[ec392464] | 1 | .. invariant_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
[b64b87c] | 6 | Invariant Calculation |
---|
| 7 | ===================== |
---|
[ec392464] | 8 | |
---|
[a9dc4eb] | 9 | Description |
---|
| 10 | ----------- |
---|
[ec392464] | 11 | |
---|
[abcac7a] | 12 | The scattering, or Porod, invariant (:math:`Q^*`) is a model-independent quantity that |
---|
[0721c3d] | 13 | can be easily calculated from scattering data. |
---|
[ec392464] | 14 | |
---|
[094b9eb] | 15 | For two phase systems, the scattering invariant is defined as the integral of |
---|
[abcac7a] | 16 | the square of the wavevector transfer (:math:`Q`) multiplied by the scattering cross section |
---|
| 17 | over the full range of :math:`Q` from zero to infinity, that is |
---|
| 18 | |
---|
[ec392464] | 19 | |
---|
[094b9eb] | 20 | .. math:: |
---|
[ec392464] | 21 | |
---|
[abcac7a] | 22 | Q^* = \int_0^ \infty q^2 I(q)\,dq |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | in the case of pinhole geometry (SAS). |
---|
| 26 | |
---|
[ec392464] | 27 | |
---|
[abcac7a] | 28 | For slit geometry (USAS) the invariant is given by |
---|
[094b9eb] | 29 | |
---|
| 30 | .. math:: |
---|
| 31 | |
---|
[abcac7a] | 32 | Q^* = \int_0^\infty \Delta q_v \, qI(q)\,dq |
---|
[094b9eb] | 33 | |
---|
[abcac7a] | 34 | where :math:`\Delta q_v` is the slit height. |
---|
[094b9eb] | 35 | |
---|
[abcac7a] | 36 | The worth of :math:`Q^*` is that it can be used to determine the volume fraction |
---|
| 37 | and the specific area of a sample. Whilst these quantities are useful in their |
---|
| 38 | own right, they can also be used in further analysis. |
---|
[ec392464] | 39 | |
---|
[abcac7a] | 40 | The difficulty with using :math:`Q^*` arises from the fact that experimental |
---|
| 41 | data is never measured over the range :math:`0 \le Q \le \infty`. At best, |
---|
| 42 | combining USAS and WAS data might cover the range |
---|
| 43 | :math:`10^{-5} \le Q \le 10`|Ang|:math:`^{-1}`. Thus it is usually |
---|
| 44 | necessary to extrapolate the experimental data to low and high :math:`Q`. |
---|
| 45 | For this |
---|
[ec392464] | 46 | |
---|
[abcac7a] | 47 | High-\ :math:`Q` region (>= *Qmax* in data) |
---|
[ec392464] | 48 | |
---|
[abcac7a] | 49 | * The power law function :math:`C/Q^4` is used where the constant |
---|
| 50 | :math:`C = 2 \pi \Delta\rho\, S_v` with |
---|
| 51 | :math:`\Delta\rho`, the scattering length density (SLD) contrast and |
---|
| 52 | :math:`S_v`, the specific surface area. The value of :math:`C` is to be found |
---|
| 53 | by fitting part of data within the range :math:`Q_{N-m}` to :math:`Q_N` |
---|
| 54 | (where :math:`m < N`), . |
---|
[ec392464] | 55 | |
---|
[abcac7a] | 56 | Low-\ :math:`Q` region (<= *Qmin* in data) |
---|
[ec392464] | 57 | |
---|
[abcac7a] | 58 | * The Guinier function :math:`I(Q)=I(0) \exp (-R_g^2 Q^2/3)` where :math:`R_g` |
---|
| 59 | is the radius of gyration. The values of :math:`I(0)` and :math:`R_g` are |
---|
| 60 | obtained by fitting as for the high-\ :math:`Q` region above. |
---|
[0721c3d] | 61 | Alternatively a power law can be used. |
---|
[ec392464] | 62 | |
---|
[0721c3d] | 63 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[ec392464] | 64 | |
---|
[b64b87c] | 65 | Using invariant analysis |
---|
| 66 | ------------------------ |
---|
[0721c3d] | 67 | |
---|
| 68 | 1) Select *Invariant* from the *Analysis* menu on the SasView toolbar. |
---|
| 69 | |
---|
| 70 | 2) Load some data with the *Data Explorer*. |
---|
| 71 | |
---|
[094b9eb] | 72 | 3) Select a dataset and use the *Send To* button on the *Data Explorer* to load |
---|
[b64b87c] | 73 | the dataset into the *Invariant* panel. |
---|
[0721c3d] | 74 | |
---|
[abcac7a] | 75 | .. image:: image_invariant_load_data.png |
---|
[ec392464] | 76 | |
---|
[abcac7a] | 77 | 4) Use the *Customised Input* box on the *Options* tab to subtract any |
---|
| 78 | background, specify the contrast (i.e. difference in SLDs - this must be |
---|
| 79 | specified for the eventual value of :math:`Q^*` to be on an absolute scale), |
---|
| 80 | or to rescale the data. |
---|
[ec392464] | 81 | |
---|
[abcac7a] | 82 | 5) Adjust the extrapolation range in the *Options* tab as necessary. In most |
---|
| 83 | cases the default values will suffice. |
---|
[ec392464] | 84 | |
---|
[abcac7a] | 85 | |
---|
| 86 | 6) Click the *Calculate* button. |
---|
| 87 | |
---|
| 88 | 7) To include a lower and/or higher :math:`Q` range, check the relevant *Enable |
---|
[0721c3d] | 89 | Extrapolate* check boxes. |
---|
[094b9eb] | 90 | |
---|
[abcac7a] | 91 | .. figure:: image_invariant_option_tab.png |
---|
| 92 | |
---|
| 93 | .. |
---|
| 94 | |
---|
| 95 | *Option tab of the Invariant panel.* |
---|
| 96 | |
---|
| 97 | |
---|
[094b9eb] | 98 | If power law extrapolations are chosen, the exponent can be either held |
---|
| 99 | fixed or fitted. The number of points, Npts, to be used for the basis of the |
---|
[abcac7a] | 100 | extrapolation can also be specified in the related *Power* box(es). |
---|
| 101 | |
---|
| 102 | .. figure:: image_invariant_outplot_plot.png |
---|
| 103 | :width: 300pt |
---|
| 104 | |
---|
| 105 | .. |
---|
| 106 | |
---|
| 107 | *Output plot generated after calculations.* |
---|
| 108 | |
---|
| 109 | 8) If the value of :math:`Q^*` calculated with the extrapolated regions is |
---|
| 110 | invalid, the related box will be highlighted in red. |
---|
| 111 | |
---|
| 112 | The details of the calculation are available by clicking the *Status* |
---|
| 113 | button at the bottom of the panel. |
---|
[ec392464] | 114 | |
---|
| 115 | |
---|
[abcac7a] | 116 | .. image:: image_invariant_details.png |
---|
| 117 | :width: 300pt |
---|
[ec392464] | 118 | |
---|
| 119 | |
---|
| 120 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 121 | |
---|
[a9dc4eb] | 122 | Parameters |
---|
| 123 | ---------- |
---|
[ec392464] | 124 | |
---|
| 125 | Volume Fraction |
---|
[a9dc4eb] | 126 | ^^^^^^^^^^^^^^^ |
---|
[ec392464] | 127 | |
---|
[abcac7a] | 128 | The volume fraction :math:`\phi` is related to :math:`Q^*` by |
---|
[094b9eb] | 129 | |
---|
| 130 | .. math:: |
---|
[0721c3d] | 131 | |
---|
[094b9eb] | 132 | \phi(1 - \phi) = \frac{Q^*}{2\pi^2(\Delta\rho)^2} \equiv A |
---|
[ec392464] | 133 | |
---|
[abcac7a] | 134 | where :math:`\Delta\rho` is the SLD contrast. |
---|
[ec392464] | 135 | |
---|
[094b9eb] | 136 | .. math:: |
---|
| 137 | |
---|
| 138 | \phi = \frac{1 \pm \sqrt{1 - 4A}}{2} |
---|
[ec392464] | 139 | |
---|
| 140 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 141 | |
---|
| 142 | Specific Surface Area |
---|
[a9dc4eb] | 143 | ^^^^^^^^^^^^^^^^^^^^^ |
---|
[ec392464] | 144 | |
---|
[abcac7a] | 145 | The specific surface area :math:`S_v` is related to :math:`Q^*` by |
---|
[094b9eb] | 146 | |
---|
| 147 | .. math:: |
---|
[ec392464] | 148 | |
---|
[094b9eb] | 149 | S_v = \frac{2\pi\phi(1-\phi)C_p}{Q^*} = \frac{2\pi A C_p}{Q^*} |
---|
[ec392464] | 150 | |
---|
[abcac7a] | 151 | where :math:`C_p` is the Porod constant. |
---|
[ec392464] | 152 | |
---|
| 153 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 154 | |
---|
[a9dc4eb] | 155 | Reference |
---|
| 156 | --------- |
---|
[ec392464] | 157 | |
---|
[0721c3d] | 158 | O. Glatter and O. Kratky |
---|
| 159 | Chapter 2 in *Small Angle X-Ray Scattering* |
---|
| 160 | Academic Press, New York, 1982 |
---|
[ec392464] | 161 | |
---|
[484141c] | 162 | http://web.archive.org/web/20110824105537/http://physchem.kfunigraz.ac.at/sm/Service/Glatter_Kratky_SAXS_1982.zip |
---|
[ec392464] | 163 | |
---|
[0721c3d] | 164 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
[ec392464] | 165 | |
---|
[a9dc4eb] | 166 | .. note:: This help document was last changed by Steve King, 01May2015 |
---|