[9e531f2] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | """ |
---|
| 4 | Provide base functionality for all model components |
---|
| 5 | """ |
---|
| 6 | |
---|
| 7 | # imports |
---|
| 8 | import copy |
---|
[deddda1] | 9 | from collections import OrderedDict |
---|
| 10 | |
---|
[9a5097c] | 11 | import numpy as np |
---|
[9e531f2] | 12 | #TO DO: that about a way to make the parameter |
---|
| 13 | #is self return if it is fittable or not |
---|
| 14 | |
---|
| 15 | class BaseComponent: |
---|
| 16 | """ |
---|
| 17 | Basic model component |
---|
| 18 | |
---|
| 19 | Since version 0.5.0, basic operations are no longer supported. |
---|
| 20 | """ |
---|
| 21 | |
---|
| 22 | def __init__(self): |
---|
| 23 | """ Initialization""" |
---|
| 24 | |
---|
| 25 | ## Name of the model |
---|
| 26 | self.name = "BaseComponent" |
---|
| 27 | |
---|
| 28 | ## Parameters to be accessed by client |
---|
| 29 | self.params = {} |
---|
| 30 | self.details = {} |
---|
| 31 | ## Dictionary used to store the dispersity/averaging |
---|
| 32 | # parameters of dispersed/averaged parameters. |
---|
| 33 | self.dispersion = {} |
---|
| 34 | # string containing information about the model such as the equation |
---|
| 35 | #of the given model, exception or possible use |
---|
| 36 | self.description = '' |
---|
| 37 | #list of parameter that can be fitted |
---|
| 38 | self.fixed = [] |
---|
| 39 | #list of non-fittable parameter |
---|
| 40 | self.non_fittable = [] |
---|
| 41 | ## parameters with orientation |
---|
| 42 | self.orientation_params = [] |
---|
| 43 | ## magnetic parameters |
---|
| 44 | self.magnetic_params = [] |
---|
| 45 | ## store dispersity reference |
---|
| 46 | self._persistency_dict = {} |
---|
| 47 | ## independent parameter name and unit [string] |
---|
| 48 | self.input_name = "Q" |
---|
| 49 | self.input_unit = "A^{-1}" |
---|
| 50 | ## output name and unit [string] |
---|
| 51 | self.output_name = "Intensity" |
---|
| 52 | self.output_unit = "cm^{-1}" |
---|
| 53 | |
---|
[cb4ef58] | 54 | self.is_multiplicity_model = False |
---|
| 55 | self.is_structure_factor = False |
---|
| 56 | self.is_form_factor = False |
---|
| 57 | |
---|
[9e531f2] | 58 | def __str__(self): |
---|
| 59 | """ |
---|
| 60 | :return: string representatio |
---|
| 61 | """ |
---|
| 62 | return self.name |
---|
| 63 | |
---|
| 64 | def is_fittable(self, par_name): |
---|
| 65 | """ |
---|
| 66 | Check if a given parameter is fittable or not |
---|
| 67 | |
---|
| 68 | :param par_name: the parameter name to check |
---|
| 69 | |
---|
| 70 | """ |
---|
| 71 | return par_name.lower() in self.fixed |
---|
| 72 | #For the future |
---|
| 73 | #return self.params[str(par_name)].is_fittable() |
---|
| 74 | |
---|
| 75 | def run(self, x): |
---|
| 76 | """ |
---|
| 77 | run 1d |
---|
| 78 | """ |
---|
| 79 | return NotImplemented |
---|
| 80 | |
---|
| 81 | def runXY(self, x): |
---|
| 82 | """ |
---|
| 83 | run 2d |
---|
| 84 | """ |
---|
| 85 | return NotImplemented |
---|
| 86 | |
---|
| 87 | def calculate_ER(self): |
---|
| 88 | """ |
---|
| 89 | Calculate effective radius |
---|
| 90 | """ |
---|
| 91 | return NotImplemented |
---|
| 92 | |
---|
| 93 | def calculate_VR(self): |
---|
| 94 | """ |
---|
| 95 | Calculate volume fraction ratio |
---|
| 96 | """ |
---|
| 97 | return NotImplemented |
---|
| 98 | |
---|
| 99 | def evalDistribution(self, qdist): |
---|
| 100 | """ |
---|
| 101 | Evaluate a distribution of q-values. |
---|
| 102 | |
---|
| 103 | * For 1D, a numpy array is expected as input: :: |
---|
| 104 | |
---|
| 105 | evalDistribution(q) |
---|
| 106 | |
---|
| 107 | where q is a numpy array. |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | * For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], |
---|
| 111 | where 1D arrays, :: |
---|
| 112 | |
---|
| 113 | qx_prime = [ qx[0], qx[1], qx[2], ....] |
---|
[74c5521] | 114 | |
---|
[9e531f2] | 115 | and :: |
---|
[74c5521] | 116 | |
---|
[9e531f2] | 117 | qy_prime = [ qy[0], qy[1], qy[2], ....] |
---|
| 118 | |
---|
| 119 | Then get :: |
---|
[74c5521] | 120 | |
---|
[9a5097c] | 121 | q = np.sqrt(qx_prime^2+qy_prime^2) |
---|
[9e531f2] | 122 | |
---|
| 123 | that is a qr in 1D array; :: |
---|
[74c5521] | 124 | |
---|
[9e531f2] | 125 | q = [q[0], q[1], q[2], ....] |
---|
| 126 | |
---|
[53aa66d] | 127 | .. note:: Due to 2D speed issue, no anisotropic scattering |
---|
| 128 | is supported for python models, thus C-models should have |
---|
| 129 | their own evalDistribution methods. |
---|
[9e531f2] | 130 | |
---|
| 131 | The method is then called the following way: :: |
---|
| 132 | |
---|
| 133 | evalDistribution(q) |
---|
[74c5521] | 134 | |
---|
[9e531f2] | 135 | where q is a numpy array. |
---|
| 136 | |
---|
| 137 | :param qdist: ndarray of scalar q-values or list [qx,qy] where qx,qy are 1D ndarrays |
---|
| 138 | """ |
---|
| 139 | if qdist.__class__.__name__ == 'list': |
---|
| 140 | # Check whether we have a list of ndarrays [qx,qy] |
---|
| 141 | if len(qdist)!=2 or \ |
---|
| 142 | qdist[0].__class__.__name__ != 'ndarray' or \ |
---|
| 143 | qdist[1].__class__.__name__ != 'ndarray': |
---|
| 144 | msg = "evalDistribution expects a list of 2 ndarrays" |
---|
| 145 | raise RuntimeError, msg |
---|
| 146 | |
---|
| 147 | # Extract qx and qy for code clarity |
---|
| 148 | qx = qdist[0] |
---|
| 149 | qy = qdist[1] |
---|
| 150 | |
---|
| 151 | # calculate q_r component for 2D isotropic |
---|
[9a5097c] | 152 | q = np.sqrt(qx**2+qy**2) |
---|
[9e531f2] | 153 | # vectorize the model function runXY |
---|
[9a5097c] | 154 | v_model = np.vectorize(self.runXY, otypes=[float]) |
---|
[9e531f2] | 155 | # calculate the scattering |
---|
| 156 | iq_array = v_model(q) |
---|
| 157 | |
---|
| 158 | return iq_array |
---|
| 159 | |
---|
| 160 | elif qdist.__class__.__name__ == 'ndarray': |
---|
| 161 | # We have a simple 1D distribution of q-values |
---|
[9a5097c] | 162 | v_model = np.vectorize(self.runXY, otypes=[float]) |
---|
[9e531f2] | 163 | iq_array = v_model(qdist) |
---|
| 164 | return iq_array |
---|
| 165 | |
---|
| 166 | else: |
---|
| 167 | mesg = "evalDistribution is expecting an ndarray of scalar q-values" |
---|
| 168 | mesg += " or a list [qx,qy] where qx,qy are 2D ndarrays." |
---|
| 169 | raise RuntimeError, mesg |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | |
---|
| 173 | def clone(self): |
---|
| 174 | """ Returns a new object identical to the current object """ |
---|
| 175 | obj = copy.deepcopy(self) |
---|
| 176 | return self._clone(obj) |
---|
| 177 | |
---|
| 178 | def _clone(self, obj): |
---|
| 179 | """ |
---|
| 180 | Internal utility function to copy the internal |
---|
| 181 | data members to a fresh copy. |
---|
| 182 | """ |
---|
| 183 | obj.params = copy.deepcopy(self.params) |
---|
| 184 | obj.details = copy.deepcopy(self.details) |
---|
| 185 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
| 186 | obj._persistency_dict = copy.deepcopy( self._persistency_dict) |
---|
| 187 | return obj |
---|
| 188 | |
---|
| 189 | def set_dispersion(self, parameter, dispersion): |
---|
| 190 | """ |
---|
| 191 | model dispersions |
---|
| 192 | """ |
---|
| 193 | ##Not Implemented |
---|
| 194 | return None |
---|
| 195 | |
---|
| 196 | def getProfile(self): |
---|
| 197 | """ |
---|
| 198 | Get SLD profile |
---|
| 199 | |
---|
| 200 | : return: (z, beta) where z is a list of depth of the transition points |
---|
| 201 | beta is a list of the corresponding SLD values |
---|
| 202 | """ |
---|
| 203 | #Not Implemented |
---|
| 204 | return None, None |
---|
| 205 | |
---|
| 206 | def setParam(self, name, value): |
---|
| 207 | """ |
---|
| 208 | Set the value of a model parameter |
---|
| 209 | |
---|
| 210 | :param name: name of the parameter |
---|
| 211 | :param value: value of the parameter |
---|
| 212 | |
---|
| 213 | """ |
---|
| 214 | # Look for dispersion parameters |
---|
| 215 | toks = name.split('.') |
---|
| 216 | if len(toks)==2: |
---|
| 217 | for item in self.dispersion.keys(): |
---|
| 218 | if item.lower()==toks[0].lower(): |
---|
| 219 | for par in self.dispersion[item]: |
---|
| 220 | if par.lower() == toks[1].lower(): |
---|
| 221 | self.dispersion[item][par] = value |
---|
| 222 | return |
---|
| 223 | else: |
---|
| 224 | # Look for standard parameter |
---|
| 225 | for item in self.params.keys(): |
---|
| 226 | if item.lower()==name.lower(): |
---|
| 227 | self.params[item] = value |
---|
| 228 | return |
---|
| 229 | |
---|
| 230 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 231 | |
---|
| 232 | def getParam(self, name): |
---|
| 233 | """ |
---|
| 234 | Set the value of a model parameter |
---|
| 235 | :param name: name of the parameter |
---|
| 236 | |
---|
| 237 | """ |
---|
| 238 | # Look for dispersion parameters |
---|
| 239 | toks = name.split('.') |
---|
| 240 | if len(toks)==2: |
---|
| 241 | for item in self.dispersion.keys(): |
---|
| 242 | if item.lower()==toks[0].lower(): |
---|
| 243 | for par in self.dispersion[item]: |
---|
| 244 | if par.lower() == toks[1].lower(): |
---|
| 245 | return self.dispersion[item][par] |
---|
| 246 | else: |
---|
| 247 | # Look for standard parameter |
---|
| 248 | for item in self.params.keys(): |
---|
| 249 | if item.lower()==name.lower(): |
---|
| 250 | return self.params[item] |
---|
| 251 | |
---|
| 252 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 253 | |
---|
| 254 | def getParamList(self): |
---|
| 255 | """ |
---|
| 256 | Return a list of all available parameters for the model |
---|
| 257 | """ |
---|
[deddda1] | 258 | list = _ordered_keys(self.params) |
---|
[9e531f2] | 259 | # WARNING: Extending the list with the dispersion parameters |
---|
| 260 | list.extend(self.getDispParamList()) |
---|
| 261 | return list |
---|
| 262 | |
---|
| 263 | def getDispParamList(self): |
---|
| 264 | """ |
---|
| 265 | Return a list of all available parameters for the model |
---|
| 266 | """ |
---|
| 267 | list = [] |
---|
[deddda1] | 268 | for item in _ordered_keys(self.dispersion): |
---|
| 269 | for p in _ordered_keys(self.dispersion[item]): |
---|
[9e531f2] | 270 | if p not in ['type']: |
---|
| 271 | list.append('%s.%s' % (item.lower(), p.lower())) |
---|
| 272 | |
---|
| 273 | return list |
---|
| 274 | |
---|
| 275 | # Old-style methods that are no longer used |
---|
| 276 | def setParamWithToken(self, name, value, token, member): |
---|
| 277 | """ |
---|
| 278 | set Param With Token |
---|
| 279 | """ |
---|
| 280 | return NotImplemented |
---|
| 281 | def getParamWithToken(self, name, token, member): |
---|
| 282 | """ |
---|
| 283 | get Param With Token |
---|
| 284 | """ |
---|
| 285 | return NotImplemented |
---|
| 286 | |
---|
| 287 | def getParamListWithToken(self, token, member): |
---|
| 288 | """ |
---|
| 289 | get Param List With Token |
---|
| 290 | """ |
---|
| 291 | return NotImplemented |
---|
| 292 | def __add__(self, other): |
---|
| 293 | """ |
---|
| 294 | add |
---|
| 295 | """ |
---|
| 296 | raise ValueError, "Model operation are no longer supported" |
---|
| 297 | def __sub__(self, other): |
---|
| 298 | """ |
---|
| 299 | sub |
---|
| 300 | """ |
---|
| 301 | raise ValueError, "Model operation are no longer supported" |
---|
| 302 | def __mul__(self, other): |
---|
| 303 | """ |
---|
| 304 | mul |
---|
| 305 | """ |
---|
| 306 | raise ValueError, "Model operation are no longer supported" |
---|
| 307 | def __div__(self, other): |
---|
| 308 | """ |
---|
| 309 | div |
---|
| 310 | """ |
---|
[deddda1] | 311 | raise ValueError, "Model operation are no longer supported" |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | def _ordered_keys(d): |
---|
| 315 | keys = list(d.keys()) |
---|
| 316 | if not isinstance(d, OrderedDict): |
---|
| 317 | keys.sort() |
---|
| 318 | return keys |
---|