source: sasview/src/sas/qtgui/PlotUtilities.py @ b94889a

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalc
Last change on this file since b94889a was 31c5b58, checked in by Piotr Rozyczko <rozyczko@…>, 8 years ago

Refactored to allow running with run.py.
Minor fixes to plotting.

  • Property mode set to 100644
File size: 6.4 KB
Line 
1import sys
2import numpy
3
4
5def build_matrix(data, qx_data, qy_data):
6    """
7    Build a matrix for 2d plot from a vector
8    Returns a matrix (image) with ~ square binning
9    Requirement: need 1d array formats of
10    data, qx_data, and qy_data
11    where each one corresponds to z, x, or y axis values
12
13    """
14    # No qx or qy given in a vector format
15    if qx_data == None or qy_data == None \
16            or qx_data.ndim != 1 or qy_data.ndim != 1:
17        return data
18
19    # maximum # of loops to fillup_pixels
20    # otherwise, loop could never stop depending on data
21    max_loop = 1
22    # get the x and y_bin arrays.
23    x_bins, y_bins = get_bins(qx_data, qy_data)
24    # set zero to None
25
26    #Note: Can not use scipy.interpolate.Rbf:
27    # 'cause too many data points (>10000)<=JHC.
28    # 1d array to use for weighting the data point averaging
29    #when they fall into a same bin.
30    weights_data = numpy.ones([data.size])
31    # get histogram of ones w/len(data); this will provide
32    #the weights of data on each bins
33    weights, xedges, yedges = numpy.histogram2d(x=qy_data,
34                                                y=qx_data,
35                                                bins=[y_bins, x_bins],
36                                                weights=weights_data)
37    # get histogram of data, all points into a bin in a way of summing
38    image, xedges, yedges = numpy.histogram2d(x=qy_data,
39                                                y=qx_data,
40                                                bins=[y_bins, x_bins],
41                                                weights=data)
42    # Now, normalize the image by weights only for weights>1:
43    # If weight == 1, there is only one data point in the bin so
44    # that no normalization is required.
45    image[weights > 1] = image[weights > 1] / weights[weights > 1]
46    # Set image bins w/o a data point (weight==0) as None (was set to zero
47    # by histogram2d.)
48    image[weights == 0] = None
49
50    # Fill empty bins with 8 nearest neighbors only when at least
51    #one None point exists
52    loop = 0
53
54    # do while loop until all vacant bins are filled up up
55    #to loop = max_loop
56    while not(numpy.isfinite(image[weights == 0])).all():
57        if loop >= max_loop:  # this protects never-ending loop
58            break
59        image = fillup_pixels(image=image, weights=weights)
60        loop += 1
61
62    return image
63
64def get_bins(qx_data, qy_data):
65    """
66    get bins
67    return x_bins and y_bins: 1d arrays of the index with
68    ~ square binning
69    Requirement: need 1d array formats of
70    qx_data, and qy_data
71    where each one corresponds to  x, or y axis values
72    """
73    # No qx or qy given in a vector format
74    if qx_data == None or qy_data == None \
75            or qx_data.ndim != 1 or qy_data.ndim != 1:
76        return data
77
78    # find max and min values of qx and qy
79    xmax = qx_data.max()
80    xmin = qx_data.min()
81    ymax = qy_data.max()
82    ymin = qy_data.min()
83
84    # calculate the range of qx and qy: this way, it is a little
85    # more independent
86    x_size = xmax - xmin
87    y_size = ymax - ymin
88
89    # estimate the # of pixels on each axes
90    npix_y = int(numpy.floor(numpy.sqrt(len(qy_data))))
91    npix_x = int(numpy.floor(len(qy_data) / npix_y))
92
93    # bin size: x- & y-directions
94    xstep = x_size / (npix_x - 1)
95    ystep = y_size / (npix_y - 1)
96
97    # max and min taking account of the bin sizes
98    xmax = xmax + xstep / 2.0
99    xmin = xmin - xstep / 2.0
100    ymax = ymax + ystep / 2.0
101    ymin = ymin - ystep / 2.0
102
103    # store x and y bin centers in q space
104    x_bins = numpy.linspace(xmin, xmax, npix_x)
105    y_bins = numpy.linspace(ymin, ymax, npix_y)
106
107    #set x_bins and y_bins
108    return x_bins, y_bins
109
110def fillup_pixels(image=None, weights=None):
111    """
112    Fill z values of the empty cells of 2d image matrix
113    with the average over up-to next nearest neighbor points
114
115    :param image: (2d matrix with some zi = None)
116
117    :return: image (2d array )
118
119    :TODO: Find better way to do for-loop below
120
121    """
122    # No image matrix given
123    if image == None or numpy.ndim(image) != 2 \
124            or numpy.isfinite(image).all() \
125            or weights == None:
126        return image
127    # Get bin size in y and x directions
128    len_y = len(image)
129    len_x = len(image[1])
130    temp_image = numpy.zeros([len_y, len_x])
131    weit = numpy.zeros([len_y, len_x])
132    # do for-loop for all pixels
133    for n_y in range(len(image)):
134        for n_x in range(len(image[1])):
135            # find only null pixels
136            if weights[n_y][n_x] > 0 or numpy.isfinite(image[n_y][n_x]):
137                continue
138            else:
139                # find 4 nearest neighbors
140                # check where or not it is at the corner
141                if n_y != 0 and numpy.isfinite(image[n_y - 1][n_x]):
142                    temp_image[n_y][n_x] += image[n_y - 1][n_x]
143                    weit[n_y][n_x] += 1
144                if n_x != 0 and numpy.isfinite(image[n_y][n_x - 1]):
145                    temp_image[n_y][n_x] += image[n_y][n_x - 1]
146                    weit[n_y][n_x] += 1
147                if n_y != len_y - 1 and numpy.isfinite(image[n_y + 1][n_x]):
148                    temp_image[n_y][n_x] += image[n_y + 1][n_x]
149                    weit[n_y][n_x] += 1
150                if n_x != len_x - 1 and numpy.isfinite(image[n_y][n_x + 1]):
151                    temp_image[n_y][n_x] += image[n_y][n_x + 1]
152                    weit[n_y][n_x] += 1
153                # go 4 next nearest neighbors when no non-zero
154                # neighbor exists
155                if n_y != 0 and n_x != 0 and\
156                        numpy.isfinite(image[n_y - 1][n_x - 1]):
157                    temp_image[n_y][n_x] += image[n_y - 1][n_x - 1]
158                    weit[n_y][n_x] += 1
159                if n_y != len_y - 1 and n_x != 0 and \
160                    numpy.isfinite(image[n_y + 1][n_x - 1]):
161                    temp_image[n_y][n_x] += image[n_y + 1][n_x - 1]
162                    weit[n_y][n_x] += 1
163                if n_y != len_y and n_x != len_x - 1 and \
164                    numpy.isfinite(image[n_y - 1][n_x + 1]):
165                    temp_image[n_y][n_x] += image[n_y - 1][n_x + 1]
166                    weit[n_y][n_x] += 1
167                if n_y != len_y - 1 and n_x != len_x - 1 and \
168                    numpy.isfinite(image[n_y + 1][n_x + 1]):
169                    temp_image[n_y][n_x] += image[n_y + 1][n_x + 1]
170                    weit[n_y][n_x] += 1
171
172    # get it normalized
173    ind = (weit > 0)
174    image[ind] = temp_image[ind] / weit[ind]
175
176    return image
Note: See TracBrowser for help on using the repository browser.