[beba407] | 1 | """ |
---|
[b09095a] | 2 | This is the base file reader class most file readers should inherit from. |
---|
[beba407] | 3 | All generic functionality required for a file loader/reader is built into this |
---|
| 4 | class |
---|
| 5 | """ |
---|
| 6 | |
---|
| 7 | import os |
---|
[a78a02f] | 8 | import re |
---|
[beba407] | 9 | import logging |
---|
[b09095a] | 10 | import numpy as np |
---|
[beba407] | 11 | from abc import abstractmethod |
---|
| 12 | from loader_exceptions import NoKnownLoaderException, FileContentsException,\ |
---|
[da8bb53] | 13 | DataReaderException, DefaultReaderException |
---|
[beba407] | 14 | from data_info import Data1D, Data2D, DataInfo, plottable_1D, plottable_2D,\ |
---|
| 15 | combine_data_info_with_plottable |
---|
| 16 | |
---|
| 17 | logger = logging.getLogger(__name__) |
---|
| 18 | |
---|
| 19 | |
---|
| 20 | class FileReader(object): |
---|
| 21 | # List of Data1D and Data2D objects to be sent back to data_loader |
---|
| 22 | output = [] |
---|
[b09095a] | 23 | # Current plottable_(1D/2D) object being loaded in |
---|
[beba407] | 24 | current_dataset = None |
---|
[b09095a] | 25 | # Current DataInfo object being loaded in |
---|
[beba407] | 26 | current_datainfo = None |
---|
[b09095a] | 27 | # String to describe the type of data this reader can load |
---|
| 28 | type_name = "ASCII" |
---|
| 29 | # Wildcards to display |
---|
| 30 | type = ["Text files (*.txt|*.TXT)"] |
---|
[beba407] | 31 | # List of allowed extensions |
---|
| 32 | ext = ['.txt'] |
---|
| 33 | # Bypass extension check and try to load anyway |
---|
| 34 | allow_all = False |
---|
[b09095a] | 35 | # Able to import the unit converter |
---|
| 36 | has_converter = True |
---|
| 37 | # Open file handle |
---|
| 38 | f_open = None |
---|
| 39 | # Default value of zero |
---|
| 40 | _ZERO = 1e-16 |
---|
[beba407] | 41 | |
---|
| 42 | def read(self, filepath): |
---|
| 43 | """ |
---|
[bc570f4] | 44 | Basic file reader |
---|
| 45 | |
---|
[beba407] | 46 | :param filepath: The full or relative path to a file to be loaded |
---|
| 47 | """ |
---|
| 48 | if os.path.isfile(filepath): |
---|
| 49 | basename, extension = os.path.splitext(os.path.basename(filepath)) |
---|
[da8bb53] | 50 | self.extension = extension.lower() |
---|
[beba407] | 51 | # If the file type is not allowed, return nothing |
---|
[da8bb53] | 52 | if self.extension in self.ext or self.allow_all: |
---|
[beba407] | 53 | # Try to load the file, but raise an error if unable to. |
---|
| 54 | try: |
---|
[b09095a] | 55 | self.f_open = open(filepath, 'rb') |
---|
| 56 | self.get_file_contents() |
---|
[0b79323] | 57 | |
---|
[bc570f4] | 58 | except DataReaderException as e: |
---|
[da8bb53] | 59 | self.handle_error_message(e.message) |
---|
[beba407] | 60 | except OSError as e: |
---|
[b09095a] | 61 | # If the file cannot be opened |
---|
[beba407] | 62 | msg = "Unable to open file: {}\n".format(filepath) |
---|
| 63 | msg += e.message |
---|
| 64 | self.handle_error_message(msg) |
---|
[b09095a] | 65 | finally: |
---|
[da8bb53] | 66 | # Close the file handle if it is open |
---|
[b09095a] | 67 | if not self.f_open.closed: |
---|
| 68 | self.f_open.close() |
---|
[248ff73] | 69 | if len(self.output) > 0: |
---|
| 70 | # Sort the data that's been loaded |
---|
| 71 | self.sort_one_d_data() |
---|
| 72 | self.sort_two_d_data() |
---|
[beba407] | 73 | else: |
---|
| 74 | msg = "Unable to find file at: {}\n".format(filepath) |
---|
| 75 | msg += "Please check your file path and try again." |
---|
| 76 | self.handle_error_message(msg) |
---|
[a78433dd] | 77 | |
---|
[b09095a] | 78 | # Return a list of parsed entries that data_loader can manage |
---|
[beba407] | 79 | return self.output |
---|
| 80 | |
---|
| 81 | def handle_error_message(self, msg): |
---|
| 82 | """ |
---|
| 83 | Generic error handler to add an error to the current datainfo to |
---|
| 84 | propogate the error up the error chain. |
---|
| 85 | :param msg: Error message |
---|
| 86 | """ |
---|
[dcb91cf] | 87 | if len(self.output) > 0: |
---|
| 88 | self.output[-1].errors.append(msg) |
---|
| 89 | elif isinstance(self.current_datainfo, DataInfo): |
---|
[beba407] | 90 | self.current_datainfo.errors.append(msg) |
---|
| 91 | else: |
---|
| 92 | logger.warning(msg) |
---|
| 93 | |
---|
| 94 | def send_to_output(self): |
---|
| 95 | """ |
---|
| 96 | Helper that automatically combines the info and set and then appends it |
---|
| 97 | to output |
---|
| 98 | """ |
---|
| 99 | data_obj = combine_data_info_with_plottable(self.current_dataset, |
---|
| 100 | self.current_datainfo) |
---|
| 101 | self.output.append(data_obj) |
---|
| 102 | |
---|
[b09095a] | 103 | def sort_one_d_data(self): |
---|
| 104 | """ |
---|
| 105 | Sort 1D data along the X axis for consistency |
---|
| 106 | """ |
---|
| 107 | for data in self.output: |
---|
| 108 | if isinstance(data, Data1D): |
---|
[a78a02f] | 109 | # Normalize the units for |
---|
| 110 | data.x_unit = self.format_unit(data.x_unit) |
---|
| 111 | data.y_unit = self.format_unit(data.y_unit) |
---|
[7477fb9] | 112 | # Sort data by increasing x and remove 1st point |
---|
[b09095a] | 113 | ind = np.lexsort((data.y, data.x)) |
---|
[9d786e5] | 114 | data.x = np.asarray([data.x[i] for i in ind]).astype(np.float64) |
---|
| 115 | data.y = np.asarray([data.y[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 116 | if data.dx is not None: |
---|
[4660990] | 117 | if len(data.dx) == 0: |
---|
| 118 | data.dx = None |
---|
| 119 | continue |
---|
[9d786e5] | 120 | data.dx = np.asarray([data.dx[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 121 | if data.dxl is not None: |
---|
[9d786e5] | 122 | data.dxl = np.asarray([data.dxl[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 123 | if data.dxw is not None: |
---|
[9d786e5] | 124 | data.dxw = np.asarray([data.dxw[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 125 | if data.dy is not None: |
---|
[4660990] | 126 | if len(data.dy) == 0: |
---|
| 127 | data.dy = None |
---|
| 128 | continue |
---|
[9d786e5] | 129 | data.dy = np.asarray([data.dy[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 130 | if data.lam is not None: |
---|
[9d786e5] | 131 | data.lam = np.asarray([data.lam[i] for i in ind]).astype(np.float64) |
---|
[b09095a] | 132 | if data.dlam is not None: |
---|
[9d786e5] | 133 | data.dlam = np.asarray([data.dlam[i] for i in ind]).astype(np.float64) |
---|
[dcb91cf] | 134 | if len(data.x) > 0: |
---|
[248ff73] | 135 | data.xmin = np.min(data.x) |
---|
| 136 | data.xmax = np.max(data.x) |
---|
| 137 | data.ymin = np.min(data.y) |
---|
| 138 | data.ymax = np.max(data.y) |
---|
[b09095a] | 139 | |
---|
[0b79323] | 140 | def sort_two_d_data(self): |
---|
| 141 | for dataset in self.output: |
---|
[9d786e5] | 142 | if isinstance(dataset, Data2D): |
---|
[a78a02f] | 143 | # Normalize the units for |
---|
| 144 | dataset.x_unit = self.format_unit(dataset.Q_unit) |
---|
| 145 | dataset.y_unit = self.format_unit(dataset.I_unit) |
---|
[9d786e5] | 146 | dataset.data = dataset.data.astype(np.float64) |
---|
| 147 | dataset.qx_data = dataset.qx_data.astype(np.float64) |
---|
| 148 | dataset.xmin = np.min(dataset.qx_data) |
---|
| 149 | dataset.xmax = np.max(dataset.qx_data) |
---|
| 150 | dataset.qy_data = dataset.qy_data.astype(np.float64) |
---|
| 151 | dataset.ymin = np.min(dataset.qy_data) |
---|
| 152 | dataset.ymax = np.max(dataset.qy_data) |
---|
| 153 | dataset.q_data = np.sqrt(dataset.qx_data * dataset.qx_data |
---|
| 154 | + dataset.qy_data * dataset.qy_data) |
---|
| 155 | if dataset.err_data is not None: |
---|
| 156 | dataset.err_data = dataset.err_data.astype(np.float64) |
---|
| 157 | if dataset.dqx_data is not None: |
---|
| 158 | dataset.dqx_data = dataset.dqx_data.astype(np.float64) |
---|
| 159 | if dataset.dqy_data is not None: |
---|
| 160 | dataset.dqy_data = dataset.dqy_data.astype(np.float64) |
---|
| 161 | if dataset.mask is not None: |
---|
| 162 | dataset.mask = dataset.mask.astype(dtype=bool) |
---|
| 163 | |
---|
| 164 | if len(dataset.data.shape) == 2: |
---|
| 165 | n_rows, n_cols = dataset.data.shape |
---|
| 166 | dataset.y_bins = dataset.qy_data[0::int(n_cols)] |
---|
| 167 | dataset.x_bins = dataset.qx_data[:int(n_cols)] |
---|
[2f85af7] | 168 | dataset.data = dataset.data.flatten() |
---|
[deaa0c6] | 169 | if len(dataset.data) > 0: |
---|
| 170 | dataset.xmin = np.min(dataset.qx_data) |
---|
| 171 | dataset.xmax = np.max(dataset.qx_data) |
---|
| 172 | dataset.ymin = np.min(dataset.qy_data) |
---|
| 173 | dataset.ymax = np.max(dataset.qx_data) |
---|
[0b79323] | 174 | |
---|
[a78a02f] | 175 | def format_unit(self, unit=None): |
---|
| 176 | """ |
---|
| 177 | Format units a common way |
---|
| 178 | :param unit: |
---|
| 179 | :return: |
---|
| 180 | """ |
---|
| 181 | if unit: |
---|
| 182 | split = unit.split("/") |
---|
| 183 | if len(split) == 1: |
---|
| 184 | return unit |
---|
| 185 | elif split[0] == '1': |
---|
| 186 | return "{0}^".format(split[1]) + "{-1}" |
---|
| 187 | else: |
---|
| 188 | return "{0}*{1}^".format(split[0], split[1]) + "{-1}" |
---|
| 189 | |
---|
[da8bb53] | 190 | def set_all_to_none(self): |
---|
| 191 | """ |
---|
| 192 | Set all mutable values to None for error handling purposes |
---|
| 193 | """ |
---|
| 194 | self.current_dataset = None |
---|
| 195 | self.current_datainfo = None |
---|
| 196 | self.output = [] |
---|
| 197 | |
---|
[7b07fbe] | 198 | def data_cleanup(self): |
---|
| 199 | """ |
---|
| 200 | Clean up the data sets and refresh everything |
---|
| 201 | :return: None |
---|
| 202 | """ |
---|
| 203 | self.remove_empty_q_values() |
---|
| 204 | self.send_to_output() # Combine datasets with DataInfo |
---|
| 205 | self.current_datainfo = DataInfo() # Reset DataInfo |
---|
| 206 | |
---|
| 207 | def remove_empty_q_values(self): |
---|
[ad92c5a] | 208 | """ |
---|
| 209 | Remove any point where Q == 0 |
---|
| 210 | """ |
---|
[7b07fbe] | 211 | if isinstance(self.current_dataset, plottable_1D): |
---|
| 212 | # Booleans for resolutions |
---|
| 213 | has_error_dx = self.current_dataset.dx is not None |
---|
| 214 | has_error_dxl = self.current_dataset.dxl is not None |
---|
| 215 | has_error_dxw = self.current_dataset.dxw is not None |
---|
| 216 | has_error_dy = self.current_dataset.dy is not None |
---|
| 217 | # Create arrays of zeros for non-existent resolutions |
---|
| 218 | if has_error_dxw and not has_error_dxl: |
---|
| 219 | array_size = self.current_dataset.dxw.size - 1 |
---|
| 220 | self.current_dataset.dxl = np.append(self.current_dataset.dxl, |
---|
| 221 | np.zeros([array_size])) |
---|
| 222 | has_error_dxl = True |
---|
| 223 | elif has_error_dxl and not has_error_dxw: |
---|
| 224 | array_size = self.current_dataset.dxl.size - 1 |
---|
| 225 | self.current_dataset.dxw = np.append(self.current_dataset.dxw, |
---|
| 226 | np.zeros([array_size])) |
---|
| 227 | has_error_dxw = True |
---|
| 228 | elif not has_error_dxl and not has_error_dxw and not has_error_dx: |
---|
| 229 | array_size = self.current_dataset.x.size - 1 |
---|
| 230 | self.current_dataset.dx = np.append(self.current_dataset.dx, |
---|
| 231 | np.zeros([array_size])) |
---|
| 232 | has_error_dx = True |
---|
| 233 | if not has_error_dy: |
---|
| 234 | array_size = self.current_dataset.y.size - 1 |
---|
| 235 | self.current_dataset.dy = np.append(self.current_dataset.dy, |
---|
| 236 | np.zeros([array_size])) |
---|
| 237 | has_error_dy = True |
---|
| 238 | |
---|
| 239 | # Remove points where q = 0 |
---|
| 240 | x = self.current_dataset.x |
---|
| 241 | self.current_dataset.x = self.current_dataset.x[x != 0] |
---|
| 242 | self.current_dataset.y = self.current_dataset.y[x != 0] |
---|
| 243 | if has_error_dy: |
---|
| 244 | self.current_dataset.dy = self.current_dataset.dy[x != 0] |
---|
| 245 | if has_error_dx: |
---|
| 246 | self.current_dataset.dx = self.current_dataset.dx[x != 0] |
---|
| 247 | if has_error_dxl: |
---|
| 248 | self.current_dataset.dxl = self.current_dataset.dxl[x != 0] |
---|
| 249 | if has_error_dxw: |
---|
| 250 | self.current_dataset.dxw = self.current_dataset.dxw[x != 0] |
---|
| 251 | elif isinstance(self.current_dataset, plottable_2D): |
---|
| 252 | has_error_dqx = self.current_dataset.dqx_data is not None |
---|
| 253 | has_error_dqy = self.current_dataset.dqy_data is not None |
---|
| 254 | has_error_dy = self.current_dataset.err_data is not None |
---|
| 255 | has_mask = self.current_dataset.mask is not None |
---|
| 256 | x = self.current_dataset.qx_data |
---|
| 257 | self.current_dataset.data = self.current_dataset.data[x != 0] |
---|
| 258 | self.current_dataset.qx_data = self.current_dataset.qx_data[x != 0] |
---|
| 259 | self.current_dataset.qy_data = self.current_dataset.qy_data[x != 0] |
---|
[deaa0c6] | 260 | self.current_dataset.q_data = np.sqrt( |
---|
| 261 | np.square(self.current_dataset.qx_data) + np.square( |
---|
| 262 | self.current_dataset.qy_data)) |
---|
[7b07fbe] | 263 | if has_error_dy: |
---|
| 264 | self.current_dataset.err_data = self.current_dataset.err_data[x != 0] |
---|
| 265 | if has_error_dqx: |
---|
| 266 | self.current_dataset.dqx_data = self.current_dataset.dqx_data[x != 0] |
---|
| 267 | if has_error_dqy: |
---|
| 268 | self.current_dataset.dqy_data = self.current_dataset.dqy_data[x != 0] |
---|
| 269 | if has_mask: |
---|
| 270 | self.current_dataset.mask = self.current_dataset.mask[x != 0] |
---|
[ad92c5a] | 271 | |
---|
| 272 | def reset_data_list(self, no_lines=0): |
---|
| 273 | """ |
---|
| 274 | Reset the plottable_1D object |
---|
| 275 | """ |
---|
| 276 | # Initialize data sets with arrays the maximum possible size |
---|
| 277 | x = np.zeros(no_lines) |
---|
| 278 | y = np.zeros(no_lines) |
---|
[4660990] | 279 | dx = np.zeros(no_lines) |
---|
| 280 | dy = np.zeros(no_lines) |
---|
| 281 | self.current_dataset = plottable_1D(x, y, dx, dy) |
---|
[ad92c5a] | 282 | |
---|
[b09095a] | 283 | @staticmethod |
---|
| 284 | def splitline(line): |
---|
| 285 | """ |
---|
| 286 | Splits a line into pieces based on common delimeters |
---|
| 287 | :param line: A single line of text |
---|
| 288 | :return: list of values |
---|
| 289 | """ |
---|
| 290 | # Initial try for CSV (split on ,) |
---|
| 291 | toks = line.split(',') |
---|
| 292 | # Now try SCSV (split on ;) |
---|
| 293 | if len(toks) < 2: |
---|
| 294 | toks = line.split(';') |
---|
| 295 | # Now go for whitespace |
---|
| 296 | if len(toks) < 2: |
---|
| 297 | toks = line.split() |
---|
| 298 | return toks |
---|
| 299 | |
---|
[beba407] | 300 | @abstractmethod |
---|
[b09095a] | 301 | def get_file_contents(self): |
---|
[beba407] | 302 | """ |
---|
[ad92c5a] | 303 | Reader specific class to access the contents of the file |
---|
[b09095a] | 304 | All reader classes that inherit from FileReader must implement |
---|
[beba407] | 305 | """ |
---|
| 306 | pass |
---|