source: sasview/src/sas/sascalc/data_util/qsmearing.py @ 857cc58

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 857cc58 was d01b55c, checked in by Adam Washington <adam.washington@…>, 8 years ago

Include wavelength information in the SesansTransform?

  • Property mode set to 100644
File size: 8.5 KB
Line 
1"""
2    Handle Q smearing
3"""
4#####################################################################
5#This software was developed by the University of Tennessee as part of the
6#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
7#project funded by the US National Science Foundation.
8#See the license text in license.txt
9#copyright 2008, University of Tennessee
10######################################################################
11import math
12import logging
13import sys
14
15import numpy as np  # type: ignore
16from numpy import pi, exp # type:ignore
17
18from sasmodels.resolution import Slit1D, Pinhole1D
19from sasmodels.sesans import SesansTransform
20from sasmodels.resolution2d import Pinhole2D
21from .nxsunit import Converter
22
23def smear_selection(data, model = None):
24    """
25    Creates the right type of smearer according
26    to the data.
27    The canSAS format has a rule that either
28    slit smearing data OR resolution smearing data
29    is available.
30
31    For the present purpose, we choose the one that
32    has none-zero data. If both slit and resolution
33    smearing arrays are filled with good data
34    (which should not happen), then we choose the
35    resolution smearing data.
36
37    :param data: Data1D object
38    :param model: sas.model instance
39    """
40    # Sanity check. If we are not dealing with a SAS Data1D
41    # object, just return None
42    # This checks for 2D data (does not throw exception because fail is common)
43    if  data.__class__.__name__ not in ['Data1D', 'Theory1D']:
44        if data == None:
45            return None
46        elif data.dqx_data == None or data.dqy_data == None:
47            return None
48        return PySmear2D(data)
49    # This checks for 1D data with smearing info in the data itself (again, fail is likely; no exceptions)
50    if  not hasattr(data, "dx") and not hasattr(data, "dxl")\
51         and not hasattr(data, "dxw"):
52        return None
53
54    # Look for resolution smearing data
55    # This is the code that checks for SESANS data; it looks for the file loader
56    # TODO: change other sanity checks to check for file loader instead of data structure?
57    _found_sesans = False
58    #if data.dx is not None and data.meta_data['loader']=='SESANS':
59    if data.dx is not None and data.isSesans:
60        #if data.dx[0] > 0.0:
61        if np.size(data.dx[data.dx <= 0]) == 0:
62            _found_sesans = True
63        # if data.dx[0] <= 0.0:
64        if np.size(data.dx[data.dx <= 0]) > 0:
65            raise ValueError('one or more of your dx values are negative, please check the data file!')
66
67    if _found_sesans == True:
68        #Pre-compute the Hankel matrix (H)
69        SElength = Converter(data._xunit)(data.x, "A")
70
71        theta_max = Converter("radians")(data.sample.zacceptance)[0]
72        q_max = 2 * np.pi / np.max(data.source.wavelength) * np.sin(theta_max)
73        zaccept = Converter("1/A")(q_max, "1/" + data.source.wavelength_unit),
74
75        Rmax = 10000000
76        hankel = SesansTransform(data.x, SElength, data.source.wavelength, zaccept, Rmax)
77        # Then return the actual transform, as if it were a smearing function
78        return PySmear(hankel, model, offset=0)
79
80    _found_resolution = False
81    if data.dx is not None and len(data.dx) == len(data.x):
82
83        # Check that we have non-zero data
84        if data.dx[0] > 0.0:
85            _found_resolution = True
86            #print "_found_resolution",_found_resolution
87            #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
88    # If we found resolution smearing data, return a QSmearer
89    if _found_resolution == True:
90         return pinhole_smear(data, model)
91
92    # Look for slit smearing data
93    _found_slit = False
94    if data.dxl is not None and len(data.dxl) == len(data.x) \
95        and data.dxw is not None and len(data.dxw) == len(data.x):
96
97        # Check that we have non-zero data
98        if data.dxl[0] > 0.0 or data.dxw[0] > 0.0:
99            _found_slit = True
100
101        # Sanity check: all data should be the same as a function of Q
102        for item in data.dxl:
103            if data.dxl[0] != item:
104                _found_resolution = False
105                break
106
107        for item in data.dxw:
108            if data.dxw[0] != item:
109                _found_resolution = False
110                break
111    # If we found slit smearing data, return a slit smearer
112    if _found_slit == True:
113        return slit_smear(data, model)
114    return None
115
116
117class PySmear(object):
118    """
119    Wrapper for pure python sasmodels resolution functions.
120    """
121    def __init__(self, resolution, model, offset=None):
122        self.model = model
123        self.resolution = resolution
124        if offset is None:
125            offset = np.searchsorted(self.resolution.q_calc, self.resolution.q[0])
126        self.offset = offset
127
128    def apply(self, iq_in, first_bin=0, last_bin=None):
129        """
130        Apply the resolution function to the data.
131        Note that this is called with iq_in matching data.x, but with
132        iq_in[first_bin:last_bin] set to theory values for these bins,
133        and the remainder left undefined.  The first_bin, last_bin values
134        should be those returned from get_bin_range.
135        The returned value is of the same length as iq_in, with the range
136        first_bin:last_bin set to the resolution smeared values.
137        """
138        if last_bin is None: last_bin = len(iq_in)
139        start, end = first_bin + self.offset, last_bin + self.offset
140        q_calc = self.resolution.q_calc
141        iq_calc = np.empty_like(q_calc)
142        if start > 0:
143            iq_calc[:start] = self.model.evalDistribution(q_calc[:start])
144        if end+1 < len(q_calc):
145            iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:])
146        iq_calc[start:end+1] = iq_in[first_bin:last_bin+1]
147        smeared = self.resolution.apply(iq_calc)
148        return smeared
149    __call__ = apply
150
151    def get_bin_range(self, q_min=None, q_max=None):
152        """
153        For a given q_min, q_max, find the corresponding indices in the data.
154        Returns first, last.
155        Note that these are indexes into q from the data, not the q_calc
156        needed by the resolution function.  Note also that these are the
157        indices, not the range limits.  That is, the complete range will be
158        q[first:last+1].
159        """
160        q = self.resolution.q
161        first = np.searchsorted(q, q_min)
162        last = np.searchsorted(q, q_max)
163        return first, min(last,len(q)-1)
164
165def slit_smear(data, model=None):
166    q = data.x
167    width = data.dxw if data.dxw is not None else 0
168    height = data.dxl if data.dxl is not None else 0
169    # TODO: width and height seem to be reversed
170    return PySmear(Slit1D(q, height, width), model)
171
172def pinhole_smear(data, model=None):
173    q = data.x
174    width = data.dx if data.dx is not None else 0
175    return PySmear(Pinhole1D(q, width), model)
176
177
178class PySmear2D(object):
179    """
180    Q smearing class for SAS 2d pinhole data
181    """
182
183    def __init__(self, data=None, model=None):
184        self.data = data
185        self.model = model
186        self.accuracy = 'Low'
187        self.limit = 3.0
188        self.index = None
189        self.coords = 'polar'
190        self.smearer = True
191
192    def set_accuracy(self, accuracy='Low'):
193        """
194        Set accuracy.
195
196        :param accuracy:  string
197        """
198        self.accuracy = accuracy
199
200    def set_smearer(self, smearer=True):
201        """
202        Set whether or not smearer will be used
203
204        :param smearer: smear object
205
206        """
207        self.smearer = smearer
208
209    def set_data(self, data=None):
210        """
211        Set data.
212
213        :param data: DataLoader.Data_info type
214        """
215        self.data = data
216
217    def set_model(self, model=None):
218        """
219        Set model.
220
221        :param model: sas.models instance
222        """
223        self.model = model
224
225    def set_index(self, index=None):
226        """
227        Set index.
228
229        :param index: 1d arrays
230        """
231        self.index = index
232
233    def get_value(self):
234        """
235        Over sampling of r_nbins times phi_nbins, calculate Gaussian weights,
236        then find smeared intensity
237        """
238        if self.smearer:
239            res = Pinhole2D(data=self.data, index=self.index,
240                            nsigma=3.0, accuracy=self.accuracy,
241                            coords=self.coords)
242            val = self.model.evalDistribution(res.q_calc)
243            return res.apply(val)
244        else:
245            index = self.index if self.index is not None else slice(None)
246            qx_data = self.data.qx_data[index]
247            qy_data = self.data.qy_data[index]
248            q_calc = [qx_data, qy_data]
249            val = self.model.evalDistribution(q_calc)
250            return val
251
Note: See TracBrowser for help on using the repository browser.