[beba407] | 1 | """ |
---|
[b09095a] | 2 | This is the base file reader class most file readers should inherit from. |
---|
[beba407] | 3 | All generic functionality required for a file loader/reader is built into this |
---|
| 4 | class |
---|
| 5 | """ |
---|
| 6 | |
---|
| 7 | import os |
---|
[7b50f14] | 8 | import sys |
---|
[b8080e1] | 9 | import math |
---|
[beba407] | 10 | import logging |
---|
| 11 | from abc import abstractmethod |
---|
[574adc7] | 12 | |
---|
| 13 | import numpy as np |
---|
| 14 | from .loader_exceptions import NoKnownLoaderException, FileContentsException,\ |
---|
[da8bb53] | 15 | DataReaderException, DefaultReaderException |
---|
[574adc7] | 16 | from .data_info import Data1D, Data2D, DataInfo, plottable_1D, plottable_2D,\ |
---|
[beba407] | 17 | combine_data_info_with_plottable |
---|
| 18 | |
---|
| 19 | logger = logging.getLogger(__name__) |
---|
| 20 | |
---|
[7b50f14] | 21 | if sys.version_info[0] < 3: |
---|
| 22 | def decode(s): |
---|
| 23 | return s |
---|
| 24 | else: |
---|
| 25 | def decode(s): |
---|
| 26 | return s.decode() if isinstance(s, bytes) else s |
---|
[beba407] | 27 | |
---|
[b8080e1] | 28 | # Data 1D fields for iterative purposes |
---|
| 29 | FIELDS_1D = ('x', 'y', 'dx', 'dy', 'dxl', 'dxw') |
---|
| 30 | # Data 2D fields for iterative purposes |
---|
| 31 | FIELDS_2D = ('data', 'qx_data', 'qy_data', 'q_data', 'err_data', |
---|
| 32 | 'dqx_data', 'dqy_data', 'mask') |
---|
| 33 | DEPRECATION_MESSAGE = ("\rThe extension of this file suggests the data set migh" |
---|
| 34 | "t not be fully reduced. Support for the reader associat" |
---|
| 35 | "ed with this file type has been removed. An attempt to " |
---|
| 36 | "load the file was made, but, should it be successful, " |
---|
| 37 | "SasView cannot guarantee the accuracy of the data.") |
---|
| 38 | |
---|
[beba407] | 39 | class FileReader(object): |
---|
[b09095a] | 40 | # String to describe the type of data this reader can load |
---|
| 41 | type_name = "ASCII" |
---|
| 42 | # Wildcards to display |
---|
| 43 | type = ["Text files (*.txt|*.TXT)"] |
---|
[beba407] | 44 | # List of allowed extensions |
---|
| 45 | ext = ['.txt'] |
---|
[b8080e1] | 46 | # Deprecated extensions |
---|
| 47 | deprecated_extensions = ['.asc', '.nxs'] |
---|
[beba407] | 48 | # Bypass extension check and try to load anyway |
---|
| 49 | allow_all = False |
---|
[b09095a] | 50 | # Able to import the unit converter |
---|
| 51 | has_converter = True |
---|
| 52 | # Default value of zero |
---|
| 53 | _ZERO = 1e-16 |
---|
[beba407] | 54 | |
---|
[b8080e1] | 55 | def __init__(self): |
---|
| 56 | # List of Data1D and Data2D objects to be sent back to data_loader |
---|
| 57 | self.output = [] |
---|
| 58 | # Current plottable_(1D/2D) object being loaded in |
---|
| 59 | self.current_dataset = None |
---|
| 60 | # Current DataInfo object being loaded in |
---|
| 61 | self.current_datainfo = None |
---|
| 62 | # File path sent to reader |
---|
| 63 | self.filepath = None |
---|
| 64 | # Open file handle |
---|
| 65 | self.f_open = None |
---|
| 66 | |
---|
[beba407] | 67 | def read(self, filepath): |
---|
| 68 | """ |
---|
[bc570f4] | 69 | Basic file reader |
---|
| 70 | |
---|
[beba407] | 71 | :param filepath: The full or relative path to a file to be loaded |
---|
| 72 | """ |
---|
[b8080e1] | 73 | self.filepath = filepath |
---|
[beba407] | 74 | if os.path.isfile(filepath): |
---|
| 75 | basename, extension = os.path.splitext(os.path.basename(filepath)) |
---|
[da8bb53] | 76 | self.extension = extension.lower() |
---|
[beba407] | 77 | # If the file type is not allowed, return nothing |
---|
[da8bb53] | 78 | if self.extension in self.ext or self.allow_all: |
---|
[beba407] | 79 | # Try to load the file, but raise an error if unable to. |
---|
| 80 | try: |
---|
[b09095a] | 81 | self.f_open = open(filepath, 'rb') |
---|
| 82 | self.get_file_contents() |
---|
[0b79323] | 83 | |
---|
[bc570f4] | 84 | except DataReaderException as e: |
---|
[da8bb53] | 85 | self.handle_error_message(e.message) |
---|
[beba407] | 86 | except OSError as e: |
---|
[b09095a] | 87 | # If the file cannot be opened |
---|
[beba407] | 88 | msg = "Unable to open file: {}\n".format(filepath) |
---|
| 89 | msg += e.message |
---|
| 90 | self.handle_error_message(msg) |
---|
[b09095a] | 91 | finally: |
---|
[da8bb53] | 92 | # Close the file handle if it is open |
---|
[b09095a] | 93 | if not self.f_open.closed: |
---|
| 94 | self.f_open.close() |
---|
[b8080e1] | 95 | if any(filepath.lower().endswith(ext) for ext in |
---|
| 96 | self.deprecated_extensions): |
---|
| 97 | self.handle_error_message(DEPRECATION_MESSAGE) |
---|
[248ff73] | 98 | if len(self.output) > 0: |
---|
| 99 | # Sort the data that's been loaded |
---|
| 100 | self.sort_one_d_data() |
---|
| 101 | self.sort_two_d_data() |
---|
[beba407] | 102 | else: |
---|
| 103 | msg = "Unable to find file at: {}\n".format(filepath) |
---|
| 104 | msg += "Please check your file path and try again." |
---|
| 105 | self.handle_error_message(msg) |
---|
[a78433dd] | 106 | |
---|
[b09095a] | 107 | # Return a list of parsed entries that data_loader can manage |
---|
[b8080e1] | 108 | final_data = self.output |
---|
| 109 | self.reset_state() |
---|
| 110 | return final_data |
---|
| 111 | |
---|
| 112 | def reset_state(self): |
---|
| 113 | """ |
---|
| 114 | Resets the class state to a base case when loading a new data file so previous |
---|
| 115 | data files do not appear a second time |
---|
| 116 | """ |
---|
| 117 | self.current_datainfo = None |
---|
| 118 | self.current_dataset = None |
---|
| 119 | self.filepath = None |
---|
| 120 | self.ind = None |
---|
| 121 | self.output = [] |
---|
[beba407] | 122 | |
---|
[26183bf] | 123 | def nextline(self): |
---|
| 124 | """ |
---|
| 125 | Returns the next line in the file as a string. |
---|
| 126 | """ |
---|
| 127 | #return self.f_open.readline() |
---|
[7b50f14] | 128 | return decode(self.f_open.readline()) |
---|
[26183bf] | 129 | |
---|
| 130 | def nextlines(self): |
---|
| 131 | """ |
---|
| 132 | Returns the next line in the file as a string. |
---|
| 133 | """ |
---|
| 134 | for line in self.f_open: |
---|
| 135 | #yield line |
---|
[7b50f14] | 136 | yield decode(line) |
---|
[26183bf] | 137 | |
---|
| 138 | def readall(self): |
---|
| 139 | """ |
---|
| 140 | Returns the entire file as a string. |
---|
| 141 | """ |
---|
| 142 | #return self.f_open.read() |
---|
[7b50f14] | 143 | return decode(self.f_open.read()) |
---|
[26183bf] | 144 | |
---|
[beba407] | 145 | def handle_error_message(self, msg): |
---|
| 146 | """ |
---|
| 147 | Generic error handler to add an error to the current datainfo to |
---|
[b8080e1] | 148 | propagate the error up the error chain. |
---|
[beba407] | 149 | :param msg: Error message |
---|
| 150 | """ |
---|
[dcb91cf] | 151 | if len(self.output) > 0: |
---|
| 152 | self.output[-1].errors.append(msg) |
---|
| 153 | elif isinstance(self.current_datainfo, DataInfo): |
---|
[beba407] | 154 | self.current_datainfo.errors.append(msg) |
---|
| 155 | else: |
---|
| 156 | logger.warning(msg) |
---|
[b8080e1] | 157 | raise NoKnownLoaderException(msg) |
---|
[beba407] | 158 | |
---|
| 159 | def send_to_output(self): |
---|
| 160 | """ |
---|
| 161 | Helper that automatically combines the info and set and then appends it |
---|
| 162 | to output |
---|
| 163 | """ |
---|
| 164 | data_obj = combine_data_info_with_plottable(self.current_dataset, |
---|
| 165 | self.current_datainfo) |
---|
| 166 | self.output.append(data_obj) |
---|
| 167 | |
---|
[b09095a] | 168 | def sort_one_d_data(self): |
---|
| 169 | """ |
---|
| 170 | Sort 1D data along the X axis for consistency |
---|
| 171 | """ |
---|
| 172 | for data in self.output: |
---|
| 173 | if isinstance(data, Data1D): |
---|
[a78a02f] | 174 | # Normalize the units for |
---|
| 175 | data.x_unit = self.format_unit(data.x_unit) |
---|
| 176 | data.y_unit = self.format_unit(data.y_unit) |
---|
[7477fb9] | 177 | # Sort data by increasing x and remove 1st point |
---|
[b09095a] | 178 | ind = np.lexsort((data.y, data.x)) |
---|
[b8080e1] | 179 | data.x = self._reorder_1d_array(data.x, ind) |
---|
| 180 | data.y = self._reorder_1d_array(data.y, ind) |
---|
[b09095a] | 181 | if data.dx is not None: |
---|
[4660990] | 182 | if len(data.dx) == 0: |
---|
| 183 | data.dx = None |
---|
| 184 | continue |
---|
[b8080e1] | 185 | data.dx = self._reorder_1d_array(data.dx, ind) |
---|
[b09095a] | 186 | if data.dxl is not None: |
---|
[b8080e1] | 187 | data.dxl = self._reorder_1d_array(data.dxl, ind) |
---|
[b09095a] | 188 | if data.dxw is not None: |
---|
[b8080e1] | 189 | data.dxw = self._reorder_1d_array(data.dxw, ind) |
---|
[b09095a] | 190 | if data.dy is not None: |
---|
[4660990] | 191 | if len(data.dy) == 0: |
---|
| 192 | data.dy = None |
---|
| 193 | continue |
---|
[b8080e1] | 194 | data.dy = self._reorder_1d_array(data.dy, ind) |
---|
[b09095a] | 195 | if data.lam is not None: |
---|
[b8080e1] | 196 | data.lam = self._reorder_1d_array(data.lam, ind) |
---|
[b09095a] | 197 | if data.dlam is not None: |
---|
[b8080e1] | 198 | data.dlam = self._reorder_1d_array(data.dlam, ind) |
---|
| 199 | data = self._remove_nans_in_data(data) |
---|
[dcb91cf] | 200 | if len(data.x) > 0: |
---|
[248ff73] | 201 | data.xmin = np.min(data.x) |
---|
| 202 | data.xmax = np.max(data.x) |
---|
| 203 | data.ymin = np.min(data.y) |
---|
| 204 | data.ymax = np.max(data.y) |
---|
[b09095a] | 205 | |
---|
[b8080e1] | 206 | @staticmethod |
---|
| 207 | def _reorder_1d_array(array, ind): |
---|
| 208 | """ |
---|
| 209 | Reorders a 1D array based on the indices passed as ind |
---|
| 210 | :param array: Array to be reordered |
---|
| 211 | :param ind: Indices used to reorder array |
---|
| 212 | :return: reordered array |
---|
| 213 | """ |
---|
| 214 | array = np.asarray(array, dtype=np.float64) |
---|
| 215 | return array[ind] |
---|
| 216 | |
---|
| 217 | @staticmethod |
---|
| 218 | def _remove_nans_in_data(data): |
---|
| 219 | """ |
---|
| 220 | Remove data points where nan is loaded |
---|
| 221 | :param data: 1D or 2D data object |
---|
| 222 | :return: data with nan points removed |
---|
| 223 | """ |
---|
| 224 | if isinstance(data, Data1D): |
---|
| 225 | fields = FIELDS_1D |
---|
| 226 | elif isinstance(data, Data2D): |
---|
| 227 | fields = FIELDS_2D |
---|
| 228 | else: |
---|
| 229 | return data |
---|
| 230 | # Make array of good points - all others will be removed |
---|
| 231 | good = np.isfinite(getattr(data, fields[0])) |
---|
| 232 | for name in fields[1:]: |
---|
| 233 | array = getattr(data, name) |
---|
| 234 | if array is not None: |
---|
| 235 | # Update good points only if not already changed |
---|
| 236 | good &= np.isfinite(array) |
---|
| 237 | if not np.all(good): |
---|
| 238 | for name in fields: |
---|
| 239 | array = getattr(data, name) |
---|
| 240 | if array is not None: |
---|
| 241 | setattr(data, name, array[good]) |
---|
| 242 | return data |
---|
| 243 | |
---|
[0b79323] | 244 | def sort_two_d_data(self): |
---|
| 245 | for dataset in self.output: |
---|
[9d786e5] | 246 | if isinstance(dataset, Data2D): |
---|
[a78a02f] | 247 | # Normalize the units for |
---|
| 248 | dataset.x_unit = self.format_unit(dataset.Q_unit) |
---|
| 249 | dataset.y_unit = self.format_unit(dataset.I_unit) |
---|
[9d786e5] | 250 | dataset.data = dataset.data.astype(np.float64) |
---|
| 251 | dataset.qx_data = dataset.qx_data.astype(np.float64) |
---|
| 252 | dataset.xmin = np.min(dataset.qx_data) |
---|
| 253 | dataset.xmax = np.max(dataset.qx_data) |
---|
| 254 | dataset.qy_data = dataset.qy_data.astype(np.float64) |
---|
| 255 | dataset.ymin = np.min(dataset.qy_data) |
---|
| 256 | dataset.ymax = np.max(dataset.qy_data) |
---|
| 257 | dataset.q_data = np.sqrt(dataset.qx_data * dataset.qx_data |
---|
| 258 | + dataset.qy_data * dataset.qy_data) |
---|
| 259 | if dataset.err_data is not None: |
---|
| 260 | dataset.err_data = dataset.err_data.astype(np.float64) |
---|
| 261 | if dataset.dqx_data is not None: |
---|
| 262 | dataset.dqx_data = dataset.dqx_data.astype(np.float64) |
---|
| 263 | if dataset.dqy_data is not None: |
---|
| 264 | dataset.dqy_data = dataset.dqy_data.astype(np.float64) |
---|
| 265 | if dataset.mask is not None: |
---|
| 266 | dataset.mask = dataset.mask.astype(dtype=bool) |
---|
| 267 | |
---|
| 268 | if len(dataset.data.shape) == 2: |
---|
| 269 | n_rows, n_cols = dataset.data.shape |
---|
| 270 | dataset.y_bins = dataset.qy_data[0::int(n_cols)] |
---|
| 271 | dataset.x_bins = dataset.qx_data[:int(n_cols)] |
---|
[2f85af7] | 272 | dataset.data = dataset.data.flatten() |
---|
[b8080e1] | 273 | dataset = self._remove_nans_in_data(dataset) |
---|
[deaa0c6] | 274 | if len(dataset.data) > 0: |
---|
| 275 | dataset.xmin = np.min(dataset.qx_data) |
---|
| 276 | dataset.xmax = np.max(dataset.qx_data) |
---|
| 277 | dataset.ymin = np.min(dataset.qy_data) |
---|
| 278 | dataset.ymax = np.max(dataset.qx_data) |
---|
[0b79323] | 279 | |
---|
[a78a02f] | 280 | def format_unit(self, unit=None): |
---|
| 281 | """ |
---|
| 282 | Format units a common way |
---|
| 283 | :param unit: |
---|
| 284 | :return: |
---|
| 285 | """ |
---|
| 286 | if unit: |
---|
| 287 | split = unit.split("/") |
---|
| 288 | if len(split) == 1: |
---|
| 289 | return unit |
---|
| 290 | elif split[0] == '1': |
---|
| 291 | return "{0}^".format(split[1]) + "{-1}" |
---|
| 292 | else: |
---|
| 293 | return "{0}*{1}^".format(split[0], split[1]) + "{-1}" |
---|
| 294 | |
---|
[da8bb53] | 295 | def set_all_to_none(self): |
---|
| 296 | """ |
---|
| 297 | Set all mutable values to None for error handling purposes |
---|
| 298 | """ |
---|
| 299 | self.current_dataset = None |
---|
| 300 | self.current_datainfo = None |
---|
| 301 | self.output = [] |
---|
| 302 | |
---|
[7b07fbe] | 303 | def data_cleanup(self): |
---|
| 304 | """ |
---|
| 305 | Clean up the data sets and refresh everything |
---|
| 306 | :return: None |
---|
| 307 | """ |
---|
| 308 | self.remove_empty_q_values() |
---|
| 309 | self.send_to_output() # Combine datasets with DataInfo |
---|
| 310 | self.current_datainfo = DataInfo() # Reset DataInfo |
---|
| 311 | |
---|
| 312 | def remove_empty_q_values(self): |
---|
[ad92c5a] | 313 | """ |
---|
| 314 | Remove any point where Q == 0 |
---|
| 315 | """ |
---|
[7b07fbe] | 316 | if isinstance(self.current_dataset, plottable_1D): |
---|
| 317 | # Booleans for resolutions |
---|
| 318 | has_error_dx = self.current_dataset.dx is not None |
---|
| 319 | has_error_dxl = self.current_dataset.dxl is not None |
---|
| 320 | has_error_dxw = self.current_dataset.dxw is not None |
---|
| 321 | has_error_dy = self.current_dataset.dy is not None |
---|
| 322 | # Create arrays of zeros for non-existent resolutions |
---|
| 323 | if has_error_dxw and not has_error_dxl: |
---|
| 324 | array_size = self.current_dataset.dxw.size - 1 |
---|
| 325 | self.current_dataset.dxl = np.append(self.current_dataset.dxl, |
---|
| 326 | np.zeros([array_size])) |
---|
| 327 | has_error_dxl = True |
---|
| 328 | elif has_error_dxl and not has_error_dxw: |
---|
| 329 | array_size = self.current_dataset.dxl.size - 1 |
---|
| 330 | self.current_dataset.dxw = np.append(self.current_dataset.dxw, |
---|
| 331 | np.zeros([array_size])) |
---|
| 332 | has_error_dxw = True |
---|
| 333 | elif not has_error_dxl and not has_error_dxw and not has_error_dx: |
---|
| 334 | array_size = self.current_dataset.x.size - 1 |
---|
| 335 | self.current_dataset.dx = np.append(self.current_dataset.dx, |
---|
| 336 | np.zeros([array_size])) |
---|
| 337 | has_error_dx = True |
---|
| 338 | if not has_error_dy: |
---|
| 339 | array_size = self.current_dataset.y.size - 1 |
---|
| 340 | self.current_dataset.dy = np.append(self.current_dataset.dy, |
---|
| 341 | np.zeros([array_size])) |
---|
| 342 | has_error_dy = True |
---|
| 343 | |
---|
| 344 | # Remove points where q = 0 |
---|
| 345 | x = self.current_dataset.x |
---|
| 346 | self.current_dataset.x = self.current_dataset.x[x != 0] |
---|
| 347 | self.current_dataset.y = self.current_dataset.y[x != 0] |
---|
| 348 | if has_error_dy: |
---|
| 349 | self.current_dataset.dy = self.current_dataset.dy[x != 0] |
---|
| 350 | if has_error_dx: |
---|
| 351 | self.current_dataset.dx = self.current_dataset.dx[x != 0] |
---|
| 352 | if has_error_dxl: |
---|
| 353 | self.current_dataset.dxl = self.current_dataset.dxl[x != 0] |
---|
| 354 | if has_error_dxw: |
---|
| 355 | self.current_dataset.dxw = self.current_dataset.dxw[x != 0] |
---|
| 356 | elif isinstance(self.current_dataset, plottable_2D): |
---|
| 357 | has_error_dqx = self.current_dataset.dqx_data is not None |
---|
| 358 | has_error_dqy = self.current_dataset.dqy_data is not None |
---|
| 359 | has_error_dy = self.current_dataset.err_data is not None |
---|
| 360 | has_mask = self.current_dataset.mask is not None |
---|
| 361 | x = self.current_dataset.qx_data |
---|
| 362 | self.current_dataset.data = self.current_dataset.data[x != 0] |
---|
| 363 | self.current_dataset.qx_data = self.current_dataset.qx_data[x != 0] |
---|
| 364 | self.current_dataset.qy_data = self.current_dataset.qy_data[x != 0] |
---|
[deaa0c6] | 365 | self.current_dataset.q_data = np.sqrt( |
---|
| 366 | np.square(self.current_dataset.qx_data) + np.square( |
---|
| 367 | self.current_dataset.qy_data)) |
---|
[7b07fbe] | 368 | if has_error_dy: |
---|
| 369 | self.current_dataset.err_data = self.current_dataset.err_data[x != 0] |
---|
| 370 | if has_error_dqx: |
---|
| 371 | self.current_dataset.dqx_data = self.current_dataset.dqx_data[x != 0] |
---|
| 372 | if has_error_dqy: |
---|
| 373 | self.current_dataset.dqy_data = self.current_dataset.dqy_data[x != 0] |
---|
| 374 | if has_mask: |
---|
| 375 | self.current_dataset.mask = self.current_dataset.mask[x != 0] |
---|
[ad92c5a] | 376 | |
---|
| 377 | def reset_data_list(self, no_lines=0): |
---|
| 378 | """ |
---|
| 379 | Reset the plottable_1D object |
---|
| 380 | """ |
---|
| 381 | # Initialize data sets with arrays the maximum possible size |
---|
| 382 | x = np.zeros(no_lines) |
---|
| 383 | y = np.zeros(no_lines) |
---|
[4660990] | 384 | dx = np.zeros(no_lines) |
---|
| 385 | dy = np.zeros(no_lines) |
---|
| 386 | self.current_dataset = plottable_1D(x, y, dx, dy) |
---|
[ad92c5a] | 387 | |
---|
[b09095a] | 388 | @staticmethod |
---|
| 389 | def splitline(line): |
---|
| 390 | """ |
---|
[b8080e1] | 391 | Splits a line into pieces based on common delimiters |
---|
[b09095a] | 392 | :param line: A single line of text |
---|
| 393 | :return: list of values |
---|
| 394 | """ |
---|
| 395 | # Initial try for CSV (split on ,) |
---|
| 396 | toks = line.split(',') |
---|
| 397 | # Now try SCSV (split on ;) |
---|
| 398 | if len(toks) < 2: |
---|
| 399 | toks = line.split(';') |
---|
| 400 | # Now go for whitespace |
---|
| 401 | if len(toks) < 2: |
---|
| 402 | toks = line.split() |
---|
| 403 | return toks |
---|
| 404 | |
---|
[beba407] | 405 | @abstractmethod |
---|
[b09095a] | 406 | def get_file_contents(self): |
---|
[beba407] | 407 | """ |
---|
[ad92c5a] | 408 | Reader specific class to access the contents of the file |
---|
[b09095a] | 409 | All reader classes that inherit from FileReader must implement |
---|
[beba407] | 410 | """ |
---|
| 411 | pass |
---|