source: sasview/src/sas/sascalc/data_util/qsmearing.py @ 4581ac9

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 4581ac9 was 4581ac9, checked in by jhbakker, 7 years ago

Experimenting with optimization to Hankel trafo

  • Property mode set to 100644
File size: 7.2 KB
Line 
1"""
2    Handle Q smearing
3"""
4#####################################################################
5#This software was developed by the University of Tennessee as part of the
6#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
7#project funded by the US National Science Foundation.
8#See the license text in license.txt
9#copyright 2008, University of Tennessee
10######################################################################
11import numpy
12import math
13import logging
14import sys
15from sasmodels import sesans
16
17import numpy as np  # type: ignore
18from numpy import pi, exp  # type: ignore
19from scipy.special import jv as besselj
20
21from sasmodels.resolution import Slit1D, Pinhole1D, SESANS1D
22from sasmodels.resolution2d import Pinhole2D
23from src.sas.sascalc.data_util.nxsunit import Converter
24
25
26def smear_selection(data, model = None):
27    """
28    Creates the right type of smearer according
29    to the data.
30    The canSAS format has a rule that either
31    slit smearing data OR resolution smearing data
32    is available.
33
34    For the present purpose, we choose the one that
35    has none-zero data. If both slit and resolution
36    smearing arrays are filled with good data
37    (which should not happen), then we choose the
38    resolution smearing data.
39
40    :param data: Data1D object
41    :param model: sas.model instance
42    """
43    # Sanity check. If we are not dealing with a SAS Data1D
44    # object, just return None
45
46    # This checks for 2D data (does not throw exception because fail is common)
47    if  data.__class__.__name__ not in ['Data1D', 'Theory1D']:
48        if data == None:
49            return None
50        elif data.dqx_data == None or data.dqy_data == None:
51            return None
52        return Pinhole2D(data)
53    # This checks for 1D data with smearing info in the data itself (again, fail is likely; no exceptions)
54    if  not hasattr(data, "dx") and not hasattr(data, "dxl")\
55         and not hasattr(data, "dxw"):
56        return None
57
58    # Look for resolution smearing data
59    # This is the code that checks for SESANS data; it looks for the file loader
60    # TODO: change other sanity checks to check for file loader instead of data structure?
61    _found_sesans = False
62    if data.dx is not None and data.meta_data['loader']=='SESANS':
63        if data.dx[0] > 0.0:
64            _found_sesans = True
65
66    if _found_sesans == True:
67        #Pre-computing the Hankel matrix
68        Rmax = 1000000
69        q_calc = sesans.make_q(data.sample.zacceptance, Rmax)
70        SElength = Converter(data._xunit)(data.x, "A")
71        dq = q_calc[1] - q_calc[0]
72        H0 = dq / (2 * pi) * q_calc
73        H = dq / (2 * pi) * besselj(0, np.outer(q_calc, SElength))
74
75        return PySmear(SESANS1D(data, H0, H, q_calc), model)
76
77    _found_resolution = False
78    if data.dx is not None and len(data.dx) == len(data.x):
79
80        # Check that we have non-zero data
81        if data.dx[0] > 0.0:
82            _found_resolution = True
83            #print "_found_resolution",_found_resolution
84            #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
85    # If we found resolution smearing data, return a QSmearer
86    if _found_resolution == True:
87         return pinhole_smear(data, model)
88
89    # Look for slit smearing data
90    _found_slit = False
91    if data.dxl is not None and len(data.dxl) == len(data.x) \
92        and data.dxw is not None and len(data.dxw) == len(data.x):
93
94        # Check that we have non-zero data
95        if data.dxl[0] > 0.0 or data.dxw[0] > 0.0:
96            _found_slit = True
97
98        # Sanity check: all data should be the same as a function of Q
99        for item in data.dxl:
100            if data.dxl[0] != item:
101                _found_resolution = False
102                break
103
104        for item in data.dxw:
105            if data.dxw[0] != item:
106                _found_resolution = False
107                break
108    # If we found slit smearing data, return a slit smearer
109    if _found_slit == True:
110        return slit_smear(data, model)
111    return None
112
113
114class PySmear(object):
115    """
116    Wrapper for pure python sasmodels resolution functions.
117    """
118    def __init__(self, resolution, model):
119        self.model = model
120        self.resolution = resolution
121        if hasattr(self.resolution, 'data'):
122            if self.resolution.data.meta_data['loader'] == 'SESANS':
123                self.offset = 0
124            # This is default behaviour, for future resolution/transform functions this needs to be revisited.
125            else:
126                self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
127        else:
128            self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
129
130        #self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0])
131
132    def apply(self, iq_in, first_bin=0, last_bin=None):
133        """
134        Apply the resolution function to the data.
135        Note that this is called with iq_in matching data.x, but with
136        iq_in[first_bin:last_bin] set to theory values for these bins,
137        and the remainder left undefined.  The first_bin, last_bin values
138        should be those returned from get_bin_range.
139        The returned value is of the same length as iq_in, with the range
140        first_bin:last_bin set to the resolution smeared values.
141        """
142        if last_bin is None: last_bin = len(iq_in)
143        start, end = first_bin + self.offset, last_bin + self.offset
144        q_calc = self.resolution.q_calc
145        iq_calc = numpy.empty_like(q_calc)
146        if start > 0:
147            iq_calc[:start] = self.model.evalDistribution(q_calc[:start])
148        if end+1 < len(q_calc):
149            iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:])
150        iq_calc[start:end+1] = iq_in[first_bin:last_bin+1]
151        smeared = self.resolution.apply(iq_calc)
152        return smeared
153    __call__ = apply
154
155    def get_bin_range(self, q_min=None, q_max=None):
156        """
157        For a given q_min, q_max, find the corresponding indices in the data.
158        Returns first, last.
159        Note that these are indexes into q from the data, not the q_calc
160        needed by the resolution function.  Note also that these are the
161        indices, not the range limits.  That is, the complete range will be
162        q[first:last+1].
163        """
164
165        q = self.resolution.q
166        first = numpy.searchsorted(q, q_min)
167        last = numpy.searchsorted(q, q_max)
168        return first, min(last,len(q)-1)
169
170def slit_smear(data, model=None):
171    q = data.x
172    width = data.dxw if data.dxw is not None else 0
173    height = data.dxl if data.dxl is not None else 0
174    # TODO: width and height seem to be reversed
175    return PySmear(Slit1D(q, height, width), model)
176
177def pinhole_smear(data, model=None):
178    q = data.x
179    width = data.dx if data.dx is not None else 0
180    return PySmear(Pinhole1D(q, width), model)
181
182def sesans_smear(data, model=None):
183    #This should be calculated characteristic length scale
184    #Probably not a data prameter either
185    #Need function to calculate this based on model
186    #Here assume a number
187    Rmax = 1000000
188    q_calc = sesans.make_q(data.sample.zacceptance, Rmax)
189    SElength=Converter(data._xunit)(data.x, "A")
190    #return sesans.HankelTransform(q_calc, SElength)
191    #Old return statement, running through the smearer
192    #return PySmear(SESANS1D(data,q_calc),model)
Note: See TracBrowser for help on using the repository browser.