1 | """ |
---|
2 | Handle Q smearing |
---|
3 | """ |
---|
4 | ##################################################################### |
---|
5 | #This software was developed by the University of Tennessee as part of the |
---|
6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
7 | #project funded by the US National Science Foundation. |
---|
8 | #See the license text in license.txt |
---|
9 | #copyright 2008, University of Tennessee |
---|
10 | ###################################################################### |
---|
11 | import numpy |
---|
12 | import math |
---|
13 | import logging |
---|
14 | import sys |
---|
15 | |
---|
16 | from sasmodels.resolution import Slit1D, Pinhole1D |
---|
17 | from sasmodels.resolution2d import Pinhole2D |
---|
18 | |
---|
19 | def smear_selection(data, model = None): |
---|
20 | """ |
---|
21 | Creates the right type of smearer according |
---|
22 | to the data. |
---|
23 | |
---|
24 | The canSAS format has a rule that either |
---|
25 | slit smearing data OR resolution smearing data |
---|
26 | is available. |
---|
27 | |
---|
28 | For the present purpose, we choose the one that |
---|
29 | has none-zero data. If both slit and resolution |
---|
30 | smearing arrays are filled with good data |
---|
31 | (which should not happen), then we choose the |
---|
32 | resolution smearing data. |
---|
33 | |
---|
34 | :param data: Data1D object |
---|
35 | :param model: sas.model instance |
---|
36 | """ |
---|
37 | # Sanity check. If we are not dealing with a SAS Data1D |
---|
38 | # object, just return None |
---|
39 | if data.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
40 | if data == None: |
---|
41 | return None |
---|
42 | elif data.dqx_data == None or data.dqy_data == None: |
---|
43 | return None |
---|
44 | return Pinhole2D(data) |
---|
45 | |
---|
46 | if not hasattr(data, "dx") and not hasattr(data, "dxl")\ |
---|
47 | and not hasattr(data, "dxw"): |
---|
48 | return None |
---|
49 | |
---|
50 | # Look for resolution smearing data |
---|
51 | _found_resolution = False |
---|
52 | if data.dx is not None and len(data.dx) == len(data.x): |
---|
53 | |
---|
54 | # Check that we have non-zero data |
---|
55 | if data.dx[0] > 0.0: |
---|
56 | _found_resolution = True |
---|
57 | #print "_found_resolution",_found_resolution |
---|
58 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
59 | # If we found resolution smearing data, return a QSmearer |
---|
60 | if _found_resolution == True: |
---|
61 | return pinhole_smear(data, model) |
---|
62 | |
---|
63 | # Look for slit smearing data |
---|
64 | _found_slit = False |
---|
65 | if data.dxl is not None and len(data.dxl) == len(data.x) \ |
---|
66 | and data.dxw is not None and len(data.dxw) == len(data.x): |
---|
67 | |
---|
68 | # Check that we have non-zero data |
---|
69 | if data.dxl[0] > 0.0 or data.dxw[0] > 0.0: |
---|
70 | _found_slit = True |
---|
71 | |
---|
72 | # Sanity check: all data should be the same as a function of Q |
---|
73 | for item in data.dxl: |
---|
74 | if data.dxl[0] != item: |
---|
75 | _found_resolution = False |
---|
76 | break |
---|
77 | |
---|
78 | for item in data.dxw: |
---|
79 | if data.dxw[0] != item: |
---|
80 | _found_resolution = False |
---|
81 | break |
---|
82 | # If we found slit smearing data, return a slit smearer |
---|
83 | if _found_slit == True: |
---|
84 | return slit_smear(data, model) |
---|
85 | return None |
---|
86 | |
---|
87 | |
---|
88 | class PySmear(object): |
---|
89 | """ |
---|
90 | Wrapper for pure python sasmodels resolution functions. |
---|
91 | """ |
---|
92 | def __init__(self, resolution, model): |
---|
93 | self.model = model |
---|
94 | self.resolution = resolution |
---|
95 | self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0]) |
---|
96 | |
---|
97 | def apply(self, iq_in, first_bin=0, last_bin=None): |
---|
98 | """ |
---|
99 | Apply the resolution function to the data. |
---|
100 | |
---|
101 | Note that this is called with iq_in matching data.x, but with |
---|
102 | iq_in[first_bin:last_bin] set to theory values for these bins, |
---|
103 | and the remainder left undefined. The first_bin, last_bin values |
---|
104 | should be those returned from get_bin_range. |
---|
105 | |
---|
106 | The returned value is of the same length as iq_in, with the range |
---|
107 | first_bin:last_bin set to the resolution smeared values. |
---|
108 | """ |
---|
109 | if last_bin is None: last_bin = len(iq_in) |
---|
110 | start, end = first_bin + self.offset, last_bin + self.offset |
---|
111 | q_calc = self.resolution.q_calc |
---|
112 | iq_calc = numpy.empty_like(q_calc) |
---|
113 | if start > 0: |
---|
114 | iq_calc[:start] = self.model.evalDistribution(q_calc[:start]) |
---|
115 | if end+1 < len(q_calc): |
---|
116 | iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:]) |
---|
117 | iq_calc[start:end+1] = iq_in[first_bin:last_bin+1] |
---|
118 | smeared = self.resolution.apply(iq_calc) |
---|
119 | return smeared |
---|
120 | __call__ = apply |
---|
121 | |
---|
122 | def get_bin_range(self, q_min=None, q_max=None): |
---|
123 | """ |
---|
124 | For a given q_min, q_max, find the corresponding indices in the data. |
---|
125 | |
---|
126 | Returns first, last. |
---|
127 | |
---|
128 | Note that these are indexes into q from the data, not the q_calc |
---|
129 | needed by the resolution function. Note also that these are the |
---|
130 | indices, not the range limits. That is, the complete range will be |
---|
131 | q[first:last+1]. |
---|
132 | """ |
---|
133 | q = self.resolution.q |
---|
134 | first = numpy.searchsorted(q, q_min) |
---|
135 | last = numpy.searchsorted(q, q_max) |
---|
136 | return first, min(last,len(q)-1) |
---|
137 | |
---|
138 | def slit_smear(data, model=None): |
---|
139 | q = data.x |
---|
140 | width = data.dxw if data.dxw is not None else 0 |
---|
141 | height = data.dxl if data.dxl is not None else 0 |
---|
142 | # TODO: width and height seem to be reversed |
---|
143 | return PySmear(Slit1D(q, height, width), model) |
---|
144 | |
---|
145 | def pinhole_smear(data, model=None): |
---|
146 | q = data.x |
---|
147 | width = data.dx if data.dx is not None else 0 |
---|
148 | return PySmear(Pinhole1D(q, width), model) |
---|