects") |
---|
1140 | Pi = math.pi |
---|
1141 | # Get data |
---|
1142 | qx_data = data2D.qx_data |
---|
1143 | qy_data = data2D.qy_data |
---|
1144 | |
---|
1145 | # get phi from data |
---|
1146 | phi_data = np.arctan2(qy_data, qx_data) |
---|
1147 | |
---|
1148 | # Get the min and max into the region: -pi <= phi < Pi |
---|
1149 | phi_min_major = flip_phi(self.phi_min + Pi) - Pi |
---|
1150 | phi_max_major = flip_phi(self.phi_max + Pi) - Pi |
---|
1151 | # check for major sector |
---|
1152 | if phi_min_major > phi_max_major: |
---|
1153 | out_major = (phi_min_major <= phi_data) + \ |
---|
1154 | (phi_max_major > phi_data) |
---|
1155 | else: |
---|
1156 | out_major = (phi_min_major <= phi_data) & ( |
---|
1157 | phi_max_major > phi_data) |
---|
1158 | |
---|
1159 | # minor sector |
---|
1160 | # Get the min and max into the region: -pi <= phi < Pi |
---|
1161 | phi_min_minor = flip_phi(self.phi_min) - Pi |
---|
1162 | phi_max_minor = flip_phi(self.phi_max) - Pi |
---|
1163 | |
---|
1164 | # check for minor sector |
---|
1165 | if phi_min_minor > phi_max_minor: |
---|
1166 | out_minor = (phi_min_minor <= phi_data) + \ |
---|
1167 | (phi_max_minor >= phi_data) |
---|
1168 | else: |
---|
1169 | out_minor = (phi_min_minor <= phi_data) & \ |
---|
1170 | (phi_max_minor >= phi_data) |
---|
1171 | out = out_major + out_minor |
---|
1172 | |
---|
1173 | return out |
---|