1 | import math |
---|
2 | import pylab |
---|
3 | import numpy as np |
---|
4 | |
---|
5 | from sas.qtgui.Plotting.PlotterData import Data1D |
---|
6 | |
---|
7 | PR_FIT_LABEL = r"$P_{fit}(r)$" |
---|
8 | PR_LOADED_LABEL = r"$P_{loaded}(r)$" |
---|
9 | IQ_DATA_LABEL = r"$I_{obs}(q)$" |
---|
10 | IQ_FIT_LABEL = r"$I_{fit}(q)$" |
---|
11 | IQ_SMEARED_LABEL = r"$I_{smeared}(q)$" |
---|
12 | GROUP_ID_IQ_DATA = r"$I_{obs}(q)$" |
---|
13 | GROUP_ID_PR_FIT = r"$P_{fit}(r)$" |
---|
14 | |
---|
15 | |
---|
16 | class InversionLogic(object): |
---|
17 | """ |
---|
18 | All the data-related logic. This class deals exclusively with Data1D/2D |
---|
19 | No QStandardModelIndex here. |
---|
20 | """ |
---|
21 | |
---|
22 | # TODO: Add way to change this value |
---|
23 | _pr_n_pts = 51 |
---|
24 | |
---|
25 | def __init__(self, data=None): |
---|
26 | self._data = data |
---|
27 | self.data_is_loaded = False |
---|
28 | if data is not None: |
---|
29 | self.data_is_loaded = True |
---|
30 | |
---|
31 | @property |
---|
32 | def data(self): |
---|
33 | return self._data |
---|
34 | |
---|
35 | @data.setter |
---|
36 | def data(self, value): |
---|
37 | """ data setter """ |
---|
38 | self._data = value |
---|
39 | self.data_is_loaded = True |
---|
40 | |
---|
41 | def isLoadedData(self): |
---|
42 | """ accessor """ |
---|
43 | return self.data_is_loaded |
---|
44 | |
---|
45 | def new1DPlot(self, out, pr, q=None): |
---|
46 | """ |
---|
47 | Create a new 1D data instance based on fitting results |
---|
48 | """ |
---|
49 | |
---|
50 | qtemp = pr.x |
---|
51 | if q is not None: |
---|
52 | qtemp = q |
---|
53 | |
---|
54 | # Make a plot |
---|
55 | maxq = max(qtemp) |
---|
56 | |
---|
57 | minq = min(qtemp) |
---|
58 | |
---|
59 | # Check for user min/max |
---|
60 | if pr.q_min is not None and maxq >= pr.q_min >= minq: |
---|
61 | minq = pr.q_min |
---|
62 | if pr.q_max is not None and maxq >= pr.q_max >= minq: |
---|
63 | maxq = pr.q_max |
---|
64 | |
---|
65 | x = pylab.arange(minq, maxq, maxq / 301.0) |
---|
66 | y = np.zeros(len(x)) |
---|
67 | err = np.zeros(len(x)) |
---|
68 | for i in range(len(x)): |
---|
69 | value = pr.iq(out, x[i]) |
---|
70 | y[i] = value |
---|
71 | try: |
---|
72 | err[i] = math.sqrt(math.fabs(value)) |
---|
73 | except: |
---|
74 | err[i] = 1.0 |
---|
75 | print(("Error getting error", value, x[i])) |
---|
76 | |
---|
77 | new_plot = Data1D(x, y) |
---|
78 | new_plot.name = IQ_FIT_LABEL |
---|
79 | new_plot.xaxis("\\rm{Q}", 'A^{-1}') |
---|
80 | new_plot.yaxis("\\rm{Intensity} ", "cm^{-1}") |
---|
81 | title = "I(q)" |
---|
82 | new_plot.title = title |
---|
83 | |
---|
84 | # If we have a group ID, use it |
---|
85 | if 'plot_group_id' in pr.info: |
---|
86 | new_plot.group_id = pr.info["plot_group_id"] |
---|
87 | new_plot.id = IQ_FIT_LABEL |
---|
88 | |
---|
89 | # If we have used slit smearing, plot the smeared I(q) too |
---|
90 | if pr.slit_width > 0 or pr.slit_height > 0: |
---|
91 | x = pylab.arange(minq, maxq, maxq / 301.0) |
---|
92 | y = np.zeros(len(x)) |
---|
93 | err = np.zeros(len(x)) |
---|
94 | for i in range(len(x)): |
---|
95 | value = pr.iq_smeared(pr.out, x[i]) |
---|
96 | y[i] = value |
---|
97 | try: |
---|
98 | err[i] = math.sqrt(math.fabs(value)) |
---|
99 | except: |
---|
100 | err[i] = 1.0 |
---|
101 | print(("Error getting error", value, x[i])) |
---|
102 | |
---|
103 | new_plot = Data1D(x, y) |
---|
104 | new_plot.name = IQ_SMEARED_LABEL |
---|
105 | new_plot.xaxis("\\rm{Q}", 'A^{-1}') |
---|
106 | new_plot.yaxis("\\rm{Intensity} ", "cm^{-1}") |
---|
107 | # If we have a group ID, use it |
---|
108 | if 'plot_group_id' in pr.info: |
---|
109 | new_plot.group_id = pr.info["plot_group_id"] |
---|
110 | new_plot.id = IQ_SMEARED_LABEL |
---|
111 | new_plot.title = title |
---|
112 | |
---|
113 | return new_plot |
---|
114 | |
---|
115 | def update1DPlot(self, plot, out, pr, q=None): |
---|
116 | """ |
---|
117 | Create a new 1D data instance based on fitting results |
---|
118 | """ |
---|
119 | |
---|
120 | qtemp = pr.x |
---|
121 | if q is not None: |
---|
122 | qtemp = q |
---|
123 | |
---|
124 | # Make a plot |
---|
125 | maxq = max(qtemp) |
---|
126 | |
---|
127 | minq = min(qtemp) |
---|
128 | |
---|
129 | # Check for user min/max |
---|
130 | if pr.q_min is not None and maxq >= pr.q_min >= minq: |
---|
131 | minq = pr.q_min |
---|
132 | if pr.q_max is not None and maxq >= pr.q_max >= minq: |
---|
133 | maxq = pr.q_max |
---|
134 | |
---|
135 | x = pylab.arange(minq, maxq, maxq / 301.0) |
---|
136 | y = np.zeros(len(x)) |
---|
137 | err = np.zeros(len(x)) |
---|
138 | for i in range(len(x)): |
---|
139 | value = pr.iq(out, x[i]) |
---|
140 | y[i] = value |
---|
141 | try: |
---|
142 | err[i] = math.sqrt(math.fabs(value)) |
---|
143 | except: |
---|
144 | err[i] = 1.0 |
---|
145 | print(("Error getting error", value, x[i])) |
---|
146 | |
---|
147 | plot.x = x |
---|
148 | plot.y = y |
---|
149 | |
---|
150 | # If we have used slit smearing, plot the smeared I(q) too |
---|
151 | if pr.slit_width > 0 or pr.slit_height > 0: |
---|
152 | x = pylab.arange(minq, maxq, maxq / 301.0) |
---|
153 | y = np.zeros(len(x)) |
---|
154 | err = np.zeros(len(x)) |
---|
155 | for i in range(len(x)): |
---|
156 | value = pr.iq_smeared(pr.out, x[i]) |
---|
157 | y[i] = value |
---|
158 | try: |
---|
159 | err[i] = math.sqrt(math.fabs(value)) |
---|
160 | except: |
---|
161 | err[i] = 1.0 |
---|
162 | print(("Error getting error", value, x[i])) |
---|
163 | |
---|
164 | plot.x = x |
---|
165 | plot.y = y |
---|
166 | |
---|
167 | return plot |
---|
168 | |
---|
169 | def newPRPlot(self, out, pr, cov=None): |
---|
170 | """ |
---|
171 | """ |
---|
172 | # Show P(r) |
---|
173 | x = pylab.arange(0.0, pr.d_max, pr.d_max / self._pr_n_pts) |
---|
174 | |
---|
175 | y = np.zeros(len(x)) |
---|
176 | dy = np.zeros(len(x)) |
---|
177 | |
---|
178 | total = 0.0 |
---|
179 | pmax = 0.0 |
---|
180 | cov2 = np.ascontiguousarray(cov) |
---|
181 | |
---|
182 | for i in range(len(x)): |
---|
183 | if cov2 is None: |
---|
184 | value = pr.pr(out, x[i]) |
---|
185 | else: |
---|
186 | (value, dy[i]) = pr.pr_err(out, cov2, x[i]) |
---|
187 | total += value * pr.d_max / len(x) |
---|
188 | |
---|
189 | # keep track of the maximum P(r) value |
---|
190 | if value > pmax: |
---|
191 | pmax = value |
---|
192 | |
---|
193 | y[i] = value |
---|
194 | |
---|
195 | # if self._normalize_output == True: |
---|
196 | # y = y / total |
---|
197 | # dy = dy / total |
---|
198 | # elif self._scale_output_unity == True: |
---|
199 | # y = y / pmax |
---|
200 | # dy = dy / pmax |
---|
201 | |
---|
202 | if cov2 is None: |
---|
203 | new_plot = Data1D(x, y) |
---|
204 | else: |
---|
205 | new_plot = Data1D(x, y, dy=dy) |
---|
206 | new_plot.name = PR_FIT_LABEL |
---|
207 | new_plot.xaxis("\\rm{r}", 'A') |
---|
208 | new_plot.yaxis("\\rm{P(r)} ", "cm^{-3}") |
---|
209 | new_plot.title = "P(r) fit" |
---|
210 | new_plot.id = PR_FIT_LABEL |
---|
211 | # Make sure that the plot is linear |
---|
212 | new_plot.xtransform = "x" |
---|
213 | new_plot.ytransform = "y" |
---|
214 | new_plot.group_id = GROUP_ID_PR_FIT |
---|
215 | |
---|
216 | return new_plot |
---|
217 | |
---|
218 | def updatePRPlot(self, plot, out, pr, cov=None): |
---|
219 | x = pylab.arange(0.0, pr.d_max, pr.d_max / self._pr_n_pts) |
---|
220 | |
---|
221 | y = np.zeros(len(x)) |
---|
222 | dy = np.zeros(len(x)) |
---|
223 | |
---|
224 | total = 0.0 |
---|
225 | pmax = 0.0 |
---|
226 | cov2 = np.ascontiguousarray(cov) |
---|
227 | |
---|
228 | for i in range(len(x)): |
---|
229 | if cov2 is None: |
---|
230 | value = pr.pr(out, x[i]) |
---|
231 | else: |
---|
232 | (value, dy[i]) = pr.pr_err(out, cov2, x[i]) |
---|
233 | total += value * pr.d_max / len(x) |
---|
234 | |
---|
235 | # keep track of the maximum P(r) value |
---|
236 | if value > pmax: |
---|
237 | pmax = value |
---|
238 | |
---|
239 | y[i] = value |
---|
240 | |
---|
241 | # if self._normalize_output == True: |
---|
242 | # y = y / total |
---|
243 | # dy = dy / total |
---|
244 | # elif self._scale_output_unity == True: |
---|
245 | # y = y / pmax |
---|
246 | # dy = dy / pmax |
---|
247 | plot.x = x |
---|
248 | plot.y = y |
---|
249 | |
---|
250 | if cov2 is not None: |
---|
251 | plot.dy = dy |
---|
252 | |
---|
253 | return plot |
---|
254 | |
---|
255 | def computeDataRange(self): |
---|
256 | """ |
---|
257 | Wrapper for calculating the data range based on local dataset |
---|
258 | """ |
---|
259 | return self.computeRangeFromData(self.data) |
---|
260 | |
---|
261 | def computeRangeFromData(self, data): |
---|
262 | """ |
---|
263 | Compute the minimum and the maximum range of the data |
---|
264 | return the npts contains in data |
---|
265 | """ |
---|
266 | qmin, qmax = None, None |
---|
267 | if isinstance(data, Data1D): |
---|
268 | try: |
---|
269 | qmin = min(data.x) |
---|
270 | qmax = max(data.x) |
---|
271 | except (ValueError, TypeError): |
---|
272 | msg = "Unable to find min/max/length of \n data named %s" % \ |
---|
273 | self.data.filename |
---|
274 | raise ValueError(msg) |
---|
275 | |
---|
276 | else: |
---|
277 | qmin = 0 |
---|
278 | try: |
---|
279 | x = max(np.fabs(data.xmin), np.fabs(data.xmax)) |
---|
280 | y = max(np.fabs(data.ymin), np.fabs(data.ymax)) |
---|
281 | except (ValueError, TypeError): |
---|
282 | msg = "Unable to find min/max of \n data named %s" % \ |
---|
283 | self.data.filename |
---|
284 | raise ValueError(msg) |
---|
285 | qmax = np.sqrt(x * x + y * y) |
---|
286 | return qmin, qmax |
---|