source: sasview/src/sas/sascalc/data_util/qsmearing.py @ aaf5e49

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since aaf5e49 was 235f514, checked in by andyfaff, 8 years ago

MAINT: replace '== None' by 'is None'

  • Property mode set to 100644
File size: 8.3 KB
RevLine 
[240a2d2]1"""
2    Handle Q smearing
3"""
4#####################################################################
5#This software was developed by the University of Tennessee as part of the
6#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
7#project funded by the US National Science Foundation.
8#See the license text in license.txt
9#copyright 2008, University of Tennessee
10######################################################################
11import math
12import logging
13import sys
[775e0b7]14
[a9f579c]15import numpy as np  # type: ignore
16from numpy import pi, exp # type:ignore
[775e0b7]17
[f8aa738]18from sasmodels.resolution import Slit1D, Pinhole1D
[157b716]19from sasmodels.sesans import SesansTransform
[f8aa738]20from sasmodels.resolution2d import Pinhole2D
[775e0b7]21from .nxsunit import Converter
[f8aa738]22
23def smear_selection(data, model = None):
[240a2d2]24    """
[f8aa738]25    Creates the right type of smearer according
[240a2d2]26    to the data.
27    The canSAS format has a rule that either
28    slit smearing data OR resolution smearing data
[f8aa738]29    is available.
30
[240a2d2]31    For the present purpose, we choose the one that
32    has none-zero data. If both slit and resolution
[f8aa738]33    smearing arrays are filled with good data
[240a2d2]34    (which should not happen), then we choose the
[f8aa738]35    resolution smearing data.
36
37    :param data: Data1D object
[240a2d2]38    :param model: sas.model instance
39    """
40    # Sanity check. If we are not dealing with a SAS Data1D
41    # object, just return None
[a9f579c]42    # This checks for 2D data (does not throw exception because fail is common)
[f8aa738]43    if  data.__class__.__name__ not in ['Data1D', 'Theory1D']:
[235f514]44        if data is None:
[240a2d2]45            return None
[235f514]46        elif data.dqx_data is None or data.dqy_data is None:
[240a2d2]47            return None
[2ffe241]48        return PySmear2D(data)
[a9f579c]49    # This checks for 1D data with smearing info in the data itself (again, fail is likely; no exceptions)
[f8aa738]50    if  not hasattr(data, "dx") and not hasattr(data, "dxl")\
51         and not hasattr(data, "dxw"):
[240a2d2]52        return None
[f8aa738]53
[240a2d2]54    # Look for resolution smearing data
[a9f579c]55    # This is the code that checks for SESANS data; it looks for the file loader
56    # TODO: change other sanity checks to check for file loader instead of data structure?
57    _found_sesans = False
58    #if data.dx is not None and data.meta_data['loader']=='SESANS':
59    if data.dx is not None and data.isSesans:
60        #if data.dx[0] > 0.0:
[9a5097c]61        if np.size(data.dx[data.dx <= 0]) == 0:
[a9f579c]62            _found_sesans = True
63        # if data.dx[0] <= 0.0:
[9a5097c]64        if np.size(data.dx[data.dx <= 0]) > 0:
[a9f579c]65            raise ValueError('one or more of your dx values are negative, please check the data file!')
66
67    if _found_sesans == True:
68        #Pre-compute the Hankel matrix (H)
69        qmax, qunits = data.sample.zacceptance
[157b716]70        SElength = Converter(data._xunit)(data.x, "A")
71        zaccept = Converter(qunits)(qmax, "1/A"),
72        Rmax = 10000000
73        hankel = SesansTransform(data.x, SElength, zaccept, Rmax)
[a9f579c]74        # Then return the actual transform, as if it were a smearing function
[157b716]75        return PySmear(hankel, model, offset=0)
[a9f579c]76
[240a2d2]77    _found_resolution = False
[f8aa738]78    if data.dx is not None and len(data.dx) == len(data.x):
79
[240a2d2]80        # Check that we have non-zero data
[f8aa738]81        if data.dx[0] > 0.0:
[240a2d2]82            _found_resolution = True
83            #print "_found_resolution",_found_resolution
84            #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
85    # If we found resolution smearing data, return a QSmearer
86    if _found_resolution == True:
[f8aa738]87         return pinhole_smear(data, model)
[240a2d2]88
89    # Look for slit smearing data
90    _found_slit = False
[f8aa738]91    if data.dxl is not None and len(data.dxl) == len(data.x) \
92        and data.dxw is not None and len(data.dxw) == len(data.x):
93
[240a2d2]94        # Check that we have non-zero data
[f8aa738]95        if data.dxl[0] > 0.0 or data.dxw[0] > 0.0:
[240a2d2]96            _found_slit = True
[f8aa738]97
[240a2d2]98        # Sanity check: all data should be the same as a function of Q
[f8aa738]99        for item in data.dxl:
100            if data.dxl[0] != item:
[240a2d2]101                _found_resolution = False
102                break
[f8aa738]103
104        for item in data.dxw:
105            if data.dxw[0] != item:
[240a2d2]106                _found_resolution = False
107                break
108    # If we found slit smearing data, return a slit smearer
109    if _found_slit == True:
[f8aa738]110        return slit_smear(data, model)
[240a2d2]111    return None
112
113
114class PySmear(object):
115    """
116    Wrapper for pure python sasmodels resolution functions.
117    """
[157b716]118    def __init__(self, resolution, model, offset=None):
[240a2d2]119        self.model = model
120        self.resolution = resolution
[157b716]121        if offset is None:
[9a5097c]122            offset = np.searchsorted(self.resolution.q_calc, self.resolution.q[0])
[157b716]123        self.offset = offset
[240a2d2]124
125    def apply(self, iq_in, first_bin=0, last_bin=None):
126        """
127        Apply the resolution function to the data.
128        Note that this is called with iq_in matching data.x, but with
129        iq_in[first_bin:last_bin] set to theory values for these bins,
130        and the remainder left undefined.  The first_bin, last_bin values
131        should be those returned from get_bin_range.
132        The returned value is of the same length as iq_in, with the range
133        first_bin:last_bin set to the resolution smeared values.
134        """
135        if last_bin is None: last_bin = len(iq_in)
136        start, end = first_bin + self.offset, last_bin + self.offset
137        q_calc = self.resolution.q_calc
[9a5097c]138        iq_calc = np.empty_like(q_calc)
[240a2d2]139        if start > 0:
140            iq_calc[:start] = self.model.evalDistribution(q_calc[:start])
141        if end+1 < len(q_calc):
142            iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:])
143        iq_calc[start:end+1] = iq_in[first_bin:last_bin+1]
144        smeared = self.resolution.apply(iq_calc)
145        return smeared
146    __call__ = apply
147
148    def get_bin_range(self, q_min=None, q_max=None):
149        """
150        For a given q_min, q_max, find the corresponding indices in the data.
151        Returns first, last.
152        Note that these are indexes into q from the data, not the q_calc
153        needed by the resolution function.  Note also that these are the
154        indices, not the range limits.  That is, the complete range will be
155        q[first:last+1].
156        """
157        q = self.resolution.q
[9a5097c]158        first = np.searchsorted(q, q_min)
159        last = np.searchsorted(q, q_max)
[240a2d2]160        return first, min(last,len(q)-1)
161
162def slit_smear(data, model=None):
163    q = data.x
164    width = data.dxw if data.dxw is not None else 0
165    height = data.dxl if data.dxl is not None else 0
166    # TODO: width and height seem to be reversed
167    return PySmear(Slit1D(q, height, width), model)
168
169def pinhole_smear(data, model=None):
170    q = data.x
171    width = data.dx if data.dx is not None else 0
[d3911e3]172    return PySmear(Pinhole1D(q, width), model)
173
174
175class PySmear2D(object):
176    """
177    Q smearing class for SAS 2d pinhole data
178    """
179
180    def __init__(self, data=None, model=None):
181        self.data = data
182        self.model = model
183        self.accuracy = 'Low'
184        self.limit = 3.0
185        self.index = None
186        self.coords = 'polar'
187        self.smearer = True
188
189    def set_accuracy(self, accuracy='Low'):
190        """
191        Set accuracy.
192
193        :param accuracy:  string
194        """
195        self.accuracy = accuracy
196
197    def set_smearer(self, smearer=True):
198        """
199        Set whether or not smearer will be used
200
201        :param smearer: smear object
202
203        """
204        self.smearer = smearer
205
206    def set_data(self, data=None):
207        """
208        Set data.
209
210        :param data: DataLoader.Data_info type
211        """
212        self.data = data
213
214    def set_model(self, model=None):
215        """
216        Set model.
217
218        :param model: sas.models instance
219        """
220        self.model = model
221
222    def set_index(self, index=None):
223        """
224        Set index.
225
226        :param index: 1d arrays
227        """
228        self.index = index
229
230    def get_value(self):
231        """
232        Over sampling of r_nbins times phi_nbins, calculate Gaussian weights,
233        then find smeared intensity
234        """
235        if self.smearer:
236            res = Pinhole2D(data=self.data, index=self.index,
237                            nsigma=3.0, accuracy=self.accuracy,
238                            coords=self.coords)
239            val = self.model.evalDistribution(res.q_calc)
240            return res.apply(val)
241        else:
242            index = self.index if self.index is not None else slice(None)
243            qx_data = self.data.qx_data[index]
244            qy_data = self.data.qy_data[index]
245            q_calc = [qx_data, qy_data]
246            val = self.model.evalDistribution(q_calc)
247            return val
248
Note: See TracBrowser for help on using the repository browser.