[c0ca2e3d] | 1 | from __future__ import division |
---|
[959eb01] | 2 | """ |
---|
| 3 | Data manipulations for 2D data sets. |
---|
| 4 | Using the meta data information, various types of averaging |
---|
| 5 | are performed in Q-space |
---|
[c0ca2e3d] | 6 | |
---|
| 7 | To test this module use: |
---|
| 8 | ``` |
---|
| 9 | cd test |
---|
| 10 | PYTHONPATH=../src/ python2 -m sasdataloader.test.utest_averaging DataInfoTests.test_sectorphi_quarter |
---|
| 11 | ``` |
---|
[959eb01] | 12 | """ |
---|
| 13 | ##################################################################### |
---|
[c0ca2e3d] | 14 | # This software was developed by the University of Tennessee as part of the |
---|
| 15 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 16 | # project funded by the US National Science Foundation. |
---|
| 17 | # See the license text in license.txt |
---|
| 18 | # copyright 2008, University of Tennessee |
---|
[959eb01] | 19 | ###################################################################### |
---|
| 20 | |
---|
| 21 | |
---|
[c0ca2e3d] | 22 | # TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
| 23 | import math |
---|
| 24 | import numpy as np |
---|
| 25 | import sys |
---|
[959eb01] | 26 | |
---|
| 27 | #from data_info import plottable_2D |
---|
| 28 | from data_info import Data1D |
---|
| 29 | |
---|
| 30 | |
---|
| 31 | def get_q(dx, dy, det_dist, wavelength): |
---|
| 32 | """ |
---|
| 33 | :param dx: x-distance from beam center [mm] |
---|
| 34 | :param dy: y-distance from beam center [mm] |
---|
| 35 | :return: q-value at the given position |
---|
| 36 | """ |
---|
| 37 | # Distance from beam center in the plane of detector |
---|
| 38 | plane_dist = math.sqrt(dx * dx + dy * dy) |
---|
| 39 | # Half of the scattering angle |
---|
| 40 | theta = 0.5 * math.atan(plane_dist / det_dist) |
---|
| 41 | return (4.0 * math.pi / wavelength) * math.sin(theta) |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | def get_q_compo(dx, dy, det_dist, wavelength, compo=None): |
---|
| 45 | """ |
---|
| 46 | This reduces tiny error at very large q. |
---|
| 47 | Implementation of this func is not started yet.<--ToDo |
---|
| 48 | """ |
---|
| 49 | if dy == 0: |
---|
| 50 | if dx >= 0: |
---|
| 51 | angle_xy = 0 |
---|
| 52 | else: |
---|
| 53 | angle_xy = math.pi |
---|
| 54 | else: |
---|
| 55 | angle_xy = math.atan(dx / dy) |
---|
| 56 | |
---|
| 57 | if compo == "x": |
---|
| 58 | out = get_q(dx, dy, det_dist, wavelength) * math.cos(angle_xy) |
---|
| 59 | elif compo == "y": |
---|
| 60 | out = get_q(dx, dy, det_dist, wavelength) * math.sin(angle_xy) |
---|
| 61 | else: |
---|
| 62 | out = get_q(dx, dy, det_dist, wavelength) |
---|
| 63 | return out |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | def flip_phi(phi): |
---|
| 67 | """ |
---|
| 68 | Correct phi to within the 0 <= to <= 2pi range |
---|
| 69 | |
---|
| 70 | :return: phi in >=0 and <=2Pi |
---|
| 71 | """ |
---|
| 72 | Pi = math.pi |
---|
| 73 | if phi < 0: |
---|
| 74 | phi_out = phi + (2 * Pi) |
---|
| 75 | elif phi > (2 * Pi): |
---|
| 76 | phi_out = phi - (2 * Pi) |
---|
| 77 | else: |
---|
| 78 | phi_out = phi |
---|
| 79 | return phi_out |
---|
| 80 | |
---|
[c0ca2e3d] | 81 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
| 82 | """ |
---|
| 83 | Return the fraction of the length |
---|
| 84 | from xmin to x.:: |
---|
| 85 | |
---|
| 86 | A B |
---|
| 87 | +-----------+---------+ |
---|
| 88 | xmin x xmax |
---|
| 89 | |
---|
| 90 | :param x: x-value |
---|
| 91 | :param xmin: minimum x for the length considered |
---|
| 92 | :param xmax: minimum x for the length considered |
---|
| 93 | :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
| 94 | |
---|
| 95 | """ |
---|
| 96 | if x <= xmin: |
---|
| 97 | return 0.0 |
---|
| 98 | if x > xmin and x < xmax: |
---|
| 99 | return (x - xmin) / (xmax - xmin) |
---|
| 100 | else: |
---|
| 101 | return 1.0 |
---|
| 102 | |
---|
| 103 | def get_intercept(q, q_0, q_1): |
---|
| 104 | """ |
---|
| 105 | Returns the fraction of the side at which the |
---|
| 106 | q-value intercept the pixel, None otherwise. |
---|
| 107 | The values returned is the fraction ON THE SIDE |
---|
| 108 | OF THE LOWEST Q. :: |
---|
| 109 | |
---|
| 110 | A B |
---|
| 111 | +-----------+--------+ <--- pixel size |
---|
| 112 | 0 1 |
---|
| 113 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
| 114 | if Q_1 > Q_0, A is returned |
---|
| 115 | if Q_1 < Q_0, B is returned |
---|
| 116 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
| 117 | |
---|
| 118 | """ |
---|
| 119 | if q_1 > q_0: |
---|
| 120 | if q > q_0 and q <= q_1: |
---|
| 121 | return (q - q_0) / (q_1 - q_0) |
---|
| 122 | else: |
---|
| 123 | if q > q_1 and q <= q_0: |
---|
| 124 | return (q - q_1) / (q_0 - q_1) |
---|
| 125 | return None |
---|
| 126 | |
---|
| 127 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
| 128 | """ |
---|
| 129 | Returns the fraction of the pixel defined by |
---|
| 130 | the four corners (q_00, q_01, q_10, q_11) that |
---|
| 131 | has q < qmax.:: |
---|
| 132 | |
---|
| 133 | q_01 q_11 |
---|
| 134 | y=1 +--------------+ |
---|
| 135 | | | |
---|
| 136 | | | |
---|
| 137 | | | |
---|
| 138 | y=0 +--------------+ |
---|
| 139 | q_00 q_10 |
---|
| 140 | |
---|
| 141 | x=0 x=1 |
---|
| 142 | |
---|
| 143 | """ |
---|
| 144 | # y side for x = minx |
---|
| 145 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
| 146 | # y side for x = maxx |
---|
| 147 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
| 148 | |
---|
| 149 | # x side for y = miny |
---|
| 150 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
| 151 | # x side for y = maxy |
---|
| 152 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
| 153 | |
---|
| 154 | # surface fraction for a 1x1 pixel |
---|
| 155 | frac_max = 0 |
---|
| 156 | |
---|
| 157 | if x_0 and x_1: |
---|
| 158 | frac_max = (x_0 + x_1) / 2.0 |
---|
| 159 | elif y_0 and y_1: |
---|
| 160 | frac_max = (y_0 + y_1) / 2.0 |
---|
| 161 | elif x_0 and y_0: |
---|
| 162 | if q_00 < q_10: |
---|
| 163 | frac_max = x_0 * y_0 / 2.0 |
---|
| 164 | else: |
---|
| 165 | frac_max = 1.0 - x_0 * y_0 / 2.0 |
---|
| 166 | elif x_0 and y_1: |
---|
| 167 | if q_00 < q_10: |
---|
| 168 | frac_max = x_0 * y_1 / 2.0 |
---|
| 169 | else: |
---|
| 170 | frac_max = 1.0 - x_0 * y_1 / 2.0 |
---|
| 171 | elif x_1 and y_0: |
---|
| 172 | if q_00 > q_10: |
---|
| 173 | frac_max = x_1 * y_0 / 2.0 |
---|
| 174 | else: |
---|
| 175 | frac_max = 1.0 - x_1 * y_0 / 2.0 |
---|
| 176 | elif x_1 and y_1: |
---|
| 177 | if q_00 < q_10: |
---|
| 178 | frac_max = 1.0 - (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
| 179 | else: |
---|
| 180 | frac_max = (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
| 181 | |
---|
| 182 | # If we make it here, there is no intercept between |
---|
| 183 | # this pixel and the constant-q ring. We only need |
---|
| 184 | # to know if we have to include it or exclude it. |
---|
| 185 | elif (q_00 + q_01 + q_10 + q_11) / 4.0 < qmax: |
---|
| 186 | frac_max = 1.0 |
---|
| 187 | |
---|
| 188 | return frac_max |
---|
| 189 | |
---|
| 190 | def get_dq_data(data2D): |
---|
| 191 | ''' |
---|
| 192 | Get the dq for resolution averaging |
---|
| 193 | The pinholes and det. pix contribution present |
---|
| 194 | in both direction of the 2D which must be subtracted when |
---|
| 195 | converting to 1D: dq_overlap should calculated ideally at |
---|
| 196 | q = 0. Note This method works on only pinhole geometry. |
---|
| 197 | Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. |
---|
| 198 | ''' |
---|
| 199 | z_max = max(data2D.q_data) |
---|
| 200 | z_min = min(data2D.q_data) |
---|
[324e0bf] | 201 | dqx_at_z_max = data2D.dqx_data[np.argmax(data2D.q_data)] |
---|
| 202 | dqx_at_z_min = data2D.dqx_data[np.argmin(data2D.q_data)] |
---|
| 203 | dqy_at_z_max = data2D.dqy_data[np.argmax(data2D.q_data)] |
---|
| 204 | dqy_at_z_min = data2D.dqy_data[np.argmin(data2D.q_data)] |
---|
[c0ca2e3d] | 205 | # Find qdx at q = 0 |
---|
[324e0bf] | 206 | dq_overlap_x = (dqx_at_z_min * z_max - dqx_at_z_max * z_min) / (z_max - z_min) |
---|
[c0ca2e3d] | 207 | # when extrapolation goes wrong |
---|
| 208 | if dq_overlap_x > min(data2D.dqx_data): |
---|
| 209 | dq_overlap_x = min(data2D.dqx_data) |
---|
| 210 | dq_overlap_x *= dq_overlap_x |
---|
| 211 | # Find qdx at q = 0 |
---|
[324e0bf] | 212 | dq_overlap_y = (dqy_at_z_min * z_max - dqy_at_z_max * z_min) / (z_max - z_min) |
---|
[c0ca2e3d] | 213 | # when extrapolation goes wrong |
---|
| 214 | if dq_overlap_y > min(data2D.dqy_data): |
---|
| 215 | dq_overlap_y = min(data2D.dqy_data) |
---|
| 216 | # get dq at q=0. |
---|
| 217 | dq_overlap_y *= dq_overlap_y |
---|
| 218 | |
---|
| 219 | dq_overlap = np.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) |
---|
| 220 | # Final protection of dq |
---|
| 221 | if dq_overlap < 0: |
---|
[324e0bf] | 222 | dq_overlap = dqy_at_z_min |
---|
[c0ca2e3d] | 223 | dqx_data = data2D.dqx_data[np.isfinite(data2D.data)] |
---|
| 224 | dqy_data = data2D.dqy_data[np.isfinite( |
---|
| 225 | data2D.data)] - dq_overlap |
---|
| 226 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
| 227 | # Convert dq 2D to 1D here |
---|
[6c497b7] | 228 | dq_data = np.sqrt(dqx_data**2 + dqx_data**2) |
---|
[c0ca2e3d] | 229 | return dq_data |
---|
| 230 | |
---|
| 231 | ################################################################################ |
---|
[959eb01] | 232 | |
---|
| 233 | def reader2D_converter(data2d=None): |
---|
| 234 | """ |
---|
| 235 | convert old 2d format opened by IhorReader or danse_reader |
---|
| 236 | to new Data2D format |
---|
[c0ca2e3d] | 237 | This is mainly used by the Readers |
---|
[959eb01] | 238 | |
---|
| 239 | :param data2d: 2d array of Data2D object |
---|
| 240 | :return: 1d arrays of Data2D object |
---|
| 241 | |
---|
| 242 | """ |
---|
| 243 | if data2d.data is None or data2d.x_bins is None or data2d.y_bins is None: |
---|
[c0ca2e3d] | 244 | raise ValueError("Can't convert this data: data=None...") |
---|
| 245 | new_x = np.tile(data2d.x_bins, (len(data2d.y_bins), 1)) |
---|
| 246 | new_y = np.tile(data2d.y_bins, (len(data2d.x_bins), 1)) |
---|
[959eb01] | 247 | new_y = new_y.swapaxes(0, 1) |
---|
| 248 | |
---|
| 249 | new_data = data2d.data.flatten() |
---|
| 250 | qx_data = new_x.flatten() |
---|
| 251 | qy_data = new_y.flatten() |
---|
[c0ca2e3d] | 252 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
| 253 | if data2d.err_data is None or np.any(data2d.err_data <= 0): |
---|
| 254 | new_err_data = np.sqrt(np.abs(new_data)) |
---|
[959eb01] | 255 | else: |
---|
| 256 | new_err_data = data2d.err_data.flatten() |
---|
[c0ca2e3d] | 257 | mask = np.ones(len(new_data), dtype=bool) |
---|
[959eb01] | 258 | |
---|
[c0ca2e3d] | 259 | # TODO: make sense of the following two lines... |
---|
[959eb01] | 260 | #from sas.sascalc.dataloader.data_info import Data2D |
---|
| 261 | #output = Data2D() |
---|
| 262 | output = data2d |
---|
| 263 | output.data = new_data |
---|
| 264 | output.err_data = new_err_data |
---|
| 265 | output.qx_data = qx_data |
---|
| 266 | output.qy_data = qy_data |
---|
| 267 | output.q_data = q_data |
---|
| 268 | output.mask = mask |
---|
| 269 | |
---|
| 270 | return output |
---|
| 271 | |
---|
[c0ca2e3d] | 272 | ################################################################################ |
---|
| 273 | |
---|
| 274 | class Binning(object): |
---|
| 275 | ''' |
---|
| 276 | This class just creates a binning object |
---|
| 277 | either linear or log |
---|
| 278 | ''' |
---|
| 279 | |
---|
| 280 | def __init__(self, min_value, max_value, n_bins, base=None): |
---|
| 281 | ''' |
---|
| 282 | if base is None: Linear binning |
---|
| 283 | ''' |
---|
| 284 | self.min = min_value if min_value > 0 else 0.0001 |
---|
| 285 | self.max = max_value |
---|
| 286 | self.n_bins = n_bins |
---|
| 287 | self.base = base |
---|
| 288 | |
---|
| 289 | def get_bin_index(self, value): |
---|
| 290 | ''' |
---|
| 291 | The general formula logarithm binning is: |
---|
| 292 | bin = floor(N * (log(x) - log(min)) / (log(max) - log(min))) |
---|
| 293 | ''' |
---|
| 294 | if self.base: |
---|
| 295 | temp_x = self.n_bins * (math.log(value, self.base) - math.log(self.min, self.base)) |
---|
| 296 | temp_y = math.log(self.max, self.base) - math.log(self.min, self.base) |
---|
| 297 | else: |
---|
| 298 | temp_x = self.n_bins * (value - self.min) |
---|
| 299 | temp_y = self.max - self.min |
---|
| 300 | # Bin index calulation |
---|
| 301 | return int(math.floor(temp_x / temp_y)) |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | ################################################################################ |
---|
[959eb01] | 305 | |
---|
| 306 | class _Slab(object): |
---|
| 307 | """ |
---|
| 308 | Compute average I(Q) for a region of interest |
---|
| 309 | """ |
---|
[c0ca2e3d] | 310 | |
---|
[959eb01] | 311 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, |
---|
| 312 | y_max=0.0, bin_width=0.001): |
---|
| 313 | # Minimum Qx value [A-1] |
---|
| 314 | self.x_min = x_min |
---|
| 315 | # Maximum Qx value [A-1] |
---|
| 316 | self.x_max = x_max |
---|
| 317 | # Minimum Qy value [A-1] |
---|
| 318 | self.y_min = y_min |
---|
| 319 | # Maximum Qy value [A-1] |
---|
| 320 | self.y_max = y_max |
---|
| 321 | # Bin width (step size) [A-1] |
---|
| 322 | self.bin_width = bin_width |
---|
| 323 | # If True, I(|Q|) will be return, otherwise, |
---|
| 324 | # negative q-values are allowed |
---|
| 325 | self.fold = False |
---|
| 326 | |
---|
| 327 | def __call__(self, data2D): |
---|
| 328 | return NotImplemented |
---|
| 329 | |
---|
| 330 | def _avg(self, data2D, maj): |
---|
| 331 | """ |
---|
| 332 | Compute average I(Q_maj) for a region of interest. |
---|
| 333 | The major axis is defined as the axis of Q_maj. |
---|
| 334 | The minor axis is the axis that we average over. |
---|
| 335 | |
---|
| 336 | :param data2D: Data2D object |
---|
| 337 | :param maj_min: min value on the major axis |
---|
| 338 | :return: Data1D object |
---|
| 339 | """ |
---|
| 340 | if len(data2D.detector) > 1: |
---|
| 341 | msg = "_Slab._avg: invalid number of " |
---|
| 342 | msg += " detectors: %g" % len(data2D.detector) |
---|
[c0ca2e3d] | 343 | raise RuntimeError(msg) |
---|
[959eb01] | 344 | |
---|
| 345 | # Get data |
---|
[c0ca2e3d] | 346 | data = data2D.data[np.isfinite(data2D.data)] |
---|
| 347 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
| 348 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
| 349 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
[959eb01] | 350 | |
---|
| 351 | # Build array of Q intervals |
---|
| 352 | if maj == 'x': |
---|
| 353 | if self.fold: |
---|
| 354 | x_min = 0 |
---|
| 355 | else: |
---|
| 356 | x_min = self.x_min |
---|
| 357 | nbins = int(math.ceil((self.x_max - x_min) / self.bin_width)) |
---|
| 358 | elif maj == 'y': |
---|
| 359 | if self.fold: |
---|
| 360 | y_min = 0 |
---|
| 361 | else: |
---|
| 362 | y_min = self.y_min |
---|
| 363 | nbins = int(math.ceil((self.y_max - y_min) / self.bin_width)) |
---|
| 364 | else: |
---|
[c0ca2e3d] | 365 | raise RuntimeError("_Slab._avg: unrecognized axis %s" % str(maj)) |
---|
[959eb01] | 366 | |
---|
[c0ca2e3d] | 367 | x = np.zeros(nbins) |
---|
| 368 | y = np.zeros(nbins) |
---|
| 369 | err_y = np.zeros(nbins) |
---|
| 370 | y_counts = np.zeros(nbins) |
---|
[959eb01] | 371 | |
---|
| 372 | # Average pixelsize in q space |
---|
| 373 | for npts in range(len(data)): |
---|
| 374 | # default frac |
---|
| 375 | frac_x = 0 |
---|
| 376 | frac_y = 0 |
---|
| 377 | # get ROI |
---|
| 378 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
| 379 | frac_x = 1 |
---|
| 380 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
| 381 | frac_y = 1 |
---|
| 382 | frac = frac_x * frac_y |
---|
| 383 | |
---|
| 384 | if frac == 0: |
---|
| 385 | continue |
---|
| 386 | # binning: find axis of q |
---|
| 387 | if maj == 'x': |
---|
| 388 | q_value = qx_data[npts] |
---|
| 389 | min_value = x_min |
---|
| 390 | if maj == 'y': |
---|
| 391 | q_value = qy_data[npts] |
---|
| 392 | min_value = y_min |
---|
| 393 | if self.fold and q_value < 0: |
---|
| 394 | q_value = -q_value |
---|
| 395 | # bin |
---|
| 396 | i_q = int(math.ceil((q_value - min_value) / self.bin_width)) - 1 |
---|
| 397 | |
---|
| 398 | # skip outside of max bins |
---|
| 399 | if i_q < 0 or i_q >= nbins: |
---|
| 400 | continue |
---|
| 401 | |
---|
[c0ca2e3d] | 402 | # TODO: find better definition of x[i_q] based on q_data |
---|
[959eb01] | 403 | # min_value + (i_q + 1) * self.bin_width / 2.0 |
---|
| 404 | x[i_q] += frac * q_value |
---|
| 405 | y[i_q] += frac * data[npts] |
---|
| 406 | |
---|
[c0ca2e3d] | 407 | if err_data is None or err_data[npts] == 0.0: |
---|
[959eb01] | 408 | if data[npts] < 0: |
---|
| 409 | data[npts] = -data[npts] |
---|
| 410 | err_y[i_q] += frac * frac * data[npts] |
---|
| 411 | else: |
---|
| 412 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
| 413 | y_counts[i_q] += frac |
---|
| 414 | |
---|
| 415 | # Average the sums |
---|
| 416 | for n in range(nbins): |
---|
| 417 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 418 | |
---|
| 419 | err_y = err_y / y_counts |
---|
| 420 | y = y / y_counts |
---|
| 421 | x = x / y_counts |
---|
[c0ca2e3d] | 422 | idx = (np.isfinite(y) & np.isfinite(x)) |
---|
[959eb01] | 423 | |
---|
| 424 | if not idx.any(): |
---|
| 425 | msg = "Average Error: No points inside ROI to average..." |
---|
[c0ca2e3d] | 426 | raise ValueError(msg) |
---|
[959eb01] | 427 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
| 428 | |
---|
| 429 | |
---|
| 430 | class SlabY(_Slab): |
---|
| 431 | """ |
---|
| 432 | Compute average I(Qy) for a region of interest |
---|
| 433 | """ |
---|
[c0ca2e3d] | 434 | |
---|
[959eb01] | 435 | def __call__(self, data2D): |
---|
| 436 | """ |
---|
| 437 | Compute average I(Qy) for a region of interest |
---|
| 438 | |
---|
| 439 | :param data2D: Data2D object |
---|
| 440 | :return: Data1D object |
---|
| 441 | """ |
---|
| 442 | return self._avg(data2D, 'y') |
---|
| 443 | |
---|
| 444 | |
---|
| 445 | class SlabX(_Slab): |
---|
| 446 | """ |
---|
| 447 | Compute average I(Qx) for a region of interest |
---|
| 448 | """ |
---|
[c0ca2e3d] | 449 | |
---|
[959eb01] | 450 | def __call__(self, data2D): |
---|
| 451 | """ |
---|
| 452 | Compute average I(Qx) for a region of interest |
---|
| 453 | :param data2D: Data2D object |
---|
| 454 | :return: Data1D object |
---|
| 455 | """ |
---|
| 456 | return self._avg(data2D, 'x') |
---|
| 457 | |
---|
[c0ca2e3d] | 458 | ################################################################################ |
---|
[959eb01] | 459 | |
---|
| 460 | class Boxsum(object): |
---|
| 461 | """ |
---|
| 462 | Perform the sum of counts in a 2D region of interest. |
---|
| 463 | """ |
---|
[c0ca2e3d] | 464 | |
---|
[959eb01] | 465 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 466 | # Minimum Qx value [A-1] |
---|
| 467 | self.x_min = x_min |
---|
| 468 | # Maximum Qx value [A-1] |
---|
| 469 | self.x_max = x_max |
---|
| 470 | # Minimum Qy value [A-1] |
---|
| 471 | self.y_min = y_min |
---|
| 472 | # Maximum Qy value [A-1] |
---|
| 473 | self.y_max = y_max |
---|
| 474 | |
---|
| 475 | def __call__(self, data2D): |
---|
| 476 | """ |
---|
| 477 | Perform the sum in the region of interest |
---|
| 478 | |
---|
| 479 | :param data2D: Data2D object |
---|
| 480 | :return: number of counts, error on number of counts, |
---|
| 481 | number of points summed |
---|
| 482 | """ |
---|
| 483 | y, err_y, y_counts = self._sum(data2D) |
---|
| 484 | |
---|
| 485 | # Average the sums |
---|
| 486 | counts = 0 if y_counts == 0 else y |
---|
| 487 | error = 0 if y_counts == 0 else math.sqrt(err_y) |
---|
| 488 | |
---|
| 489 | # Added y_counts to return, SMK & PDB, 04/03/2013 |
---|
| 490 | return counts, error, y_counts |
---|
| 491 | |
---|
| 492 | def _sum(self, data2D): |
---|
| 493 | """ |
---|
| 494 | Perform the sum in the region of interest |
---|
| 495 | |
---|
| 496 | :param data2D: Data2D object |
---|
| 497 | :return: number of counts, |
---|
| 498 | error on number of counts, number of entries summed |
---|
| 499 | """ |
---|
| 500 | if len(data2D.detector) > 1: |
---|
| 501 | msg = "Circular averaging: invalid number " |
---|
| 502 | msg += "of detectors: %g" % len(data2D.detector) |
---|
[c0ca2e3d] | 503 | raise RuntimeError(msg) |
---|
[959eb01] | 504 | # Get data |
---|
[c0ca2e3d] | 505 | data = data2D.data[np.isfinite(data2D.data)] |
---|
| 506 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
| 507 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
| 508 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
[959eb01] | 509 | |
---|
| 510 | y = 0.0 |
---|
| 511 | err_y = 0.0 |
---|
| 512 | y_counts = 0.0 |
---|
| 513 | |
---|
| 514 | # Average pixelsize in q space |
---|
| 515 | for npts in range(len(data)): |
---|
| 516 | # default frac |
---|
| 517 | frac_x = 0 |
---|
| 518 | frac_y = 0 |
---|
| 519 | |
---|
| 520 | # get min and max at each points |
---|
| 521 | qx = qx_data[npts] |
---|
| 522 | qy = qy_data[npts] |
---|
| 523 | |
---|
| 524 | # get the ROI |
---|
| 525 | if self.x_min <= qx and self.x_max > qx: |
---|
| 526 | frac_x = 1 |
---|
| 527 | if self.y_min <= qy and self.y_max > qy: |
---|
| 528 | frac_y = 1 |
---|
[c0ca2e3d] | 529 | # Find the fraction along each directions |
---|
[959eb01] | 530 | frac = frac_x * frac_y |
---|
| 531 | if frac == 0: |
---|
| 532 | continue |
---|
| 533 | y += frac * data[npts] |
---|
[c0ca2e3d] | 534 | if err_data is None or err_data[npts] == 0.0: |
---|
[959eb01] | 535 | if data[npts] < 0: |
---|
| 536 | data[npts] = -data[npts] |
---|
| 537 | err_y += frac * frac * data[npts] |
---|
| 538 | else: |
---|
| 539 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
| 540 | y_counts += frac |
---|
| 541 | return y, err_y, y_counts |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | class Boxavg(Boxsum): |
---|
| 545 | """ |
---|
| 546 | Perform the average of counts in a 2D region of interest. |
---|
| 547 | """ |
---|
[c0ca2e3d] | 548 | |
---|
[959eb01] | 549 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 550 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, |
---|
| 551 | y_min=y_min, y_max=y_max) |
---|
| 552 | |
---|
| 553 | def __call__(self, data2D): |
---|
| 554 | """ |
---|
| 555 | Perform the sum in the region of interest |
---|
| 556 | |
---|
| 557 | :param data2D: Data2D object |
---|
| 558 | :return: average counts, error on average counts |
---|
| 559 | |
---|
| 560 | """ |
---|
| 561 | y, err_y, y_counts = self._sum(data2D) |
---|
| 562 | |
---|
| 563 | # Average the sums |
---|
| 564 | counts = 0 if y_counts == 0 else y / y_counts |
---|
| 565 | error = 0 if y_counts == 0 else math.sqrt(err_y) / y_counts |
---|
| 566 | |
---|
| 567 | return counts, error |
---|
| 568 | |
---|
[c0ca2e3d] | 569 | ################################################################################ |
---|
[959eb01] | 570 | |
---|
| 571 | class CircularAverage(object): |
---|
| 572 | """ |
---|
| 573 | Perform circular averaging on 2D data |
---|
| 574 | |
---|
| 575 | The data returned is the distribution of counts |
---|
| 576 | as a function of Q |
---|
| 577 | """ |
---|
[c0ca2e3d] | 578 | |
---|
[959eb01] | 579 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
| 580 | # Minimum radius included in the average [A-1] |
---|
| 581 | self.r_min = r_min |
---|
| 582 | # Maximum radius included in the average [A-1] |
---|
| 583 | self.r_max = r_max |
---|
| 584 | # Bin width (step size) [A-1] |
---|
| 585 | self.bin_width = bin_width |
---|
| 586 | |
---|
| 587 | def __call__(self, data2D, ismask=False): |
---|
| 588 | """ |
---|
| 589 | Perform circular averaging on the data |
---|
| 590 | |
---|
| 591 | :param data2D: Data2D object |
---|
| 592 | :return: Data1D object |
---|
| 593 | """ |
---|
| 594 | # Get data W/ finite values |
---|
[c0ca2e3d] | 595 | data = data2D.data[np.isfinite(data2D.data)] |
---|
| 596 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
| 597 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
| 598 | mask_data = data2D.mask[np.isfinite(data2D.data)] |
---|
[959eb01] | 599 | |
---|
| 600 | dq_data = None |
---|
[c0ca2e3d] | 601 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
| 602 | dq_data = get_dq_data(data2D) |
---|
[959eb01] | 603 | |
---|
[6c497b7] | 604 | if len(q_data) == 0: |
---|
[959eb01] | 605 | msg = "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
[c0ca2e3d] | 606 | raise RuntimeError(msg) |
---|
[959eb01] | 607 | |
---|
| 608 | # Build array of Q intervals |
---|
| 609 | nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) |
---|
| 610 | |
---|
[c0ca2e3d] | 611 | x = np.zeros(nbins) |
---|
| 612 | y = np.zeros(nbins) |
---|
| 613 | err_y = np.zeros(nbins) |
---|
| 614 | err_x = np.zeros(nbins) |
---|
| 615 | y_counts = np.zeros(nbins) |
---|
[959eb01] | 616 | |
---|
| 617 | for npt in range(len(data)): |
---|
| 618 | |
---|
| 619 | if ismask and not mask_data[npt]: |
---|
| 620 | continue |
---|
| 621 | |
---|
| 622 | frac = 0 |
---|
| 623 | |
---|
| 624 | # q-value at the pixel (j,i) |
---|
| 625 | q_value = q_data[npt] |
---|
| 626 | data_n = data[npt] |
---|
| 627 | |
---|
[c0ca2e3d] | 628 | # No need to calculate the frac when all data are within range |
---|
[959eb01] | 629 | if self.r_min >= self.r_max: |
---|
[c0ca2e3d] | 630 | raise ValueError("Limit Error: min > max") |
---|
[959eb01] | 631 | |
---|
| 632 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 633 | frac = 1 |
---|
| 634 | if frac == 0: |
---|
| 635 | continue |
---|
| 636 | i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) |
---|
| 637 | |
---|
| 638 | # Take care of the edge case at phi = 2pi. |
---|
| 639 | if i_q == nbins: |
---|
| 640 | i_q = nbins - 1 |
---|
| 641 | y[i_q] += frac * data_n |
---|
| 642 | # Take dqs from data to get the q_average |
---|
| 643 | x[i_q] += frac * q_value |
---|
[c0ca2e3d] | 644 | if err_data is None or err_data[npt] == 0.0: |
---|
[959eb01] | 645 | if data_n < 0: |
---|
| 646 | data_n = -data_n |
---|
| 647 | err_y[i_q] += frac * frac * data_n |
---|
| 648 | else: |
---|
| 649 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
[c0ca2e3d] | 650 | if dq_data is not None: |
---|
[959eb01] | 651 | # To be consistent with dq calculation in 1d reduction, |
---|
| 652 | # we need just the averages (not quadratures) because |
---|
| 653 | # it should not depend on the number of the q points |
---|
| 654 | # in the qr bins. |
---|
| 655 | err_x[i_q] += frac * dq_data[npt] |
---|
| 656 | else: |
---|
| 657 | err_x = None |
---|
| 658 | y_counts[i_q] += frac |
---|
| 659 | |
---|
| 660 | # Average the sums |
---|
| 661 | for n in range(nbins): |
---|
| 662 | if err_y[n] < 0: |
---|
| 663 | err_y[n] = -err_y[n] |
---|
| 664 | err_y[n] = math.sqrt(err_y[n]) |
---|
[c0ca2e3d] | 665 | # if err_x is not None: |
---|
[959eb01] | 666 | # err_x[n] = math.sqrt(err_x[n]) |
---|
| 667 | |
---|
| 668 | err_y = err_y / y_counts |
---|
[c0ca2e3d] | 669 | err_y[err_y == 0] = np.average(err_y) |
---|
[959eb01] | 670 | y = y / y_counts |
---|
| 671 | x = x / y_counts |
---|
[c0ca2e3d] | 672 | idx = (np.isfinite(y)) & (np.isfinite(x)) |
---|
[959eb01] | 673 | |
---|
[c0ca2e3d] | 674 | if err_x is not None: |
---|
[959eb01] | 675 | d_x = err_x[idx] / y_counts[idx] |
---|
| 676 | else: |
---|
| 677 | d_x = None |
---|
| 678 | |
---|
| 679 | if not idx.any(): |
---|
| 680 | msg = "Average Error: No points inside ROI to average..." |
---|
[c0ca2e3d] | 681 | raise ValueError(msg) |
---|
[959eb01] | 682 | |
---|
| 683 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) |
---|
| 684 | |
---|
[c0ca2e3d] | 685 | ################################################################################ |
---|
[959eb01] | 686 | |
---|
| 687 | class Ring(object): |
---|
| 688 | """ |
---|
| 689 | Defines a ring on a 2D data set. |
---|
| 690 | The ring is defined by r_min, r_max, and |
---|
| 691 | the position of the center of the ring. |
---|
| 692 | |
---|
| 693 | The data returned is the distribution of counts |
---|
| 694 | around the ring as a function of phi. |
---|
| 695 | |
---|
| 696 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 697 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
| 698 | """ |
---|
[c0ca2e3d] | 699 | # Todo: remove center. |
---|
| 700 | |
---|
[959eb01] | 701 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=36): |
---|
| 702 | # Minimum radius |
---|
| 703 | self.r_min = r_min |
---|
| 704 | # Maximum radius |
---|
| 705 | self.r_max = r_max |
---|
| 706 | # Center of the ring in x |
---|
| 707 | self.center_x = center_x |
---|
| 708 | # Center of the ring in y |
---|
| 709 | self.center_y = center_y |
---|
| 710 | # Number of angular bins |
---|
| 711 | self.nbins_phi = nbins |
---|
| 712 | |
---|
| 713 | def __call__(self, data2D): |
---|
| 714 | """ |
---|
| 715 | Apply the ring to the data set. |
---|
| 716 | Returns the angular distribution for a given q range |
---|
| 717 | |
---|
| 718 | :param data2D: Data2D object |
---|
| 719 | |
---|
| 720 | :return: Data1D object |
---|
| 721 | """ |
---|
| 722 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
[c0ca2e3d] | 723 | raise RuntimeError("Ring averaging only take plottable_2D objects") |
---|
[959eb01] | 724 | |
---|
| 725 | Pi = math.pi |
---|
| 726 | |
---|
| 727 | # Get data |
---|
[c0ca2e3d] | 728 | data = data2D.data[np.isfinite(data2D.data)] |
---|
| 729 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
| 730 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
| 731 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
| 732 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
[959eb01] | 733 | |
---|
| 734 | # Set space for 1d outputs |
---|
[b290a9e] | 735 | phi_bins = np.zeros(self.nbins_phi) |
---|
| 736 | phi_counts = np.zeros(self.nbins_phi) |
---|
[c0ca2e3d] | 737 | phi_values = np.zeros(self.nbins_phi) |
---|
| 738 | phi_err = np.zeros(self.nbins_phi) |
---|
[959eb01] | 739 | |
---|
| 740 | # Shift to apply to calculated phi values in order |
---|
| 741 | # to center first bin at zero |
---|
| 742 | phi_shift = Pi / self.nbins_phi |
---|
| 743 | |
---|
| 744 | for npt in range(len(data)): |
---|
| 745 | frac = 0 |
---|
| 746 | # q-value at the point (npt) |
---|
| 747 | q_value = q_data[npt] |
---|
| 748 | data_n = data[npt] |
---|
| 749 | |
---|
| 750 | # phi-value at the point (npt) |
---|
| 751 | phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi |
---|
| 752 | |
---|
| 753 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 754 | frac = 1 |
---|
| 755 | if frac == 0: |
---|
| 756 | continue |
---|
| 757 | # binning |
---|
[c0ca2e3d] | 758 | i_phi = int(math.floor((self.nbins_phi) * |
---|
[959eb01] | 759 | (phi_value + phi_shift) / (2 * Pi))) |
---|
| 760 | |
---|
| 761 | # Take care of the edge case at phi = 2pi. |
---|
| 762 | if i_phi >= self.nbins_phi: |
---|
| 763 | i_phi = 0 |
---|
| 764 | phi_bins[i_phi] += frac * data[npt] |
---|
| 765 | |
---|
[c0ca2e3d] | 766 | if err_data is None or err_data[npt] == 0.0: |
---|
[959eb01] | 767 | if data_n < 0: |
---|
| 768 | data_n = -data_n |
---|
| 769 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
| 770 | else: |
---|
| 771 | phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] |
---|
| 772 | phi_counts[i_phi] += frac |
---|
| 773 | |
---|
| 774 | for i in range(self.nbins_phi): |
---|
| 775 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
| 776 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
| 777 | phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i) |
---|
| 778 | |
---|
[c0ca2e3d] | 779 | idx = (np.isfinite(phi_bins)) |
---|
[959eb01] | 780 | |
---|
| 781 | if not idx.any(): |
---|
| 782 | msg = "Average Error: No points inside ROI to average..." |
---|
[c0ca2e3d] | 783 | raise ValueError(msg) |
---|
| 784 | # elif len(phi_bins[idx])!= self.nbins_phi: |
---|
[959eb01] | 785 | # print "resulted",self.nbins_phi- len(phi_bins[idx]) |
---|
| 786 | #,"empty bin(s) due to tight binning..." |
---|
| 787 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
| 788 | |
---|
| 789 | |
---|
| 790 | class _Sector(object): |
---|
| 791 | """ |
---|
| 792 | Defines a sector region on a 2D data set. |
---|
| 793 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
| 794 | and the position of the center of the ring |
---|
| 795 | where phi_min and phi_max are defined by the right |
---|
| 796 | and left lines wrt central line |
---|
| 797 | and phi_max could be less than phi_min. |
---|
| 798 | |
---|
| 799 | Phi is defined between 0 and 2*pi in anti-clockwise |
---|
| 800 | starting from the x- axis on the left-hand side |
---|
| 801 | """ |
---|
[c0ca2e3d] | 802 | |
---|
[46cd1c3] | 803 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2 * math.pi, nbins=20, |
---|
| 804 | base=None): |
---|
| 805 | ''' |
---|
| 806 | :param base: must be a valid base for an algorithm, i.e., |
---|
| 807 | a positive number |
---|
| 808 | ''' |
---|
[959eb01] | 809 | self.r_min = r_min |
---|
| 810 | self.r_max = r_max |
---|
| 811 | self.phi_min = phi_min |
---|
| 812 | self.phi_max = phi_max |
---|
| 813 | self.nbins = nbins |
---|
[c0ca2e3d] | 814 | self.base = base |
---|
[959eb01] | 815 | |
---|
| 816 | def _agv(self, data2D, run='phi'): |
---|
| 817 | """ |
---|
| 818 | Perform sector averaging. |
---|
| 819 | |
---|
| 820 | :param data2D: Data2D object |
---|
| 821 | :param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
| 822 | |
---|
| 823 | :return: Data1D object |
---|
| 824 | """ |
---|
| 825 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
[c0ca2e3d] | 826 | raise RuntimeError("Ring averaging only take plottable_2D objects") |
---|
[959eb01] | 827 | |
---|
| 828 | # Get the all data & info |
---|
[c0ca2e3d] | 829 | data = data2D.data[np.isfinite(data2D.data)] |
---|
| 830 | q_data = data2D.q_data[np.isfinite(data2D.data)] |
---|
| 831 | err_data = data2D.err_data[np.isfinite(data2D.data)] |
---|
| 832 | qx_data = data2D.qx_data[np.isfinite(data2D.data)] |
---|
| 833 | qy_data = data2D.qy_data[np.isfinite(data2D.data)] |
---|
| 834 | |
---|
[959eb01] | 835 | dq_data = None |
---|
[c0ca2e3d] | 836 | if data2D.dqx_data is not None and data2D.dqy_data is not None: |
---|
| 837 | dq_data = get_dq_data(data2D) |
---|
[959eb01] | 838 | |
---|
[c0ca2e3d] | 839 | # set space for 1d outputs |
---|
| 840 | x = np.zeros(self.nbins) |
---|
| 841 | y = np.zeros(self.nbins) |
---|
| 842 | y_err = np.zeros(self.nbins) |
---|
| 843 | x_err = np.zeros(self.nbins) |
---|
[46cd1c3] | 844 | y_counts = np.zeros(self.nbins) # Cycle counts (for the mean) |
---|
[959eb01] | 845 | |
---|
| 846 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
| 847 | phi_min = flip_phi(self.phi_min) |
---|
| 848 | phi_max = flip_phi(self.phi_max) |
---|
| 849 | |
---|
[c0ca2e3d] | 850 | # binning object |
---|
| 851 | if run.lower() == 'phi': |
---|
| 852 | binning = Binning(self.phi_min, self.phi_max, self.nbins, self.base) |
---|
| 853 | else: |
---|
| 854 | binning = Binning(self.r_min, self.r_max, self.nbins, self.base) |
---|
[6c497b7] | 855 | |
---|
[959eb01] | 856 | for n in range(len(data)): |
---|
| 857 | |
---|
| 858 | # q-value at the pixel (j,i) |
---|
| 859 | q_value = q_data[n] |
---|
| 860 | data_n = data[n] |
---|
| 861 | |
---|
| 862 | # Is pixel within range? |
---|
| 863 | is_in = False |
---|
| 864 | |
---|
| 865 | # phi-value of the pixel (j,i) |
---|
[c0ca2e3d] | 866 | phi_value = math.atan2(qy_data[n], qx_data[n]) + math.pi |
---|
[959eb01] | 867 | |
---|
[c0ca2e3d] | 868 | # No need to calculate: data outside of the radius |
---|
| 869 | if self.r_min > q_value or q_value > self.r_max: |
---|
[959eb01] | 870 | continue |
---|
[c0ca2e3d] | 871 | |
---|
| 872 | # In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
[959eb01] | 873 | if run.lower() == 'q2': |
---|
[c0ca2e3d] | 874 | # For minor sector wing |
---|
[959eb01] | 875 | # Calculate the minor wing phis |
---|
[c0ca2e3d] | 876 | phi_min_minor = flip_phi(phi_min - math.pi) |
---|
| 877 | phi_max_minor = flip_phi(phi_max - math.pi) |
---|
[959eb01] | 878 | # Check if phis of the minor ring is within 0 to 2pi |
---|
| 879 | if phi_min_minor > phi_max_minor: |
---|
[c0ca2e3d] | 880 | is_in = (phi_value > phi_min_minor or |
---|
| 881 | phi_value < phi_max_minor) |
---|
[959eb01] | 882 | else: |
---|
[c0ca2e3d] | 883 | is_in = (phi_value > phi_min_minor and |
---|
| 884 | phi_value < phi_max_minor) |
---|
[959eb01] | 885 | |
---|
[c0ca2e3d] | 886 | # For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
| 887 | # Find pixels within ROI |
---|
[959eb01] | 888 | if phi_min > phi_max: |
---|
[c0ca2e3d] | 889 | is_in = is_in or (phi_value > phi_min or |
---|
| 890 | phi_value < phi_max) |
---|
[959eb01] | 891 | else: |
---|
[c0ca2e3d] | 892 | is_in = is_in or (phi_value >= phi_min and |
---|
| 893 | phi_value < phi_max) |
---|
[959eb01] | 894 | |
---|
[c0ca2e3d] | 895 | # data oustide of the phi range |
---|
[959eb01] | 896 | if not is_in: |
---|
| 897 | continue |
---|
[c0ca2e3d] | 898 | |
---|
| 899 | # Get the binning index |
---|
[959eb01] | 900 | if run.lower() == 'phi': |
---|
[c0ca2e3d] | 901 | i_bin = binning.get_bin_index(phi_value) |
---|
[959eb01] | 902 | else: |
---|
[c0ca2e3d] | 903 | i_bin = binning.get_bin_index(q_value) |
---|
[959eb01] | 904 | |
---|
| 905 | # Take care of the edge case at phi = 2pi. |
---|
| 906 | if i_bin == self.nbins: |
---|
| 907 | i_bin = self.nbins - 1 |
---|
| 908 | |
---|
[c0ca2e3d] | 909 | # Get the total y |
---|
| 910 | y[i_bin] += data_n |
---|
| 911 | x[i_bin] += q_value |
---|
| 912 | if err_data[n] is None or err_data[n] == 0.0: |
---|
[959eb01] | 913 | if data_n < 0: |
---|
| 914 | data_n = -data_n |
---|
[c0ca2e3d] | 915 | y_err[i_bin] += data_n |
---|
[959eb01] | 916 | else: |
---|
[c0ca2e3d] | 917 | y_err[i_bin] += err_data[n]**2 |
---|
[959eb01] | 918 | |
---|
[c0ca2e3d] | 919 | if dq_data is not None: |
---|
[959eb01] | 920 | # To be consistent with dq calculation in 1d reduction, |
---|
| 921 | # we need just the averages (not quadratures) because |
---|
| 922 | # it should not depend on the number of the q points |
---|
| 923 | # in the qr bins. |
---|
[c0ca2e3d] | 924 | x_err[i_bin] += dq_data[n] |
---|
[959eb01] | 925 | else: |
---|
| 926 | x_err = None |
---|
[c0ca2e3d] | 927 | y_counts[i_bin] += 1 |
---|
[959eb01] | 928 | |
---|
| 929 | # Organize the results |
---|
| 930 | for i in range(self.nbins): |
---|
| 931 | y[i] = y[i] / y_counts[i] |
---|
| 932 | y_err[i] = math.sqrt(y_err[i]) / y_counts[i] |
---|
| 933 | |
---|
| 934 | # The type of averaging: phi,q2, or q |
---|
| 935 | # Calculate x[i]should be at the center of the bin |
---|
| 936 | if run.lower() == 'phi': |
---|
| 937 | x[i] = (self.phi_max - self.phi_min) / self.nbins * \ |
---|
| 938 | (1.0 * i + 0.5) + self.phi_min |
---|
| 939 | else: |
---|
| 940 | # We take the center of ring area, not radius. |
---|
| 941 | # This is more accurate than taking the radial center of ring. |
---|
[46cd1c3] | 942 | # delta_r = (self.r_max - self.r_min) / self.nbins |
---|
| 943 | # r_inner = self.r_min + delta_r * i |
---|
| 944 | # r_outer = r_inner + delta_r |
---|
| 945 | # x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2) |
---|
[959eb01] | 946 | x[i] = x[i] / y_counts[i] |
---|
[c0ca2e3d] | 947 | y_err[y_err == 0] = np.average(y_err) |
---|
| 948 | idx = (np.isfinite(y) & np.isfinite(y_err)) |
---|
| 949 | if x_err is not None: |
---|
[959eb01] | 950 | d_x = x_err[idx] / y_counts[idx] |
---|
| 951 | else: |
---|
| 952 | d_x = None |
---|
| 953 | if not idx.any(): |
---|
| 954 | msg = "Average Error: No points inside sector of ROI to average..." |
---|
[c0ca2e3d] | 955 | raise ValueError(msg) |
---|
| 956 | # elif len(y[idx])!= self.nbins: |
---|
[959eb01] | 957 | # print "resulted",self.nbins- len(y[idx]), |
---|
[46cd1c3] | 958 | # "empty bin(s) due to tight binning..." |
---|
[959eb01] | 959 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx], dx=d_x) |
---|
| 960 | |
---|
| 961 | |
---|
| 962 | class SectorPhi(_Sector): |
---|
| 963 | """ |
---|
| 964 | Sector average as a function of phi. |
---|
| 965 | I(phi) is return and the data is averaged over Q. |
---|
| 966 | |
---|
| 967 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 968 | The number of bin in phi also has to be defined. |
---|
| 969 | """ |
---|
[c0ca2e3d] | 970 | |
---|
[959eb01] | 971 | def __call__(self, data2D): |
---|
| 972 | """ |
---|
| 973 | Perform sector average and return I(phi). |
---|
| 974 | |
---|
| 975 | :param data2D: Data2D object |
---|
| 976 | :return: Data1D object |
---|
| 977 | """ |
---|
| 978 | return self._agv(data2D, 'phi') |
---|
| 979 | |
---|
| 980 | |
---|
| 981 | class SectorQ(_Sector): |
---|
| 982 | """ |
---|
| 983 | Sector average as a function of Q for both symatric wings. |
---|
| 984 | I(Q) is return and the data is averaged over phi. |
---|
| 985 | |
---|
| 986 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 987 | r_min, r_max, phi_min, phi_max >0. |
---|
| 988 | The number of bin in Q also has to be defined. |
---|
| 989 | """ |
---|
[c0ca2e3d] | 990 | |
---|
[959eb01] | 991 | def __call__(self, data2D): |
---|
| 992 | """ |
---|
| 993 | Perform sector average and return I(Q). |
---|
| 994 | |
---|
| 995 | :param data2D: Data2D object |
---|
| 996 | |
---|
| 997 | :return: Data1D object |
---|
| 998 | """ |
---|
| 999 | return self._agv(data2D, 'q2') |
---|
| 1000 | |
---|
[c0ca2e3d] | 1001 | ################################################################################ |
---|
[959eb01] | 1002 | |
---|
| 1003 | class Ringcut(object): |
---|
| 1004 | """ |
---|
| 1005 | Defines a ring on a 2D data set. |
---|
| 1006 | The ring is defined by r_min, r_max, and |
---|
| 1007 | the position of the center of the ring. |
---|
| 1008 | |
---|
| 1009 | The data returned is the region inside the ring |
---|
| 1010 | |
---|
| 1011 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 1012 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
| 1013 | """ |
---|
[c0ca2e3d] | 1014 | |
---|
[959eb01] | 1015 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0): |
---|
| 1016 | # Minimum radius |
---|
| 1017 | self.r_min = r_min |
---|
| 1018 | # Maximum radius |
---|
| 1019 | self.r_max = r_max |
---|
| 1020 | # Center of the ring in x |
---|
| 1021 | self.center_x = center_x |
---|
| 1022 | # Center of the ring in y |
---|
| 1023 | self.center_y = center_y |
---|
| 1024 | |
---|
| 1025 | def __call__(self, data2D): |
---|
| 1026 | """ |
---|
| 1027 | Apply the ring to the data set. |
---|
| 1028 | Returns the angular distribution for a given q range |
---|
| 1029 | |
---|
| 1030 | :param data2D: Data2D object |
---|
| 1031 | |
---|
| 1032 | :return: index array in the range |
---|
| 1033 | """ |
---|
| 1034 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
[c0ca2e3d] | 1035 | raise RuntimeError("Ring cut only take plottable_2D objects") |
---|
[959eb01] | 1036 | |
---|
| 1037 | # Get data |
---|
| 1038 | qx_data = data2D.qx_data |
---|
| 1039 | qy_data = data2D.qy_data |
---|
[c0ca2e3d] | 1040 | q_data = np.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
[959eb01] | 1041 | |
---|
| 1042 | # check whether or not the data point is inside ROI |
---|
| 1043 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
| 1044 | return out |
---|
| 1045 | |
---|
[c0ca2e3d] | 1046 | ################################################################################ |
---|
[959eb01] | 1047 | |
---|
| 1048 | class Boxcut(object): |
---|
| 1049 | """ |
---|
| 1050 | Find a rectangular 2D region of interest. |
---|
| 1051 | """ |
---|
[c0ca2e3d] | 1052 | |
---|
[959eb01] | 1053 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 1054 | # Minimum Qx value [A-1] |
---|
| 1055 | self.x_min = x_min |
---|
| 1056 | # Maximum Qx value [A-1] |
---|
| 1057 | self.x_max = x_max |
---|
| 1058 | # Minimum Qy value [A-1] |
---|
| 1059 | self.y_min = y_min |
---|
| 1060 | # Maximum Qy value [A-1] |
---|
| 1061 | self.y_max = y_max |
---|
| 1062 | |
---|
| 1063 | def __call__(self, data2D): |
---|
| 1064 | """ |
---|
| 1065 | Find a rectangular 2D region of interest. |
---|
| 1066 | |
---|
| 1067 | :param data2D: Data2D object |
---|
| 1068 | :return: mask, 1d array (len = len(data)) |
---|
| 1069 | with Trues where the data points are inside ROI, otherwise False |
---|
| 1070 | """ |
---|
| 1071 | mask = self._find(data2D) |
---|
| 1072 | |
---|
| 1073 | return mask |
---|
| 1074 | |
---|
| 1075 | def _find(self, data2D): |
---|
| 1076 | """ |
---|
| 1077 | Find a rectangular 2D region of interest. |
---|
| 1078 | |
---|
| 1079 | :param data2D: Data2D object |
---|
| 1080 | |
---|
| 1081 | :return: out, 1d array (length = len(data)) |
---|
| 1082 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 1083 | """ |
---|
| 1084 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
[c0ca2e3d] | 1085 | raise RuntimeError("Boxcut take only plottable_2D objects") |
---|
[959eb01] | 1086 | # Get qx_ and qy_data |
---|
| 1087 | qx_data = data2D.qx_data |
---|
| 1088 | qy_data = data2D.qy_data |
---|
| 1089 | |
---|
| 1090 | # check whether or not the data point is inside ROI |
---|
| 1091 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
| 1092 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
| 1093 | |
---|
| 1094 | return outx & outy |
---|
| 1095 | |
---|
[c0ca2e3d] | 1096 | ################################################################################ |
---|
[959eb01] | 1097 | |
---|
| 1098 | class Sectorcut(object): |
---|
| 1099 | """ |
---|
| 1100 | Defines a sector (major + minor) region on a 2D data set. |
---|
| 1101 | The sector is defined by phi_min, phi_max, |
---|
| 1102 | where phi_min and phi_max are defined by the right |
---|
| 1103 | and left lines wrt central line. |
---|
| 1104 | |
---|
| 1105 | Phi_min and phi_max are given in units of radian |
---|
| 1106 | and (phi_max-phi_min) should not be larger than pi |
---|
| 1107 | """ |
---|
[c0ca2e3d] | 1108 | |
---|
[959eb01] | 1109 | def __init__(self, phi_min=0, phi_max=math.pi): |
---|
| 1110 | self.phi_min = phi_min |
---|
| 1111 | self.phi_max = phi_max |
---|
| 1112 | |
---|
| 1113 | def __call__(self, data2D): |
---|
| 1114 | """ |
---|
| 1115 | Find a rectangular 2D region of interest. |
---|
| 1116 | |
---|
| 1117 | :param data2D: Data2D object |
---|
| 1118 | |
---|
| 1119 | :return: mask, 1d array (len = len(data)) |
---|
| 1120 | |
---|
| 1121 | with Trues where the data points are inside ROI, otherwise False |
---|
| 1122 | """ |
---|
| 1123 | mask = self._find(data2D) |
---|
| 1124 | |
---|
| 1125 | return mask |
---|
| 1126 | |
---|
| 1127 | def _find(self, data2D): |
---|
| 1128 | """ |
---|
| 1129 | Find a rectangular 2D region of interest. |
---|
| 1130 | |
---|
| 1131 | :param data2D: Data2D object |
---|
| 1132 | |
---|
| 1133 | :return: out, 1d array (length = len(data)) |
---|
| 1134 | |
---|
| 1135 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 1136 | """ |
---|
| 1137 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
[c0ca2e3d] | 1138 | raise RuntimeError("Sectorcut take only plottable_2D objects") |
---|
[959eb01] | 1139 | Pi = math.pi |
---|
| 1140 | # Get data |
---|
| 1141 | qx_data = data2D.qx_data |
---|
| 1142 | qy_data = data2D.qy_data |
---|
| 1143 | |
---|
| 1144 | # get phi from data |
---|
[c0ca2e3d] | 1145 | phi_data = np.arctan2(qy_data, qx_data) |
---|
[959eb01] | 1146 | |
---|
| 1147 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 1148 | phi_min_major = flip_phi(self.phi_min + Pi) - Pi |
---|
| 1149 | phi_max_major = flip_phi(self.phi_max + Pi) - Pi |
---|
| 1150 | # check for major sector |
---|
| 1151 | if phi_min_major > phi_max_major: |
---|
[c0ca2e3d] | 1152 | out_major = (phi_min_major <= phi_data) + \ |
---|
| 1153 | (phi_max_major > phi_data) |
---|
[959eb01] | 1154 | else: |
---|
[c0ca2e3d] | 1155 | out_major = (phi_min_major <= phi_data) & ( |
---|
| 1156 | phi_max_major > phi_data) |
---|
[959eb01] | 1157 | |
---|
| 1158 | # minor sector |
---|
| 1159 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 1160 | phi_min_minor = flip_phi(self.phi_min) - Pi |
---|
| 1161 | phi_max_minor = flip_phi(self.phi_max) - Pi |
---|
| 1162 | |
---|
| 1163 | # check for minor sector |
---|
| 1164 | if phi_min_minor > phi_max_minor: |
---|
| 1165 | out_minor = (phi_min_minor <= phi_data) + \ |
---|
[c0ca2e3d] | 1166 | (phi_max_minor >= phi_data) |
---|
[959eb01] | 1167 | else: |
---|
| 1168 | out_minor = (phi_min_minor <= phi_data) & \ |
---|
[c0ca2e3d] | 1169 | (phi_max_minor >= phi_data) |
---|
[959eb01] | 1170 | out = out_major + out_minor |
---|
| 1171 | |
---|
| 1172 | return out |
---|