[9e531f2] | 1 | // The original code, of which work was not DANSE funded, |
---|
| 2 | // was provided by J. Cho. |
---|
| 3 | // And modified to fit sansmodels/sansview: JC |
---|
| 4 | |
---|
| 5 | #include <math.h> |
---|
| 6 | #include "librefl.h" |
---|
| 7 | #include <stdio.h> |
---|
| 8 | #include <stdlib.h> |
---|
| 9 | #if defined(_MSC_VER) |
---|
[4c29e4d] | 10 | #define NEED_ERF |
---|
[9e531f2] | 11 | #endif |
---|
| 12 | |
---|
[4c29e4d] | 13 | |
---|
| 14 | |
---|
| 15 | #if defined(NEED_ERF) |
---|
| 16 | /* erf.c - public domain implementation of error function erf(3m) |
---|
| 17 | |
---|
| 18 | reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten |
---|
| 19 | (New Algorithm handbook in C language) (Gijyutsu hyouron |
---|
| 20 | sha, Tokyo, 1991) p.227 [in Japanese] */ |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | #ifdef _WIN32 |
---|
| 24 | # include <float.h> |
---|
| 25 | # if !defined __MINGW32__ || defined __NO_ISOCEXT |
---|
| 26 | # ifndef isnan |
---|
| 27 | # define isnan(x) _isnan(x) |
---|
| 28 | # endif |
---|
| 29 | # ifndef isinf |
---|
| 30 | # define isinf(x) (!_finite(x) && !_isnan(x)) |
---|
| 31 | # endif |
---|
| 32 | # ifndef finite |
---|
| 33 | # define finite(x) _finite(x) |
---|
| 34 | # endif |
---|
| 35 | # endif |
---|
| 36 | #endif |
---|
| 37 | |
---|
| 38 | static double q_gamma(double, double, double); |
---|
| 39 | |
---|
| 40 | /* Incomplete gamma function |
---|
| 41 | 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt */ |
---|
| 42 | static double p_gamma(double a, double x, double loggamma_a) |
---|
| 43 | { |
---|
| 44 | int k; |
---|
| 45 | double result, term, previous; |
---|
| 46 | |
---|
| 47 | if (x >= 1 + a) return 1 - q_gamma(a, x, loggamma_a); |
---|
| 48 | if (x == 0) return 0; |
---|
| 49 | result = term = exp(a * log(x) - x - loggamma_a) / a; |
---|
| 50 | for (k = 1; k < 1000; k++) { |
---|
| 51 | term *= x / (a + k); |
---|
| 52 | previous = result; result += term; |
---|
| 53 | if (result == previous) return result; |
---|
| 54 | } |
---|
| 55 | fprintf(stderr, "erf.c:%d:p_gamma() could not converge.", __LINE__); |
---|
| 56 | return result; |
---|
| 57 | } |
---|
| 58 | |
---|
| 59 | /* Incomplete gamma function |
---|
| 60 | 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt */ |
---|
| 61 | static double q_gamma(double a, double x, double loggamma_a) |
---|
| 62 | { |
---|
| 63 | int k; |
---|
| 64 | double result, w, temp, previous; |
---|
| 65 | double la = 1, lb = 1 + x - a; /* Laguerre polynomial */ |
---|
| 66 | |
---|
| 67 | if (x < 1 + a) return 1 - p_gamma(a, x, loggamma_a); |
---|
| 68 | w = exp(a * log(x) - x - loggamma_a); |
---|
| 69 | result = w / lb; |
---|
| 70 | for (k = 2; k < 1000; k++) { |
---|
| 71 | temp = ((k - 1 - a) * (lb - la) + (k + x) * lb) / k; |
---|
| 72 | la = lb; lb = temp; |
---|
| 73 | w *= (k - 1 - a) / k; |
---|
| 74 | temp = w / (la * lb); |
---|
| 75 | previous = result; result += temp; |
---|
| 76 | if (result == previous) return result; |
---|
| 77 | } |
---|
| 78 | fprintf(stderr, "erf.c:%d:q_gamma() could not converge.", __LINE__); |
---|
| 79 | return result; |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | #define LOG_PI_OVER_2 0.572364942924700087071713675675 /* log_e(PI)/2 */ |
---|
| 83 | |
---|
| 84 | double erf(double x) |
---|
| 85 | { |
---|
| 86 | if (!finite(x)) { |
---|
| 87 | if (isnan(x)) return x; /* erf(NaN) = NaN */ |
---|
| 88 | return (x>0 ? 1.0 : -1.0); /* erf(+-inf) = +-1.0 */ |
---|
| 89 | } |
---|
| 90 | if (x >= 0) return p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 91 | else return - p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | double erfc(double x) |
---|
| 95 | { |
---|
| 96 | if (!finite(x)) { |
---|
| 97 | if (isnan(x)) return x; /* erfc(NaN) = NaN */ |
---|
| 98 | return (x>0 ? 0.0 : 2.0); /* erfc(+-inf) = 0.0, 2.0 */ |
---|
| 99 | } |
---|
| 100 | if (x >= 0) return q_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 101 | else return 1 + p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 102 | } |
---|
| 103 | #endif // NEED_ERF |
---|
| 104 | |
---|
[9e531f2] | 105 | complex cassign(real, imag) |
---|
| 106 | double real, imag; |
---|
| 107 | { |
---|
| 108 | complex x; |
---|
| 109 | x.re = real; |
---|
| 110 | x.im = imag; |
---|
| 111 | return x; |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | complex cplx_add(x,y) |
---|
| 116 | complex x,y; |
---|
| 117 | { |
---|
| 118 | complex z; |
---|
| 119 | z.re = x.re + y.re; |
---|
| 120 | z.im = x.im + y.im; |
---|
| 121 | return z; |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | complex rcmult(x,y) |
---|
| 125 | double x; |
---|
| 126 | complex y; |
---|
| 127 | { |
---|
| 128 | complex z; |
---|
| 129 | z.re = x*y.re; |
---|
| 130 | z.im = x*y.im; |
---|
| 131 | return z; |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | complex cplx_sub(x,y) |
---|
| 135 | complex x,y; |
---|
| 136 | { |
---|
| 137 | complex z; |
---|
| 138 | z.re = x.re - y.re; |
---|
| 139 | z.im = x.im - y.im; |
---|
| 140 | return z; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | complex cplx_mult(x,y) |
---|
| 145 | complex x,y; |
---|
| 146 | { |
---|
| 147 | complex z; |
---|
| 148 | z.re = x.re*y.re - x.im*y.im; |
---|
| 149 | z.im = x.re*y.im + x.im*y.re; |
---|
| 150 | return z; |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | complex cplx_div(x,y) |
---|
| 154 | complex x,y; |
---|
| 155 | { |
---|
| 156 | complex z; |
---|
| 157 | z.re = (x.re*y.re + x.im*y.im)/(y.re*y.re + y.im*y.im); |
---|
| 158 | z.im = (x.im*y.re - x.re*y.im)/(y.re*y.re + y.im*y.im); |
---|
| 159 | return z; |
---|
| 160 | } |
---|
| 161 | |
---|
| 162 | complex cplx_exp(b) |
---|
| 163 | complex b; |
---|
| 164 | { |
---|
| 165 | complex z; |
---|
| 166 | double br,bi; |
---|
| 167 | br=b.re; |
---|
| 168 | bi=b.im; |
---|
| 169 | z.re = exp(br)*cos(bi); |
---|
| 170 | z.im = exp(br)*sin(bi); |
---|
| 171 | return z; |
---|
| 172 | } |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | complex cplx_sqrt(z) //see Schaum`s Math Handbook p. 22, 6.6 and 6.10 |
---|
| 176 | complex z; |
---|
| 177 | { |
---|
| 178 | complex c; |
---|
| 179 | double zr,zi,x,y,r,w; |
---|
| 180 | |
---|
| 181 | zr=z.re; |
---|
| 182 | zi=z.im; |
---|
| 183 | |
---|
| 184 | if (zr==0.0 && zi==0.0) |
---|
| 185 | { |
---|
| 186 | c.re=0.0; |
---|
| 187 | c.im=0.0; |
---|
| 188 | return c; |
---|
| 189 | } |
---|
| 190 | else |
---|
| 191 | { |
---|
| 192 | x=fabs(zr); |
---|
| 193 | y=fabs(zi); |
---|
| 194 | if (x>y) |
---|
| 195 | { |
---|
| 196 | r=y/x; |
---|
| 197 | w=sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r))); |
---|
| 198 | } |
---|
| 199 | else |
---|
| 200 | { |
---|
| 201 | r=x/y; |
---|
| 202 | w=sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r))); |
---|
| 203 | } |
---|
| 204 | if (zr >=0.0) |
---|
| 205 | { |
---|
| 206 | c.re=w; |
---|
| 207 | c.im=zi/(2.0*w); |
---|
| 208 | } |
---|
| 209 | else |
---|
| 210 | { |
---|
| 211 | c.im=(zi >= 0) ? w : -w; |
---|
| 212 | c.re=zi/(2.0*c.im); |
---|
| 213 | } |
---|
| 214 | return c; |
---|
| 215 | } |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | complex cplx_cos(b) |
---|
| 219 | complex b; |
---|
| 220 | { |
---|
| 221 | complex zero,two,z,i,bi,negbi; |
---|
| 222 | zero = cassign(0.0,0.0); |
---|
| 223 | two = cassign(2.0,0.0); |
---|
| 224 | i = cassign(0.0,1.0); |
---|
| 225 | bi = cplx_mult(b,i); |
---|
| 226 | negbi = cplx_sub(zero,bi); |
---|
| 227 | z = cplx_div(cplx_add(cplx_exp(bi),cplx_exp(negbi)),two); |
---|
| 228 | return z; |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | // normalized and modified erf |
---|
| 232 | // | |
---|
| 233 | // 1 + __ - - - - |
---|
| 234 | // | _ |
---|
| 235 | // | _ |
---|
| 236 | // | __ |
---|
| 237 | // 0 + - - - |
---|
| 238 | // |-------------+------------+-- |
---|
| 239 | // 0 center n_sub ---> |
---|
| 240 | // ind |
---|
| 241 | // |
---|
| 242 | // n_sub = total no. of bins(or sublayers) |
---|
| 243 | // ind = x position: 0 to max |
---|
| 244 | // nu = max x to integration |
---|
| 245 | double err_mod_func(double n_sub, double ind, double nu) |
---|
| 246 | { |
---|
| 247 | double center, func; |
---|
| 248 | if (nu == 0.0) |
---|
| 249 | nu = 1e-14; |
---|
| 250 | if (n_sub == 0.0) |
---|
| 251 | n_sub = 1.0; |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | //ind = (n_sub-1.0)/2.0-1.0 +ind; |
---|
| 255 | center = n_sub/2.0; |
---|
| 256 | // transform it so that min(ind) = 0 |
---|
| 257 | ind -= center; |
---|
| 258 | // normalize by max limit |
---|
| 259 | ind /= center; |
---|
| 260 | // divide by sqrt(2) to get Gaussian func |
---|
| 261 | nu /= sqrt(2.0); |
---|
| 262 | ind *= nu; |
---|
| 263 | // re-scale and normalize it so that max(erf)=1, min(erf)=0 |
---|
| 264 | func = erf(ind)/erf(nu)/2.0; |
---|
| 265 | // shift it by +0.5 in y-direction so that min(erf) = 0 |
---|
| 266 | func += 0.5; |
---|
| 267 | |
---|
| 268 | return func; |
---|
| 269 | } |
---|
| 270 | double linearfunc(double n_sub, double ind, double nu) |
---|
| 271 | { |
---|
| 272 | double bin_size, func; |
---|
| 273 | if (n_sub == 0.0) |
---|
| 274 | n_sub = 1.0; |
---|
| 275 | |
---|
| 276 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
| 277 | // rescale |
---|
| 278 | ind *= bin_size; |
---|
| 279 | func = ind; |
---|
| 280 | |
---|
| 281 | return func; |
---|
| 282 | } |
---|
| 283 | // use the right hand side from the center of power func |
---|
| 284 | double power_r(double n_sub, double ind, double nu) |
---|
| 285 | { |
---|
| 286 | double bin_size,func; |
---|
| 287 | if (nu == 0.0) |
---|
| 288 | nu = 1e-14; |
---|
| 289 | if (n_sub == 0.0) |
---|
| 290 | n_sub = 1.0; |
---|
| 291 | |
---|
| 292 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
| 293 | // rescale |
---|
| 294 | ind *= bin_size; |
---|
| 295 | func = pow(ind, nu); |
---|
| 296 | |
---|
| 297 | return func; |
---|
| 298 | } |
---|
| 299 | // use the left hand side from the center of power func |
---|
| 300 | double power_l(double n_sub, double ind, double nu) |
---|
| 301 | { |
---|
| 302 | double bin_size, func; |
---|
| 303 | if (nu == 0.0) |
---|
| 304 | nu = 1e-14; |
---|
| 305 | if (n_sub == 0.0) |
---|
| 306 | n_sub = 1.0; |
---|
| 307 | |
---|
| 308 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
| 309 | // rescale |
---|
| 310 | ind *= bin_size; |
---|
| 311 | func = 1.0-pow((1.0-ind),nu); |
---|
| 312 | |
---|
| 313 | return func; |
---|
| 314 | } |
---|
| 315 | // use 1-exp func from x=0 to x=1 |
---|
| 316 | double exp_r(double n_sub, double ind, double nu) |
---|
| 317 | { |
---|
| 318 | double bin_size, func; |
---|
| 319 | if (nu == 0.0) |
---|
| 320 | nu = 1e-14; |
---|
| 321 | if (n_sub == 0.0) |
---|
| 322 | n_sub = 1.0; |
---|
| 323 | |
---|
| 324 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
| 325 | // rescale |
---|
| 326 | ind *= bin_size; |
---|
| 327 | // modify func so that func(0) =0 and func(max)=1 |
---|
| 328 | func = 1.0-exp(-nu*ind); |
---|
| 329 | // normalize by its max |
---|
| 330 | func /= (1.0-exp(-nu)); |
---|
| 331 | |
---|
| 332 | return func; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | // use the left hand side mirror image of exp func |
---|
| 336 | double exp_l(double n_sub, double ind, double nu) |
---|
| 337 | { |
---|
| 338 | double bin_size, func; |
---|
| 339 | if (nu == 0.0) |
---|
| 340 | nu = 1e-14; |
---|
| 341 | if (n_sub == 0.0) |
---|
| 342 | n_sub = 1.0; |
---|
| 343 | |
---|
| 344 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
| 345 | // rescale |
---|
| 346 | ind *= bin_size; |
---|
| 347 | // modify func |
---|
| 348 | func = exp(-nu*(1.0-ind))-exp(-nu); |
---|
| 349 | // normalize by its max |
---|
| 350 | func /= (1.0-exp(-nu)); |
---|
| 351 | |
---|
| 352 | return func; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | // To select function called |
---|
| 356 | // At nu = 0 (singular point), call line function |
---|
| 357 | double intersldfunc(int fun_type, double n_sub, double i, double nu, double sld_l, double sld_r) |
---|
| 358 | { |
---|
| 359 | double sld_i, func; |
---|
| 360 | // this condition protects an error from the singular point |
---|
| 361 | if (nu == 0.0){ |
---|
| 362 | nu = 1e-13; |
---|
| 363 | } |
---|
| 364 | // select func |
---|
| 365 | switch(fun_type){ |
---|
| 366 | case 1 : |
---|
| 367 | func = power_r(n_sub, i, nu); |
---|
| 368 | break; |
---|
| 369 | case 2 : |
---|
| 370 | func = power_l(n_sub, i, nu); |
---|
| 371 | break; |
---|
| 372 | case 3 : |
---|
| 373 | func = exp_r(n_sub, i, nu); |
---|
| 374 | break; |
---|
| 375 | case 4 : |
---|
| 376 | func = exp_l(n_sub, i, nu); |
---|
| 377 | break; |
---|
| 378 | case 5 : |
---|
| 379 | func = linearfunc(n_sub, i, nu); |
---|
| 380 | break; |
---|
| 381 | default: |
---|
| 382 | func = err_mod_func(n_sub, i, nu); |
---|
| 383 | break; |
---|
| 384 | } |
---|
| 385 | // compute sld |
---|
| 386 | if (sld_r>sld_l){ |
---|
| 387 | sld_i = (sld_r-sld_l)*func+sld_l; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
| 388 | } |
---|
| 389 | else if (sld_r<sld_l){ |
---|
| 390 | func = 1.0-func; |
---|
| 391 | sld_i = (sld_l-sld_r)*func+sld_r; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
| 392 | } |
---|
| 393 | else{ |
---|
| 394 | sld_i = sld_r; |
---|
| 395 | } |
---|
| 396 | return sld_i; |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | // used by refl.c |
---|
| 401 | double interfunc(int fun_type, double n_sub, double i, double sld_l, double sld_r) |
---|
| 402 | { |
---|
| 403 | double sld_i, func; |
---|
| 404 | switch(fun_type){ |
---|
| 405 | case 0 : |
---|
| 406 | func = err_mod_func(n_sub, i, 2.5); |
---|
| 407 | break; |
---|
| 408 | default: |
---|
| 409 | func = linearfunc(n_sub, i, 1.0); |
---|
| 410 | break; |
---|
| 411 | } |
---|
| 412 | if (sld_r>sld_l){ |
---|
| 413 | sld_i = (sld_r-sld_l)*func+sld_l; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
| 414 | } |
---|
| 415 | else if (sld_r<sld_l){ |
---|
| 416 | func = 1.0-func; |
---|
| 417 | sld_i = (sld_l-sld_r)*func+sld_r; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
| 418 | } |
---|
| 419 | else{ |
---|
| 420 | sld_i = sld_r; |
---|
| 421 | } |
---|
| 422 | return sld_i; |
---|
| 423 | } |
---|