source: sasview/src/sas/sascalc/data_util/qsmearing.py @ a9f579c

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since a9f579c was a9f579c, checked in by jhbakker, 7 years ago

Manually added in all the SESANS modifications from Jurtest

  • Property mode set to 100644
File size: 8.9 KB
Line 
1"""
2    Handle Q smearing
3"""
4#####################################################################
5#This software was developed by the University of Tennessee as part of the
6#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
7#project funded by the US National Science Foundation.
8#See the license text in license.txt
9#copyright 2008, University of Tennessee
10######################################################################
11import numpy
12import math
13import logging
14import sys
15from sasmodels import sesans
16import numpy as np  # type: ignore
17from numpy import pi, exp # type:ignore
18from sasmodels.resolution import Slit1D, Pinhole1D
19from sasmodels.sesans import SESANS1D
20from sasmodels.resolution2d import Pinhole2D
21from src.sas.sascalc.data_util.nxsunit import Converter
22
23def smear_selection(data, model = None):
24    """
25    Creates the right type of smearer according
26    to the data.
27    The canSAS format has a rule that either
28    slit smearing data OR resolution smearing data
29    is available.
30
31    For the present purpose, we choose the one that
32    has none-zero data. If both slit and resolution
33    smearing arrays are filled with good data
34    (which should not happen), then we choose the
35    resolution smearing data.
36
37    :param data: Data1D object
38    :param model: sas.model instance
39    """
40    # Sanity check. If we are not dealing with a SAS Data1D
41    # object, just return None
42    # This checks for 2D data (does not throw exception because fail is common)
43    if  data.__class__.__name__ not in ['Data1D', 'Theory1D']:
44        if data == None:
45            return None
46        elif data.dqx_data == None or data.dqy_data == None:
47            return None
48        return Pinhole2D(data)
49    # This checks for 1D data with smearing info in the data itself (again, fail is likely; no exceptions)
50    if  not hasattr(data, "dx") and not hasattr(data, "dxl")\
51         and not hasattr(data, "dxw"):
52        return None
53
54    # Look for resolution smearing data
55    # This is the code that checks for SESANS data; it looks for the file loader
56    # TODO: change other sanity checks to check for file loader instead of data structure?
57    _found_sesans = False
58    #if data.dx is not None and data.meta_data['loader']=='SESANS':
59    if data.dx is not None and data.isSesans:
60        #if data.dx[0] > 0.0:
61        if numpy.size(data.dx[data.dx <= 0]) == 0:
62            _found_sesans = True
63        # if data.dx[0] <= 0.0:
64        if numpy.size(data.dx[data.dx <= 0]) > 0:
65            raise ValueError('one or more of your dx values are negative, please check the data file!')
66
67    if _found_sesans == True:
68        #Pre-compute the Hankel matrix (H)
69        qmax, qunits = data.sample.zacceptance
70        hankel = sesans.SesansTransform()
71        sesans.SesansTransform.set_transform(hankel,
72        SE = Converter(data._xunit)(data.x, "A"),
73        zaccept = Converter(qunits)(qmax, "1/A"),
74        Rmax = 10000000)
75        # Then return the actual transform, as if it were a smearing function
76        return PySmear(SESANS1D(data, hankel._H0, hankel._H, hankel.q), model)
77
78    _found_resolution = False
79    if data.dx is not None and len(data.dx) == len(data.x):
80
81        # Check that we have non-zero data
82        if data.dx[0] > 0.0:
83            _found_resolution = True
84            #print "_found_resolution",_found_resolution
85            #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
86    # If we found resolution smearing data, return a QSmearer
87    if _found_resolution == True:
88         return pinhole_smear(data, model)
89
90    # Look for slit smearing data
91    _found_slit = False
92    if data.dxl is not None and len(data.dxl) == len(data.x) \
93        and data.dxw is not None and len(data.dxw) == len(data.x):
94
95        # Check that we have non-zero data
96        if data.dxl[0] > 0.0 or data.dxw[0] > 0.0:
97            _found_slit = True
98
99        # Sanity check: all data should be the same as a function of Q
100        for item in data.dxl:
101            if data.dxl[0] != item:
102                _found_resolution = False
103                break
104
105        for item in data.dxw:
106            if data.dxw[0] != item:
107                _found_resolution = False
108                break
109    # If we found slit smearing data, return a slit smearer
110    if _found_slit == True:
111        return slit_smear(data, model)
112    return None
113
114
115class PySmear(object):
116    """
117    Wrapper for pure python sasmodels resolution functions.
118    """
119    def __init__(self, resolution, model):
120        self.model = model
121        self.resolution = resolution
122
123        if hasattr(self.resolution, 'data'):
124            if self.resolution.data.meta_data['loader'] == 'SESANS':  # Always True if file extension is '.ses'!
125                self.offset = 0
126            # This is default behaviour, for future resolution/transform functions this needs to be revisited.
127            else:
128                self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
129        else:
130            self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
131
132        # self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
133
134    def apply(self, iq_in, first_bin=0, last_bin=None):
135        """
136        Apply the resolution function to the data.
137        Note that this is called with iq_in matching data.x, but with
138        iq_in[first_bin:last_bin] set to theory values for these bins,
139        and the remainder left undefined.  The first_bin, last_bin values
140        should be those returned from get_bin_range.
141        The returned value is of the same length as iq_in, with the range
142        first_bin:last_bin set to the resolution smeared values.
143        """
144        if last_bin is None: last_bin = len(iq_in)
145        start, end = first_bin + self.offset, last_bin + self.offset
146        q_calc = self.resolution.q_calc
147        iq_calc = numpy.empty_like(q_calc)
148        if start > 0:
149            iq_calc[:start] = self.model.evalDistribution(q_calc[:start])
150        if end+1 < len(q_calc):
151            iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:])
152        iq_calc[start:end+1] = iq_in[first_bin:last_bin+1]
153        smeared = self.resolution.apply(iq_calc)
154        return smeared
155    __call__ = apply
156
157    def get_bin_range(self, q_min=None, q_max=None):
158        """
159        For a given q_min, q_max, find the corresponding indices in the data.
160        Returns first, last.
161        Note that these are indexes into q from the data, not the q_calc
162        needed by the resolution function.  Note also that these are the
163        indices, not the range limits.  That is, the complete range will be
164        q[first:last+1].
165        """
166        q = self.resolution.q
167        first = numpy.searchsorted(q, q_min)
168        last = numpy.searchsorted(q, q_max)
169        return first, min(last,len(q)-1)
170
171def slit_smear(data, model=None):
172    q = data.x
173    width = data.dxw if data.dxw is not None else 0
174    height = data.dxl if data.dxl is not None else 0
175    # TODO: width and height seem to be reversed
176    return PySmear(Slit1D(q, height, width), model)
177
178def pinhole_smear(data, model=None):
179    q = data.x
180    width = data.dx if data.dx is not None else 0
181    return PySmear(Pinhole1D(q, width), model)
182
183
184class PySmear2D(object):
185    """
186    Q smearing class for SAS 2d pinhole data
187    """
188
189    def __init__(self, data=None, model=None):
190        self.data = data
191        self.model = model
192        self.accuracy = 'Low'
193        self.limit = 3.0
194        self.index = None
195        self.coords = 'polar'
196        self.smearer = True
197
198    def set_accuracy(self, accuracy='Low'):
199        """
200        Set accuracy.
201
202        :param accuracy:  string
203        """
204        self.accuracy = accuracy
205
206    def set_smearer(self, smearer=True):
207        """
208        Set whether or not smearer will be used
209
210        :param smearer: smear object
211
212        """
213        self.smearer = smearer
214
215    def set_data(self, data=None):
216        """
217        Set data.
218
219        :param data: DataLoader.Data_info type
220        """
221        self.data = data
222
223    def set_model(self, model=None):
224        """
225        Set model.
226
227        :param model: sas.models instance
228        """
229        self.model = model
230
231    def set_index(self, index=None):
232        """
233        Set index.
234
235        :param index: 1d arrays
236        """
237        self.index = index
238
239    def get_value(self):
240        """
241        Over sampling of r_nbins times phi_nbins, calculate Gaussian weights,
242        then find smeared intensity
243        """
244        if self.smearer:
245            res = Pinhole2D(data=self.data, index=self.index,
246                            nsigma=3.0, accuracy=self.accuracy,
247                            coords=self.coords)
248            val = self.model.evalDistribution(res.q_calc)
249            return res.apply(val)
250        else:
251            index = self.index if self.index is not None else slice(None)
252            qx_data = self.data.qx_data[index]
253            qy_data = self.data.qy_data[index]
254            q_calc = [qx_data, qy_data]
255            val = self.model.evalDistribution(q_calc)
256            return val
257
Note: See TracBrowser for help on using the repository browser.