source: sasview/src/sas/sascalc/corfunc/transform_thread.py @ 34d7b35

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalcmagnetic_scattrelease-4.2.2ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 34d7b35 was a859f99, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

use cumtrapz instead of iterated trapz

  • Property mode set to 100644
File size: 3.8 KB
Line 
1from sas.sascalc.data_util.calcthread import CalcThread
2from sas.sascalc.dataloader.data_info import Data1D
3from scipy.fftpack import dct
4from scipy.integrate import trapz, cumtrapz
5import numpy as np
6from time import sleep
7
8class FourierThread(CalcThread):
9    def __init__(self, raw_data, extrapolated_data, bg, updatefn=None,
10        completefn=None):
11        CalcThread.__init__(self, updatefn=updatefn, completefn=completefn)
12        self.data = raw_data
13        self.background = bg
14        self.extrapolation = extrapolated_data
15
16    def check_if_cancelled(self):
17        if self.isquit():
18            self.update("Fourier transform cancelled.")
19            self.complete(transforms=None)
20            return True
21        return False
22
23    def compute(self):
24        qs = self.extrapolation.x
25        iqs = self.extrapolation.y
26        q = self.data.x
27        background = self.background
28
29        xs = np.pi*np.arange(len(qs),dtype=np.float32)/(q[1]-q[0])/len(qs)
30
31        self.ready(delay=0.0)
32        self.update(msg="Fourier transform in progress.")
33        self.ready(delay=0.0)
34
35        if self.check_if_cancelled(): return
36        try:
37            # ----- 1D Correlation Function -----
38            gamma1 = dct((iqs-background)*qs**2)
39            Q = gamma1.max()
40            gamma1 /= Q
41
42            if self.check_if_cancelled(): return
43
44            # ----- 3D Correlation Function -----
45            # gamma3(R) = 1/R int_{0}^{R} gamma1(x) dx
46            # trapz uses the trapezium rule to calculate the integral
47            mask = xs <= 200.0 # Only calculate gamma3 up to x=200 (as this is all that's plotted)
48            # gamma3 = [trapz(gamma1[:n], xs[:n])/xs[n-1] for n in range(2, len(xs[mask]) + 1)]j
49            # gamma3.insert(0, 1.0) # Gamma_3(0) is defined as 1
50            n = len(xs[mask])
51            gamma3 = cumtrapz(gamma1[:n], xs[:n])/xs[1:n]
52            gamma3 = np.hstack((1.0, gamma3)) # Gamma_3(0) is defined as 1
53
54            if self.check_if_cancelled(): return
55
56            # ----- Interface Distribution function -----
57            idf = dct(-qs**4 * (iqs-background))
58
59            if self.check_if_cancelled(): return
60
61            # Manually calculate IDF(0.0), since scipy DCT tends to give us a
62            # very large negative value.
63            # IDF(x) = int_0^inf q^4 * I(q) * cos(q*x) * dq
64            # => IDF(0) = int_0^inf q^4 * I(q) * dq
65            idf[0] = trapz(-qs**4 * (iqs-background), qs)
66            idf /= Q # Normalise using scattering invariant
67
68        except Exception as e:
69            import logging
70            logger = logging.getLogger(__name__)
71            logger.error(e)
72
73            self.update(msg="Fourier transform failed.")
74            self.complete(transforms=None)
75            return
76        if self.isquit():
77            return
78        self.update(msg="Fourier transform completed.")
79
80        transform1 = Data1D(xs, gamma1)
81        transform3 = Data1D(xs[xs <= 200], gamma3)
82        idf = Data1D(xs, idf)
83
84        transforms = (transform1, transform3, idf)
85
86        self.complete(transforms=transforms)
87
88class HilbertThread(CalcThread):
89    def __init__(self, raw_data, extrapolated_data, bg, updatefn=None,
90        completefn=None):
91        CalcThread.__init__(self, updatefn=updatefn, completefn=completefn)
92        self.data = raw_data
93        self.background = bg
94        self.extrapolation = extrapolated_data
95
96    def compute(self):
97        qs = self.extrapolation.x
98        iqs = self.extrapolation.y
99        q = self.data.x
100        background = self.background
101
102        self.ready(delay=0.0)
103        self.update(msg="Starting Hilbert transform.")
104        self.ready(delay=0.0)
105        if self.isquit():
106            return
107
108        # TODO: Implement hilbert transform
109
110        self.update(msg="Hilbert transform completed.")
111
112        self.complete(transforms=None)
Note: See TracBrowser for help on using the repository browser.