[959eb01] | 1 | """ |
---|
| 2 | Data manipulations for 2D data sets. |
---|
| 3 | Using the meta data information, various types of averaging |
---|
| 4 | are performed in Q-space |
---|
| 5 | """ |
---|
| 6 | ##################################################################### |
---|
| 7 | #This software was developed by the University of Tennessee as part of the |
---|
| 8 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 9 | #project funded by the US National Science Foundation. |
---|
| 10 | #See the license text in license.txt |
---|
| 11 | #copyright 2008, University of Tennessee |
---|
| 12 | ###################################################################### |
---|
| 13 | |
---|
| 14 | #TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
| 15 | import math |
---|
| 16 | import numpy |
---|
| 17 | |
---|
| 18 | #from data_info import plottable_2D |
---|
| 19 | from data_info import Data1D |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | def get_q(dx, dy, det_dist, wavelength): |
---|
| 23 | """ |
---|
| 24 | :param dx: x-distance from beam center [mm] |
---|
| 25 | :param dy: y-distance from beam center [mm] |
---|
| 26 | :return: q-value at the given position |
---|
| 27 | """ |
---|
| 28 | # Distance from beam center in the plane of detector |
---|
| 29 | plane_dist = math.sqrt(dx * dx + dy * dy) |
---|
| 30 | # Half of the scattering angle |
---|
| 31 | theta = 0.5 * math.atan(plane_dist / det_dist) |
---|
| 32 | return (4.0 * math.pi / wavelength) * math.sin(theta) |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | def get_q_compo(dx, dy, det_dist, wavelength, compo=None): |
---|
| 36 | """ |
---|
| 37 | This reduces tiny error at very large q. |
---|
| 38 | Implementation of this func is not started yet.<--ToDo |
---|
| 39 | """ |
---|
| 40 | if dy == 0: |
---|
| 41 | if dx >= 0: |
---|
| 42 | angle_xy = 0 |
---|
| 43 | else: |
---|
| 44 | angle_xy = math.pi |
---|
| 45 | else: |
---|
| 46 | angle_xy = math.atan(dx / dy) |
---|
| 47 | |
---|
| 48 | if compo == "x": |
---|
| 49 | out = get_q(dx, dy, det_dist, wavelength) * math.cos(angle_xy) |
---|
| 50 | elif compo == "y": |
---|
| 51 | out = get_q(dx, dy, det_dist, wavelength) * math.sin(angle_xy) |
---|
| 52 | else: |
---|
| 53 | out = get_q(dx, dy, det_dist, wavelength) |
---|
| 54 | return out |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | def flip_phi(phi): |
---|
| 58 | """ |
---|
| 59 | Correct phi to within the 0 <= to <= 2pi range |
---|
| 60 | |
---|
| 61 | :return: phi in >=0 and <=2Pi |
---|
| 62 | """ |
---|
| 63 | Pi = math.pi |
---|
| 64 | if phi < 0: |
---|
| 65 | phi_out = phi + (2 * Pi) |
---|
| 66 | elif phi > (2 * Pi): |
---|
| 67 | phi_out = phi - (2 * Pi) |
---|
| 68 | else: |
---|
| 69 | phi_out = phi |
---|
| 70 | return phi_out |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | def reader2D_converter(data2d=None): |
---|
| 74 | """ |
---|
| 75 | convert old 2d format opened by IhorReader or danse_reader |
---|
| 76 | to new Data2D format |
---|
| 77 | |
---|
| 78 | :param data2d: 2d array of Data2D object |
---|
| 79 | :return: 1d arrays of Data2D object |
---|
| 80 | |
---|
| 81 | """ |
---|
| 82 | if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: |
---|
| 83 | raise ValueError, "Can't convert this data: data=None..." |
---|
| 84 | new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins), 1)) |
---|
| 85 | new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins), 1)) |
---|
| 86 | new_y = new_y.swapaxes(0, 1) |
---|
| 87 | |
---|
| 88 | new_data = data2d.data.flatten() |
---|
| 89 | qx_data = new_x.flatten() |
---|
| 90 | qy_data = new_y.flatten() |
---|
| 91 | q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
| 92 | if data2d.err_data is None or numpy.any(data2d.err_data <= 0): |
---|
| 93 | new_err_data = numpy.sqrt(numpy.abs(new_data)) |
---|
| 94 | else: |
---|
| 95 | new_err_data = data2d.err_data.flatten() |
---|
| 96 | mask = numpy.ones(len(new_data), dtype=bool) |
---|
| 97 | |
---|
| 98 | #TODO: make sense of the following two lines... |
---|
| 99 | #from sas.sascalc.dataloader.data_info import Data2D |
---|
| 100 | #output = Data2D() |
---|
| 101 | output = data2d |
---|
| 102 | output.data = new_data |
---|
| 103 | output.err_data = new_err_data |
---|
| 104 | output.qx_data = qx_data |
---|
| 105 | output.qy_data = qy_data |
---|
| 106 | output.q_data = q_data |
---|
| 107 | output.mask = mask |
---|
| 108 | |
---|
| 109 | return output |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | class _Slab(object): |
---|
| 113 | """ |
---|
| 114 | Compute average I(Q) for a region of interest |
---|
| 115 | """ |
---|
| 116 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, |
---|
| 117 | y_max=0.0, bin_width=0.001): |
---|
| 118 | # Minimum Qx value [A-1] |
---|
| 119 | self.x_min = x_min |
---|
| 120 | # Maximum Qx value [A-1] |
---|
| 121 | self.x_max = x_max |
---|
| 122 | # Minimum Qy value [A-1] |
---|
| 123 | self.y_min = y_min |
---|
| 124 | # Maximum Qy value [A-1] |
---|
| 125 | self.y_max = y_max |
---|
| 126 | # Bin width (step size) [A-1] |
---|
| 127 | self.bin_width = bin_width |
---|
| 128 | # If True, I(|Q|) will be return, otherwise, |
---|
| 129 | # negative q-values are allowed |
---|
| 130 | self.fold = False |
---|
| 131 | |
---|
| 132 | def __call__(self, data2D): |
---|
| 133 | return NotImplemented |
---|
| 134 | |
---|
| 135 | def _avg(self, data2D, maj): |
---|
| 136 | """ |
---|
| 137 | Compute average I(Q_maj) for a region of interest. |
---|
| 138 | The major axis is defined as the axis of Q_maj. |
---|
| 139 | The minor axis is the axis that we average over. |
---|
| 140 | |
---|
| 141 | :param data2D: Data2D object |
---|
| 142 | :param maj_min: min value on the major axis |
---|
| 143 | :return: Data1D object |
---|
| 144 | """ |
---|
| 145 | if len(data2D.detector) > 1: |
---|
| 146 | msg = "_Slab._avg: invalid number of " |
---|
| 147 | msg += " detectors: %g" % len(data2D.detector) |
---|
| 148 | raise RuntimeError, msg |
---|
| 149 | |
---|
| 150 | # Get data |
---|
| 151 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 152 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 153 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 154 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 155 | |
---|
| 156 | # Build array of Q intervals |
---|
| 157 | if maj == 'x': |
---|
| 158 | if self.fold: |
---|
| 159 | x_min = 0 |
---|
| 160 | else: |
---|
| 161 | x_min = self.x_min |
---|
| 162 | nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) |
---|
| 163 | elif maj == 'y': |
---|
| 164 | if self.fold: |
---|
| 165 | y_min = 0 |
---|
| 166 | else: |
---|
| 167 | y_min = self.y_min |
---|
| 168 | nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) |
---|
| 169 | else: |
---|
| 170 | raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj) |
---|
| 171 | |
---|
| 172 | x = numpy.zeros(nbins) |
---|
| 173 | y = numpy.zeros(nbins) |
---|
| 174 | err_y = numpy.zeros(nbins) |
---|
| 175 | y_counts = numpy.zeros(nbins) |
---|
| 176 | |
---|
| 177 | # Average pixelsize in q space |
---|
| 178 | for npts in range(len(data)): |
---|
| 179 | # default frac |
---|
| 180 | frac_x = 0 |
---|
| 181 | frac_y = 0 |
---|
| 182 | # get ROI |
---|
| 183 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
| 184 | frac_x = 1 |
---|
| 185 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
| 186 | frac_y = 1 |
---|
| 187 | frac = frac_x * frac_y |
---|
| 188 | |
---|
| 189 | if frac == 0: |
---|
| 190 | continue |
---|
| 191 | # binning: find axis of q |
---|
| 192 | if maj == 'x': |
---|
| 193 | q_value = qx_data[npts] |
---|
| 194 | min_value = x_min |
---|
| 195 | if maj == 'y': |
---|
| 196 | q_value = qy_data[npts] |
---|
| 197 | min_value = y_min |
---|
| 198 | if self.fold and q_value < 0: |
---|
| 199 | q_value = -q_value |
---|
| 200 | # bin |
---|
| 201 | i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 |
---|
| 202 | |
---|
| 203 | # skip outside of max bins |
---|
| 204 | if i_q < 0 or i_q >= nbins: |
---|
| 205 | continue |
---|
| 206 | |
---|
| 207 | #TODO: find better definition of x[i_q] based on q_data |
---|
| 208 | # min_value + (i_q + 1) * self.bin_width / 2.0 |
---|
| 209 | x[i_q] += frac * q_value |
---|
| 210 | y[i_q] += frac * data[npts] |
---|
| 211 | |
---|
[235f514] | 212 | if err_data is None or err_data[npts] == 0.0: |
---|
[959eb01] | 213 | if data[npts] < 0: |
---|
| 214 | data[npts] = -data[npts] |
---|
| 215 | err_y[i_q] += frac * frac * data[npts] |
---|
| 216 | else: |
---|
| 217 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
| 218 | y_counts[i_q] += frac |
---|
| 219 | |
---|
| 220 | # Average the sums |
---|
| 221 | for n in range(nbins): |
---|
| 222 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 223 | |
---|
| 224 | err_y = err_y / y_counts |
---|
| 225 | y = y / y_counts |
---|
| 226 | x = x / y_counts |
---|
| 227 | idx = (numpy.isfinite(y) & numpy.isfinite(x)) |
---|
| 228 | |
---|
| 229 | if not idx.any(): |
---|
| 230 | msg = "Average Error: No points inside ROI to average..." |
---|
| 231 | raise ValueError, msg |
---|
| 232 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | class SlabY(_Slab): |
---|
| 236 | """ |
---|
| 237 | Compute average I(Qy) for a region of interest |
---|
| 238 | """ |
---|
| 239 | def __call__(self, data2D): |
---|
| 240 | """ |
---|
| 241 | Compute average I(Qy) for a region of interest |
---|
| 242 | |
---|
| 243 | :param data2D: Data2D object |
---|
| 244 | :return: Data1D object |
---|
| 245 | """ |
---|
| 246 | return self._avg(data2D, 'y') |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | class SlabX(_Slab): |
---|
| 250 | """ |
---|
| 251 | Compute average I(Qx) for a region of interest |
---|
| 252 | """ |
---|
| 253 | def __call__(self, data2D): |
---|
| 254 | """ |
---|
| 255 | Compute average I(Qx) for a region of interest |
---|
| 256 | :param data2D: Data2D object |
---|
| 257 | :return: Data1D object |
---|
| 258 | """ |
---|
| 259 | return self._avg(data2D, 'x') |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | class Boxsum(object): |
---|
| 263 | """ |
---|
| 264 | Perform the sum of counts in a 2D region of interest. |
---|
| 265 | """ |
---|
| 266 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 267 | # Minimum Qx value [A-1] |
---|
| 268 | self.x_min = x_min |
---|
| 269 | # Maximum Qx value [A-1] |
---|
| 270 | self.x_max = x_max |
---|
| 271 | # Minimum Qy value [A-1] |
---|
| 272 | self.y_min = y_min |
---|
| 273 | # Maximum Qy value [A-1] |
---|
| 274 | self.y_max = y_max |
---|
| 275 | |
---|
| 276 | def __call__(self, data2D): |
---|
| 277 | """ |
---|
| 278 | Perform the sum in the region of interest |
---|
| 279 | |
---|
| 280 | :param data2D: Data2D object |
---|
| 281 | :return: number of counts, error on number of counts, |
---|
| 282 | number of points summed |
---|
| 283 | """ |
---|
| 284 | y, err_y, y_counts = self._sum(data2D) |
---|
| 285 | |
---|
| 286 | # Average the sums |
---|
| 287 | counts = 0 if y_counts == 0 else y |
---|
| 288 | error = 0 if y_counts == 0 else math.sqrt(err_y) |
---|
| 289 | |
---|
| 290 | # Added y_counts to return, SMK & PDB, 04/03/2013 |
---|
| 291 | return counts, error, y_counts |
---|
| 292 | |
---|
| 293 | def _sum(self, data2D): |
---|
| 294 | """ |
---|
| 295 | Perform the sum in the region of interest |
---|
| 296 | |
---|
| 297 | :param data2D: Data2D object |
---|
| 298 | :return: number of counts, |
---|
| 299 | error on number of counts, number of entries summed |
---|
| 300 | """ |
---|
| 301 | if len(data2D.detector) > 1: |
---|
| 302 | msg = "Circular averaging: invalid number " |
---|
| 303 | msg += "of detectors: %g" % len(data2D.detector) |
---|
| 304 | raise RuntimeError, msg |
---|
| 305 | # Get data |
---|
| 306 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 307 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 308 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 309 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 310 | |
---|
| 311 | y = 0.0 |
---|
| 312 | err_y = 0.0 |
---|
| 313 | y_counts = 0.0 |
---|
| 314 | |
---|
| 315 | # Average pixelsize in q space |
---|
| 316 | for npts in range(len(data)): |
---|
| 317 | # default frac |
---|
| 318 | frac_x = 0 |
---|
| 319 | frac_y = 0 |
---|
| 320 | |
---|
| 321 | # get min and max at each points |
---|
| 322 | qx = qx_data[npts] |
---|
| 323 | qy = qy_data[npts] |
---|
| 324 | |
---|
| 325 | # get the ROI |
---|
| 326 | if self.x_min <= qx and self.x_max > qx: |
---|
| 327 | frac_x = 1 |
---|
| 328 | if self.y_min <= qy and self.y_max > qy: |
---|
| 329 | frac_y = 1 |
---|
| 330 | #Find the fraction along each directions |
---|
| 331 | frac = frac_x * frac_y |
---|
| 332 | if frac == 0: |
---|
| 333 | continue |
---|
| 334 | y += frac * data[npts] |
---|
[235f514] | 335 | if err_data is None or err_data[npts] == 0.0: |
---|
[959eb01] | 336 | if data[npts] < 0: |
---|
| 337 | data[npts] = -data[npts] |
---|
| 338 | err_y += frac * frac * data[npts] |
---|
| 339 | else: |
---|
| 340 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
| 341 | y_counts += frac |
---|
| 342 | return y, err_y, y_counts |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | class Boxavg(Boxsum): |
---|
| 346 | """ |
---|
| 347 | Perform the average of counts in a 2D region of interest. |
---|
| 348 | """ |
---|
| 349 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 350 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, |
---|
| 351 | y_min=y_min, y_max=y_max) |
---|
| 352 | |
---|
| 353 | def __call__(self, data2D): |
---|
| 354 | """ |
---|
| 355 | Perform the sum in the region of interest |
---|
| 356 | |
---|
| 357 | :param data2D: Data2D object |
---|
| 358 | :return: average counts, error on average counts |
---|
| 359 | |
---|
| 360 | """ |
---|
| 361 | y, err_y, y_counts = self._sum(data2D) |
---|
| 362 | |
---|
| 363 | # Average the sums |
---|
| 364 | counts = 0 if y_counts == 0 else y / y_counts |
---|
| 365 | error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts |
---|
| 366 | |
---|
| 367 | return counts, error |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
| 371 | """ |
---|
| 372 | Return the fraction of the length |
---|
| 373 | from xmin to x.:: |
---|
| 374 | |
---|
| 375 | A B |
---|
| 376 | +-----------+---------+ |
---|
| 377 | xmin x xmax |
---|
| 378 | |
---|
| 379 | :param x: x-value |
---|
| 380 | :param xmin: minimum x for the length considered |
---|
| 381 | :param xmax: minimum x for the length considered |
---|
| 382 | :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
| 383 | |
---|
| 384 | """ |
---|
| 385 | if x <= xmin: |
---|
| 386 | return 0.0 |
---|
| 387 | if x > xmin and x < xmax: |
---|
| 388 | return (x - xmin) / (xmax - xmin) |
---|
| 389 | else: |
---|
| 390 | return 1.0 |
---|
| 391 | |
---|
| 392 | |
---|
| 393 | class CircularAverage(object): |
---|
| 394 | """ |
---|
| 395 | Perform circular averaging on 2D data |
---|
| 396 | |
---|
| 397 | The data returned is the distribution of counts |
---|
| 398 | as a function of Q |
---|
| 399 | """ |
---|
| 400 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
| 401 | # Minimum radius included in the average [A-1] |
---|
| 402 | self.r_min = r_min |
---|
| 403 | # Maximum radius included in the average [A-1] |
---|
| 404 | self.r_max = r_max |
---|
| 405 | # Bin width (step size) [A-1] |
---|
| 406 | self.bin_width = bin_width |
---|
| 407 | |
---|
| 408 | def __call__(self, data2D, ismask=False): |
---|
| 409 | """ |
---|
| 410 | Perform circular averaging on the data |
---|
| 411 | |
---|
| 412 | :param data2D: Data2D object |
---|
| 413 | :return: Data1D object |
---|
| 414 | """ |
---|
| 415 | # Get data W/ finite values |
---|
| 416 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 417 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 418 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 419 | mask_data = data2D.mask[numpy.isfinite(data2D.data)] |
---|
| 420 | |
---|
| 421 | dq_data = None |
---|
| 422 | |
---|
| 423 | # Get the dq for resolution averaging |
---|
[7432acb] | 424 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
[959eb01] | 425 | # The pinholes and det. pix contribution present |
---|
| 426 | # in both direction of the 2D which must be subtracted when |
---|
| 427 | # converting to 1D: dq_overlap should calculated ideally at |
---|
| 428 | # q = 0. Note This method works on only pinhole geometry. |
---|
| 429 | # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. |
---|
| 430 | z_max = max(data2D.q_data) |
---|
| 431 | z_min = min(data2D.q_data) |
---|
| 432 | x_max = data2D.dqx_data[data2D.q_data[z_max]] |
---|
| 433 | x_min = data2D.dqx_data[data2D.q_data[z_min]] |
---|
| 434 | y_max = data2D.dqy_data[data2D.q_data[z_max]] |
---|
| 435 | y_min = data2D.dqy_data[data2D.q_data[z_min]] |
---|
| 436 | # Find qdx at q = 0 |
---|
| 437 | dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) |
---|
| 438 | # when extrapolation goes wrong |
---|
| 439 | if dq_overlap_x > min(data2D.dqx_data): |
---|
| 440 | dq_overlap_x = min(data2D.dqx_data) |
---|
| 441 | dq_overlap_x *= dq_overlap_x |
---|
| 442 | # Find qdx at q = 0 |
---|
| 443 | dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) |
---|
| 444 | # when extrapolation goes wrong |
---|
| 445 | if dq_overlap_y > min(data2D.dqy_data): |
---|
| 446 | dq_overlap_y = min(data2D.dqy_data) |
---|
| 447 | # get dq at q=0. |
---|
| 448 | dq_overlap_y *= dq_overlap_y |
---|
| 449 | |
---|
| 450 | dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) |
---|
| 451 | # Final protection of dq |
---|
| 452 | if dq_overlap < 0: |
---|
| 453 | dq_overlap = y_min |
---|
| 454 | dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] |
---|
| 455 | dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap |
---|
| 456 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
| 457 | # Convert dq 2D to 1D here |
---|
| 458 | dqx = dqx_data * dqx_data |
---|
| 459 | dqy = dqy_data * dqy_data |
---|
| 460 | dq_data = numpy.add(dqx, dqy) |
---|
| 461 | dq_data = numpy.sqrt(dq_data) |
---|
| 462 | |
---|
| 463 | #q_data_max = numpy.max(q_data) |
---|
[235f514] | 464 | if len(data2D.q_data) is None: |
---|
[959eb01] | 465 | msg = "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
| 466 | raise RuntimeError, msg |
---|
| 467 | |
---|
| 468 | # Build array of Q intervals |
---|
| 469 | nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) |
---|
| 470 | |
---|
| 471 | x = numpy.zeros(nbins) |
---|
| 472 | y = numpy.zeros(nbins) |
---|
| 473 | err_y = numpy.zeros(nbins) |
---|
| 474 | err_x = numpy.zeros(nbins) |
---|
| 475 | y_counts = numpy.zeros(nbins) |
---|
| 476 | |
---|
| 477 | for npt in range(len(data)): |
---|
| 478 | |
---|
| 479 | if ismask and not mask_data[npt]: |
---|
| 480 | continue |
---|
| 481 | |
---|
| 482 | frac = 0 |
---|
| 483 | |
---|
| 484 | # q-value at the pixel (j,i) |
---|
| 485 | q_value = q_data[npt] |
---|
| 486 | data_n = data[npt] |
---|
| 487 | |
---|
| 488 | ## No need to calculate the frac when all data are within range |
---|
| 489 | if self.r_min >= self.r_max: |
---|
| 490 | raise ValueError, "Limit Error: min > max" |
---|
| 491 | |
---|
| 492 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 493 | frac = 1 |
---|
| 494 | if frac == 0: |
---|
| 495 | continue |
---|
| 496 | i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) |
---|
| 497 | |
---|
| 498 | # Take care of the edge case at phi = 2pi. |
---|
| 499 | if i_q == nbins: |
---|
| 500 | i_q = nbins - 1 |
---|
| 501 | y[i_q] += frac * data_n |
---|
| 502 | # Take dqs from data to get the q_average |
---|
| 503 | x[i_q] += frac * q_value |
---|
[235f514] | 504 | if err_data is None or err_data[npt] == 0.0: |
---|
[959eb01] | 505 | if data_n < 0: |
---|
| 506 | data_n = -data_n |
---|
| 507 | err_y[i_q] += frac * frac * data_n |
---|
| 508 | else: |
---|
| 509 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
[7432acb] | 510 | if dq_data is not None: |
---|
[959eb01] | 511 | # To be consistent with dq calculation in 1d reduction, |
---|
| 512 | # we need just the averages (not quadratures) because |
---|
| 513 | # it should not depend on the number of the q points |
---|
| 514 | # in the qr bins. |
---|
| 515 | err_x[i_q] += frac * dq_data[npt] |
---|
| 516 | else: |
---|
| 517 | err_x = None |
---|
| 518 | y_counts[i_q] += frac |
---|
| 519 | |
---|
| 520 | # Average the sums |
---|
| 521 | for n in range(nbins): |
---|
| 522 | if err_y[n] < 0: |
---|
| 523 | err_y[n] = -err_y[n] |
---|
| 524 | err_y[n] = math.sqrt(err_y[n]) |
---|
[7432acb] | 525 | #if err_x is not None: |
---|
[959eb01] | 526 | # err_x[n] = math.sqrt(err_x[n]) |
---|
| 527 | |
---|
| 528 | err_y = err_y / y_counts |
---|
| 529 | err_y[err_y == 0] = numpy.average(err_y) |
---|
| 530 | y = y / y_counts |
---|
| 531 | x = x / y_counts |
---|
| 532 | idx = (numpy.isfinite(y)) & (numpy.isfinite(x)) |
---|
| 533 | |
---|
[7432acb] | 534 | if err_x is not None: |
---|
[959eb01] | 535 | d_x = err_x[idx] / y_counts[idx] |
---|
| 536 | else: |
---|
| 537 | d_x = None |
---|
| 538 | |
---|
| 539 | if not idx.any(): |
---|
| 540 | msg = "Average Error: No points inside ROI to average..." |
---|
| 541 | raise ValueError, msg |
---|
| 542 | |
---|
| 543 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | class Ring(object): |
---|
| 547 | """ |
---|
| 548 | Defines a ring on a 2D data set. |
---|
| 549 | The ring is defined by r_min, r_max, and |
---|
| 550 | the position of the center of the ring. |
---|
| 551 | |
---|
| 552 | The data returned is the distribution of counts |
---|
| 553 | around the ring as a function of phi. |
---|
| 554 | |
---|
| 555 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 556 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
| 557 | """ |
---|
| 558 | #Todo: remove center. |
---|
| 559 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): |
---|
| 560 | # Minimum radius |
---|
| 561 | self.r_min = r_min |
---|
| 562 | # Maximum radius |
---|
| 563 | self.r_max = r_max |
---|
| 564 | # Center of the ring in x |
---|
| 565 | self.center_x = center_x |
---|
| 566 | # Center of the ring in y |
---|
| 567 | self.center_y = center_y |
---|
| 568 | # Number of angular bins |
---|
| 569 | self.nbins_phi = nbins |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | def __call__(self, data2D): |
---|
| 573 | """ |
---|
| 574 | Apply the ring to the data set. |
---|
| 575 | Returns the angular distribution for a given q range |
---|
| 576 | |
---|
| 577 | :param data2D: Data2D object |
---|
| 578 | |
---|
| 579 | :return: Data1D object |
---|
| 580 | """ |
---|
| 581 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 582 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
| 583 | |
---|
| 584 | Pi = math.pi |
---|
| 585 | |
---|
| 586 | # Get data |
---|
| 587 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 588 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 589 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 590 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 591 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 592 | |
---|
| 593 | # Set space for 1d outputs |
---|
| 594 | phi_bins = numpy.zeros(self.nbins_phi) |
---|
| 595 | phi_counts = numpy.zeros(self.nbins_phi) |
---|
| 596 | phi_values = numpy.zeros(self.nbins_phi) |
---|
| 597 | phi_err = numpy.zeros(self.nbins_phi) |
---|
| 598 | |
---|
| 599 | # Shift to apply to calculated phi values in order |
---|
| 600 | # to center first bin at zero |
---|
| 601 | phi_shift = Pi / self.nbins_phi |
---|
| 602 | |
---|
| 603 | for npt in range(len(data)): |
---|
| 604 | frac = 0 |
---|
| 605 | # q-value at the point (npt) |
---|
| 606 | q_value = q_data[npt] |
---|
| 607 | data_n = data[npt] |
---|
| 608 | |
---|
| 609 | # phi-value at the point (npt) |
---|
| 610 | phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi |
---|
| 611 | |
---|
| 612 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 613 | frac = 1 |
---|
| 614 | if frac == 0: |
---|
| 615 | continue |
---|
| 616 | # binning |
---|
| 617 | i_phi = int(math.floor((self.nbins_phi) * \ |
---|
| 618 | (phi_value + phi_shift) / (2 * Pi))) |
---|
| 619 | |
---|
| 620 | # Take care of the edge case at phi = 2pi. |
---|
| 621 | if i_phi >= self.nbins_phi: |
---|
| 622 | i_phi = 0 |
---|
| 623 | phi_bins[i_phi] += frac * data[npt] |
---|
| 624 | |
---|
[235f514] | 625 | if err_data is None or err_data[npt] == 0.0: |
---|
[959eb01] | 626 | if data_n < 0: |
---|
| 627 | data_n = -data_n |
---|
| 628 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
| 629 | else: |
---|
| 630 | phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] |
---|
| 631 | phi_counts[i_phi] += frac |
---|
| 632 | |
---|
| 633 | for i in range(self.nbins_phi): |
---|
| 634 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
| 635 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
| 636 | phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) |
---|
| 637 | |
---|
| 638 | idx = (numpy.isfinite(phi_bins)) |
---|
| 639 | |
---|
| 640 | if not idx.any(): |
---|
| 641 | msg = "Average Error: No points inside ROI to average..." |
---|
| 642 | raise ValueError, msg |
---|
| 643 | #elif len(phi_bins[idx])!= self.nbins_phi: |
---|
| 644 | # print "resulted",self.nbins_phi- len(phi_bins[idx]) |
---|
| 645 | #,"empty bin(s) due to tight binning..." |
---|
| 646 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
| 650 | """ |
---|
| 651 | Returns the fraction of the pixel defined by |
---|
| 652 | the four corners (q_00, q_01, q_10, q_11) that |
---|
| 653 | has q < qmax.:: |
---|
| 654 | |
---|
| 655 | q_01 q_11 |
---|
| 656 | y=1 +--------------+ |
---|
| 657 | | | |
---|
| 658 | | | |
---|
| 659 | | | |
---|
| 660 | y=0 +--------------+ |
---|
| 661 | q_00 q_10 |
---|
| 662 | |
---|
| 663 | x=0 x=1 |
---|
| 664 | |
---|
| 665 | """ |
---|
| 666 | # y side for x = minx |
---|
| 667 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
| 668 | # y side for x = maxx |
---|
| 669 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
| 670 | |
---|
| 671 | # x side for y = miny |
---|
| 672 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
| 673 | # x side for y = maxy |
---|
| 674 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
| 675 | |
---|
| 676 | # surface fraction for a 1x1 pixel |
---|
| 677 | frac_max = 0 |
---|
| 678 | |
---|
| 679 | if x_0 and x_1: |
---|
| 680 | frac_max = (x_0 + x_1) / 2.0 |
---|
| 681 | elif y_0 and y_1: |
---|
| 682 | frac_max = (y_0 + y_1) / 2.0 |
---|
| 683 | elif x_0 and y_0: |
---|
| 684 | if q_00 < q_10: |
---|
| 685 | frac_max = x_0 * y_0 / 2.0 |
---|
| 686 | else: |
---|
| 687 | frac_max = 1.0 - x_0 * y_0 / 2.0 |
---|
| 688 | elif x_0 and y_1: |
---|
| 689 | if q_00 < q_10: |
---|
| 690 | frac_max = x_0 * y_1 / 2.0 |
---|
| 691 | else: |
---|
| 692 | frac_max = 1.0 - x_0 * y_1 / 2.0 |
---|
| 693 | elif x_1 and y_0: |
---|
| 694 | if q_00 > q_10: |
---|
| 695 | frac_max = x_1 * y_0 / 2.0 |
---|
| 696 | else: |
---|
| 697 | frac_max = 1.0 - x_1 * y_0 / 2.0 |
---|
| 698 | elif x_1 and y_1: |
---|
| 699 | if q_00 < q_10: |
---|
| 700 | frac_max = 1.0 - (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
| 701 | else: |
---|
| 702 | frac_max = (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
| 703 | |
---|
| 704 | # If we make it here, there is no intercept between |
---|
| 705 | # this pixel and the constant-q ring. We only need |
---|
| 706 | # to know if we have to include it or exclude it. |
---|
| 707 | elif (q_00 + q_01 + q_10 + q_11) / 4.0 < qmax: |
---|
| 708 | frac_max = 1.0 |
---|
| 709 | |
---|
| 710 | return frac_max |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | def get_intercept(q, q_0, q_1): |
---|
| 714 | """ |
---|
| 715 | Returns the fraction of the side at which the |
---|
| 716 | q-value intercept the pixel, None otherwise. |
---|
| 717 | The values returned is the fraction ON THE SIDE |
---|
| 718 | OF THE LOWEST Q. :: |
---|
| 719 | |
---|
| 720 | A B |
---|
| 721 | +-----------+--------+ <--- pixel size |
---|
| 722 | 0 1 |
---|
| 723 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
| 724 | if Q_1 > Q_0, A is returned |
---|
| 725 | if Q_1 < Q_0, B is returned |
---|
| 726 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
| 727 | |
---|
| 728 | """ |
---|
| 729 | if q_1 > q_0: |
---|
| 730 | if q > q_0 and q <= q_1: |
---|
| 731 | return (q - q_0) / (q_1 - q_0) |
---|
| 732 | else: |
---|
| 733 | if q > q_1 and q <= q_0: |
---|
| 734 | return (q - q_1) / (q_0 - q_1) |
---|
| 735 | return None |
---|
| 736 | |
---|
| 737 | |
---|
| 738 | class _Sector(object): |
---|
| 739 | """ |
---|
| 740 | Defines a sector region on a 2D data set. |
---|
| 741 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
| 742 | and the position of the center of the ring |
---|
| 743 | where phi_min and phi_max are defined by the right |
---|
| 744 | and left lines wrt central line |
---|
| 745 | and phi_max could be less than phi_min. |
---|
| 746 | |
---|
| 747 | Phi is defined between 0 and 2*pi in anti-clockwise |
---|
| 748 | starting from the x- axis on the left-hand side |
---|
| 749 | """ |
---|
| 750 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20): |
---|
| 751 | self.r_min = r_min |
---|
| 752 | self.r_max = r_max |
---|
| 753 | self.phi_min = phi_min |
---|
| 754 | self.phi_max = phi_max |
---|
| 755 | self.nbins = nbins |
---|
| 756 | |
---|
| 757 | def _agv(self, data2D, run='phi'): |
---|
| 758 | """ |
---|
| 759 | Perform sector averaging. |
---|
| 760 | |
---|
| 761 | :param data2D: Data2D object |
---|
| 762 | :param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
| 763 | |
---|
| 764 | :return: Data1D object |
---|
| 765 | """ |
---|
| 766 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 767 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
| 768 | Pi = math.pi |
---|
| 769 | |
---|
| 770 | # Get the all data & info |
---|
| 771 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 772 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 773 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 774 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 775 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 776 | dq_data = None |
---|
| 777 | |
---|
| 778 | # Get the dq for resolution averaging |
---|
[7432acb] | 779 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
[959eb01] | 780 | # The pinholes and det. pix contribution present |
---|
| 781 | # in both direction of the 2D which must be subtracted when |
---|
| 782 | # converting to 1D: dq_overlap should calculated ideally at |
---|
| 783 | # q = 0. |
---|
| 784 | # Extrapolate dqy(perp) at q = 0 |
---|
| 785 | z_max = max(data2D.q_data) |
---|
| 786 | z_min = min(data2D.q_data) |
---|
| 787 | x_max = data2D.dqx_data[data2D.q_data[z_max]] |
---|
| 788 | x_min = data2D.dqx_data[data2D.q_data[z_min]] |
---|
| 789 | y_max = data2D.dqy_data[data2D.q_data[z_max]] |
---|
| 790 | y_min = data2D.dqy_data[data2D.q_data[z_min]] |
---|
| 791 | # Find qdx at q = 0 |
---|
| 792 | dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) |
---|
| 793 | # when extrapolation goes wrong |
---|
| 794 | if dq_overlap_x > min(data2D.dqx_data): |
---|
| 795 | dq_overlap_x = min(data2D.dqx_data) |
---|
| 796 | dq_overlap_x *= dq_overlap_x |
---|
| 797 | # Find qdx at q = 0 |
---|
| 798 | dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) |
---|
| 799 | # when extrapolation goes wrong |
---|
| 800 | if dq_overlap_y > min(data2D.dqy_data): |
---|
| 801 | dq_overlap_y = min(data2D.dqy_data) |
---|
| 802 | # get dq at q=0. |
---|
| 803 | dq_overlap_y *= dq_overlap_y |
---|
| 804 | |
---|
| 805 | dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) |
---|
| 806 | if dq_overlap < 0: |
---|
| 807 | dq_overlap = y_min |
---|
| 808 | dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] |
---|
| 809 | dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap |
---|
| 810 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
| 811 | # Convert dq 2D to 1D here |
---|
| 812 | dqx = dqx_data * dqx_data |
---|
| 813 | dqy = dqy_data * dqy_data |
---|
| 814 | dq_data = numpy.add(dqx, dqy) |
---|
| 815 | dq_data = numpy.sqrt(dq_data) |
---|
| 816 | |
---|
| 817 | #set space for 1d outputs |
---|
| 818 | x = numpy.zeros(self.nbins) |
---|
| 819 | y = numpy.zeros(self.nbins) |
---|
| 820 | y_err = numpy.zeros(self.nbins) |
---|
| 821 | x_err = numpy.zeros(self.nbins) |
---|
| 822 | y_counts = numpy.zeros(self.nbins) |
---|
| 823 | |
---|
| 824 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
| 825 | phi_min = flip_phi(self.phi_min) |
---|
| 826 | phi_max = flip_phi(self.phi_max) |
---|
| 827 | |
---|
| 828 | for n in range(len(data)): |
---|
| 829 | frac = 0 |
---|
| 830 | |
---|
| 831 | # q-value at the pixel (j,i) |
---|
| 832 | q_value = q_data[n] |
---|
| 833 | data_n = data[n] |
---|
| 834 | |
---|
| 835 | # Is pixel within range? |
---|
| 836 | is_in = False |
---|
| 837 | |
---|
| 838 | # phi-value of the pixel (j,i) |
---|
| 839 | phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi |
---|
| 840 | |
---|
| 841 | ## No need to calculate the frac when all data are within range |
---|
| 842 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 843 | frac = 1 |
---|
| 844 | if frac == 0: |
---|
| 845 | continue |
---|
| 846 | #In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
| 847 | if run.lower() == 'q2': |
---|
| 848 | ## For minor sector wing |
---|
| 849 | # Calculate the minor wing phis |
---|
| 850 | phi_min_minor = flip_phi(phi_min - Pi) |
---|
| 851 | phi_max_minor = flip_phi(phi_max - Pi) |
---|
| 852 | # Check if phis of the minor ring is within 0 to 2pi |
---|
| 853 | if phi_min_minor > phi_max_minor: |
---|
| 854 | is_in = (phi_value > phi_min_minor or \ |
---|
| 855 | phi_value < phi_max_minor) |
---|
| 856 | else: |
---|
| 857 | is_in = (phi_value > phi_min_minor and \ |
---|
| 858 | phi_value < phi_max_minor) |
---|
| 859 | |
---|
| 860 | #For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
| 861 | #Find pixels within ROI |
---|
| 862 | if phi_min > phi_max: |
---|
| 863 | is_in = is_in or (phi_value > phi_min or \ |
---|
| 864 | phi_value < phi_max) |
---|
| 865 | else: |
---|
| 866 | is_in = is_in or (phi_value >= phi_min and \ |
---|
| 867 | phi_value < phi_max) |
---|
| 868 | |
---|
| 869 | if not is_in: |
---|
| 870 | frac = 0 |
---|
| 871 | if frac == 0: |
---|
| 872 | continue |
---|
| 873 | # Check which type of averaging we need |
---|
| 874 | if run.lower() == 'phi': |
---|
| 875 | temp_x = (self.nbins) * (phi_value - self.phi_min) |
---|
| 876 | temp_y = (self.phi_max - self.phi_min) |
---|
| 877 | i_bin = int(math.floor(temp_x / temp_y)) |
---|
| 878 | else: |
---|
| 879 | temp_x = (self.nbins) * (q_value - self.r_min) |
---|
| 880 | temp_y = (self.r_max - self.r_min) |
---|
| 881 | i_bin = int(math.floor(temp_x / temp_y)) |
---|
| 882 | |
---|
| 883 | # Take care of the edge case at phi = 2pi. |
---|
| 884 | if i_bin == self.nbins: |
---|
| 885 | i_bin = self.nbins - 1 |
---|
| 886 | |
---|
| 887 | ## Get the total y |
---|
| 888 | y[i_bin] += frac * data_n |
---|
| 889 | x[i_bin] += frac * q_value |
---|
[235f514] | 890 | if err_data[n] is None or err_data[n] == 0.0: |
---|
[959eb01] | 891 | if data_n < 0: |
---|
| 892 | data_n = -data_n |
---|
| 893 | y_err[i_bin] += frac * frac * data_n |
---|
| 894 | else: |
---|
| 895 | y_err[i_bin] += frac * frac * err_data[n] * err_data[n] |
---|
| 896 | |
---|
[7432acb] | 897 | if dq_data is not None: |
---|
[959eb01] | 898 | # To be consistent with dq calculation in 1d reduction, |
---|
| 899 | # we need just the averages (not quadratures) because |
---|
| 900 | # it should not depend on the number of the q points |
---|
| 901 | # in the qr bins. |
---|
| 902 | x_err[i_bin] += frac * dq_data[n] |
---|
| 903 | else: |
---|
| 904 | x_err = None |
---|
| 905 | y_counts[i_bin] += frac |
---|
| 906 | |
---|
| 907 | # Organize the results |
---|
| 908 | for i in range(self.nbins): |
---|
| 909 | y[i] = y[i] / y_counts[i] |
---|
| 910 | y_err[i] = math.sqrt(y_err[i]) / y_counts[i] |
---|
| 911 | |
---|
| 912 | # The type of averaging: phi,q2, or q |
---|
| 913 | # Calculate x[i]should be at the center of the bin |
---|
| 914 | if run.lower() == 'phi': |
---|
| 915 | x[i] = (self.phi_max - self.phi_min) / self.nbins * \ |
---|
| 916 | (1.0 * i + 0.5) + self.phi_min |
---|
| 917 | else: |
---|
| 918 | # We take the center of ring area, not radius. |
---|
| 919 | # This is more accurate than taking the radial center of ring. |
---|
| 920 | #delta_r = (self.r_max - self.r_min) / self.nbins |
---|
| 921 | #r_inner = self.r_min + delta_r * i |
---|
| 922 | #r_outer = r_inner + delta_r |
---|
| 923 | #x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2) |
---|
| 924 | x[i] = x[i] / y_counts[i] |
---|
| 925 | y_err[y_err == 0] = numpy.average(y_err) |
---|
| 926 | idx = (numpy.isfinite(y) & numpy.isfinite(y_err)) |
---|
[7432acb] | 927 | if x_err is not None: |
---|
[959eb01] | 928 | d_x = x_err[idx] / y_counts[idx] |
---|
| 929 | else: |
---|
| 930 | d_x = None |
---|
| 931 | if not idx.any(): |
---|
| 932 | msg = "Average Error: No points inside sector of ROI to average..." |
---|
| 933 | raise ValueError, msg |
---|
| 934 | #elif len(y[idx])!= self.nbins: |
---|
| 935 | # print "resulted",self.nbins- len(y[idx]), |
---|
| 936 | #"empty bin(s) due to tight binning..." |
---|
| 937 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx], dx=d_x) |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | class SectorPhi(_Sector): |
---|
| 941 | """ |
---|
| 942 | Sector average as a function of phi. |
---|
| 943 | I(phi) is return and the data is averaged over Q. |
---|
| 944 | |
---|
| 945 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 946 | The number of bin in phi also has to be defined. |
---|
| 947 | """ |
---|
| 948 | def __call__(self, data2D): |
---|
| 949 | """ |
---|
| 950 | Perform sector average and return I(phi). |
---|
| 951 | |
---|
| 952 | :param data2D: Data2D object |
---|
| 953 | :return: Data1D object |
---|
| 954 | """ |
---|
| 955 | return self._agv(data2D, 'phi') |
---|
| 956 | |
---|
| 957 | |
---|
| 958 | class SectorQ(_Sector): |
---|
| 959 | """ |
---|
| 960 | Sector average as a function of Q for both symatric wings. |
---|
| 961 | I(Q) is return and the data is averaged over phi. |
---|
| 962 | |
---|
| 963 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 964 | r_min, r_max, phi_min, phi_max >0. |
---|
| 965 | The number of bin in Q also has to be defined. |
---|
| 966 | """ |
---|
| 967 | def __call__(self, data2D): |
---|
| 968 | """ |
---|
| 969 | Perform sector average and return I(Q). |
---|
| 970 | |
---|
| 971 | :param data2D: Data2D object |
---|
| 972 | |
---|
| 973 | :return: Data1D object |
---|
| 974 | """ |
---|
| 975 | return self._agv(data2D, 'q2') |
---|
| 976 | |
---|
| 977 | |
---|
| 978 | class Ringcut(object): |
---|
| 979 | """ |
---|
| 980 | Defines a ring on a 2D data set. |
---|
| 981 | The ring is defined by r_min, r_max, and |
---|
| 982 | the position of the center of the ring. |
---|
| 983 | |
---|
| 984 | The data returned is the region inside the ring |
---|
| 985 | |
---|
| 986 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 987 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
| 988 | """ |
---|
| 989 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0): |
---|
| 990 | # Minimum radius |
---|
| 991 | self.r_min = r_min |
---|
| 992 | # Maximum radius |
---|
| 993 | self.r_max = r_max |
---|
| 994 | # Center of the ring in x |
---|
| 995 | self.center_x = center_x |
---|
| 996 | # Center of the ring in y |
---|
| 997 | self.center_y = center_y |
---|
| 998 | |
---|
| 999 | def __call__(self, data2D): |
---|
| 1000 | """ |
---|
| 1001 | Apply the ring to the data set. |
---|
| 1002 | Returns the angular distribution for a given q range |
---|
| 1003 | |
---|
| 1004 | :param data2D: Data2D object |
---|
| 1005 | |
---|
| 1006 | :return: index array in the range |
---|
| 1007 | """ |
---|
| 1008 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1009 | raise RuntimeError, "Ring cut only take plottable_2D objects" |
---|
| 1010 | |
---|
| 1011 | # Get data |
---|
| 1012 | qx_data = data2D.qx_data |
---|
| 1013 | qy_data = data2D.qy_data |
---|
| 1014 | q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
| 1015 | |
---|
| 1016 | # check whether or not the data point is inside ROI |
---|
| 1017 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
| 1018 | return out |
---|
| 1019 | |
---|
| 1020 | |
---|
| 1021 | class Boxcut(object): |
---|
| 1022 | """ |
---|
| 1023 | Find a rectangular 2D region of interest. |
---|
| 1024 | """ |
---|
| 1025 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 1026 | # Minimum Qx value [A-1] |
---|
| 1027 | self.x_min = x_min |
---|
| 1028 | # Maximum Qx value [A-1] |
---|
| 1029 | self.x_max = x_max |
---|
| 1030 | # Minimum Qy value [A-1] |
---|
| 1031 | self.y_min = y_min |
---|
| 1032 | # Maximum Qy value [A-1] |
---|
| 1033 | self.y_max = y_max |
---|
| 1034 | |
---|
| 1035 | def __call__(self, data2D): |
---|
| 1036 | """ |
---|
| 1037 | Find a rectangular 2D region of interest. |
---|
| 1038 | |
---|
| 1039 | :param data2D: Data2D object |
---|
| 1040 | :return: mask, 1d array (len = len(data)) |
---|
| 1041 | with Trues where the data points are inside ROI, otherwise False |
---|
| 1042 | """ |
---|
| 1043 | mask = self._find(data2D) |
---|
| 1044 | |
---|
| 1045 | return mask |
---|
| 1046 | |
---|
| 1047 | def _find(self, data2D): |
---|
| 1048 | """ |
---|
| 1049 | Find a rectangular 2D region of interest. |
---|
| 1050 | |
---|
| 1051 | :param data2D: Data2D object |
---|
| 1052 | |
---|
| 1053 | :return: out, 1d array (length = len(data)) |
---|
| 1054 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 1055 | """ |
---|
| 1056 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1057 | raise RuntimeError, "Boxcut take only plottable_2D objects" |
---|
| 1058 | # Get qx_ and qy_data |
---|
| 1059 | qx_data = data2D.qx_data |
---|
| 1060 | qy_data = data2D.qy_data |
---|
| 1061 | |
---|
| 1062 | # check whether or not the data point is inside ROI |
---|
| 1063 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
| 1064 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
| 1065 | |
---|
| 1066 | return outx & outy |
---|
| 1067 | |
---|
| 1068 | |
---|
| 1069 | class Sectorcut(object): |
---|
| 1070 | """ |
---|
| 1071 | Defines a sector (major + minor) region on a 2D data set. |
---|
| 1072 | The sector is defined by phi_min, phi_max, |
---|
| 1073 | where phi_min and phi_max are defined by the right |
---|
| 1074 | and left lines wrt central line. |
---|
| 1075 | |
---|
| 1076 | Phi_min and phi_max are given in units of radian |
---|
| 1077 | and (phi_max-phi_min) should not be larger than pi |
---|
| 1078 | """ |
---|
| 1079 | def __init__(self, phi_min=0, phi_max=math.pi): |
---|
| 1080 | self.phi_min = phi_min |
---|
| 1081 | self.phi_max = phi_max |
---|
| 1082 | |
---|
| 1083 | def __call__(self, data2D): |
---|
| 1084 | """ |
---|
| 1085 | Find a rectangular 2D region of interest. |
---|
| 1086 | |
---|
| 1087 | :param data2D: Data2D object |
---|
| 1088 | |
---|
| 1089 | :return: mask, 1d array (len = len(data)) |
---|
| 1090 | |
---|
| 1091 | with Trues where the data points are inside ROI, otherwise False |
---|
| 1092 | """ |
---|
| 1093 | mask = self._find(data2D) |
---|
| 1094 | |
---|
| 1095 | return mask |
---|
| 1096 | |
---|
| 1097 | def _find(self, data2D): |
---|
| 1098 | """ |
---|
| 1099 | Find a rectangular 2D region of interest. |
---|
| 1100 | |
---|
| 1101 | :param data2D: Data2D object |
---|
| 1102 | |
---|
| 1103 | :return: out, 1d array (length = len(data)) |
---|
| 1104 | |
---|
| 1105 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 1106 | """ |
---|
| 1107 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1108 | raise RuntimeError, "Sectorcut take only plottable_2D objects" |
---|
| 1109 | Pi = math.pi |
---|
| 1110 | # Get data |
---|
| 1111 | qx_data = data2D.qx_data |
---|
| 1112 | qy_data = data2D.qy_data |
---|
| 1113 | |
---|
| 1114 | # get phi from data |
---|
| 1115 | phi_data = numpy.arctan2(qy_data, qx_data) |
---|
| 1116 | |
---|
| 1117 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 1118 | phi_min_major = flip_phi(self.phi_min + Pi) - Pi |
---|
| 1119 | phi_max_major = flip_phi(self.phi_max + Pi) - Pi |
---|
| 1120 | # check for major sector |
---|
| 1121 | if phi_min_major > phi_max_major: |
---|
| 1122 | out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) |
---|
| 1123 | else: |
---|
| 1124 | out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) |
---|
| 1125 | |
---|
| 1126 | # minor sector |
---|
| 1127 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 1128 | phi_min_minor = flip_phi(self.phi_min) - Pi |
---|
| 1129 | phi_max_minor = flip_phi(self.phi_max) - Pi |
---|
| 1130 | |
---|
| 1131 | # check for minor sector |
---|
| 1132 | if phi_min_minor > phi_max_minor: |
---|
| 1133 | out_minor = (phi_min_minor <= phi_data) + \ |
---|
| 1134 | (phi_max_minor >= phi_data) |
---|
| 1135 | else: |
---|
| 1136 | out_minor = (phi_min_minor <= phi_data) & \ |
---|
| 1137 | (phi_max_minor >= phi_data) |
---|
| 1138 | out = out_major + out_minor |
---|
| 1139 | |
---|
| 1140 | return out |
---|