source: sasview/src/sas/pr/invertor.py @ 8d302cd

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 8d302cd was 5a7d933, checked in by Doucet, Mathieu <doucetm@…>, 10 years ago

The way the Invertor interacts with its C component should be cleaned up

  • Property mode set to 100644
File size: 25.1 KB
Line 
1# pylint: disable=invalid-name
2"""
3Module to perform P(r) inversion.
4The module contains the Invertor class.
5
6FIXME: The way the Invertor interacts with its C component should be cleaned up
7"""
8
9import numpy
10import sys
11import math
12import time
13import copy
14import os
15import re
16import logging
17from numpy.linalg import lstsq
18from scipy import optimize
19from sas.pr.core.pr_inversion import Cinvertor
20
21def help():
22    """
23    Provide general online help text
24    Future work: extend this function to allow topic selection
25    """
26    info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. "
27    info_txt += "(1980) 13, 168-175.\n\n"
28    info_txt += "P(r) is set to be equal to an expansion of base functions "
29    info_txt += "of the type "
30    info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each "
31    info_txt += "base functions "
32    info_txt += "in the expansion is found by performing a least square fit "
33    info_txt += "with the "
34    info_txt += "following fit function:\n\n"
35    info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +"
36    info_txt += "Reg_term\n\n"
37    info_txt += "where I_meas(q) is the measured scattering intensity and "
38    info_txt += "I_th(q) is "
39    info_txt += "the prediction from the Fourier transform of the P(r) "
40    info_txt += "expansion. "
41    info_txt += "The Reg_term term is a regularization term set to the second"
42    info_txt += " derivative "
43    info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce "
44    info_txt += "a smooth P(r) output.\n\n"
45    info_txt += "The following are user inputs:\n\n"
46    info_txt += "   - Number of terms: the number of base functions in the P(r)"
47    info_txt += " expansion.\n\n"
48    info_txt += "   - Regularization constant: a multiplicative constant "
49    info_txt += "to set the size of "
50    info_txt += "the regularization term.\n\n"
51    info_txt += "   - Maximum distance: the maximum distance between any "
52    info_txt += "two points in the system.\n"
53
54    return info_txt
55
56
57class Invertor(Cinvertor):
58    """
59    Invertor class to perform P(r) inversion
60
61    The problem is solved by posing the problem as  Ax = b,
62    where x is the set of coefficients we are looking for.
63
64    Npts is the number of points.
65
66    In the following i refers to the ith base function coefficient.
67    The matrix has its entries j in its first Npts rows set to ::
68
69        A[j][i] = (Fourier transformed base function for point j)
70
71    We them choose a number of r-points, n_r, to evaluate the second
72    derivative of P(r) at. This is used as our regularization term.
73    For a vector r of length n_r, the following n_r rows are set to ::
74
75        A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
76        evaluated at r[j])
77
78    The vector b has its first Npts entries set to ::
79
80        b[j] = (I(q) observed for point j)
81
82    The following n_r entries are set to zero.
83
84    The result is found by using scipy.linalg.basic.lstsq to invert
85    the matrix and find the coefficients x.
86
87    Methods inherited from Cinvertor:
88
89    * ``get_peaks(pars)``: returns the number of P(r) peaks
90    * ``oscillations(pars)``: returns the oscillation parameters for the output P(r)
91    * ``get_positive(pars)``: returns the fraction of P(r) that is above zero
92    * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero
93    """
94    ## Chisqr of the last computation
95    chi2 = 0
96    ## Time elapsed for last computation
97    elapsed = 0
98    ## Alpha to get the reg term the same size as the signal
99    suggested_alpha = 0
100    ## Last number of base functions used
101    nfunc = 10
102    ## Last output values
103    out = None
104    ## Last errors on output values
105    cov = None
106    ## Background value
107    background = 0
108    ## Information dictionary for application use
109    info = {}
110
111    def __init__(self):
112        Cinvertor.__init__(self)
113
114    def __setstate__(self, state):
115        """
116        restore the state of invertor for pickle
117        """
118        (self.__dict__, self.alpha, self.d_max,
119         self.q_min, self.q_max,
120         self.x, self.y,
121         self.err, self.has_bck,
122         self.slit_height, self.slit_width) = state
123
124    def __reduce_ex__(self, proto):
125        """
126        Overwrite the __reduce_ex__
127        """
128
129        state = (self.__dict__,
130                 self.alpha, self.d_max,
131                 self.q_min, self.q_max,
132                 self.x, self.y,
133                 self.err, self.has_bck,
134                 self.slit_height, self.slit_width,
135                )
136        return (Invertor, tuple(), state, None, None)
137
138    def __setattr__(self, name, value):
139        """
140        Set the value of an attribute.
141        Access the parent class methods for
142        x, y, err, d_max, q_min, q_max and alpha
143        """
144        if   name == 'x':
145            if 0.0 in value:
146                msg = "Invertor: one of your q-values is zero. "
147                msg += "Delete that entry before proceeding"
148                raise ValueError, msg
149            return self.set_x(value)
150        elif name == 'y':
151            return self.set_y(value)
152        elif name == 'err':
153            value2 = abs(value)
154            return self.set_err(value2)
155        elif name == 'd_max':
156            return self.set_dmax(value)
157        elif name == 'q_min':
158            if value == None:
159                return self.set_qmin(-1.0)
160            return self.set_qmin(value)
161        elif name == 'q_max':
162            if value == None:
163                return self.set_qmax(-1.0)
164            return self.set_qmax(value)
165        elif name == 'alpha':
166            return self.set_alpha(value)
167        elif name == 'slit_height':
168            return self.set_slit_height(value)
169        elif name == 'slit_width':
170            return self.set_slit_width(value)
171        elif name == 'has_bck':
172            if value == True:
173                return self.set_has_bck(1)
174            elif value == False:
175                return self.set_has_bck(0)
176            else:
177                raise ValueError, "Invertor: has_bck can only be True or False"
178
179        return Cinvertor.__setattr__(self, name, value)
180
181    def __getattr__(self, name):
182        """
183        Return the value of an attribute
184        """
185        #import numpy
186        if name == 'x':
187            out = numpy.ones(self.get_nx())
188            self.get_x(out)
189            return out
190        elif name == 'y':
191            out = numpy.ones(self.get_ny())
192            self.get_y(out)
193            return out
194        elif name == 'err':
195            out = numpy.ones(self.get_nerr())
196            self.get_err(out)
197            return out
198        elif name == 'd_max':
199            return self.get_dmax()
200        elif name == 'q_min':
201            qmin = self.get_qmin()
202            if qmin < 0:
203                return None
204            return qmin
205        elif name == 'q_max':
206            qmax = self.get_qmax()
207            if qmax < 0:
208                return None
209            return qmax
210        elif name == 'alpha':
211            return self.get_alpha()
212        elif name == 'slit_height':
213            return self.get_slit_height()
214        elif name == 'slit_width':
215            return self.get_slit_width()
216        elif name == 'has_bck':
217            value = self.get_has_bck()
218            if value == 1:
219                return True
220            else:
221                return False
222        elif name in self.__dict__:
223            return self.__dict__[name]
224        return None
225
226    def clone(self):
227        """
228        Return a clone of this instance
229        """
230        #import copy
231
232        invertor = Invertor()
233        invertor.chi2 = self.chi2
234        invertor.elapsed = self.elapsed
235        invertor.nfunc = self.nfunc
236        invertor.alpha = self.alpha
237        invertor.d_max = self.d_max
238        invertor.q_min = self.q_min
239        invertor.q_max = self.q_max
240
241        invertor.x = self.x
242        invertor.y = self.y
243        invertor.err = self.err
244        invertor.has_bck = self.has_bck
245        invertor.slit_height = self.slit_height
246        invertor.slit_width = self.slit_width
247
248        invertor.info = copy.deepcopy(self.info)
249
250        return invertor
251
252    def invert(self, nfunc=10, nr=20):
253        """
254        Perform inversion to P(r)
255
256        The problem is solved by posing the problem as  Ax = b,
257        where x is the set of coefficients we are looking for.
258
259        Npts is the number of points.
260
261        In the following i refers to the ith base function coefficient.
262        The matrix has its entries j in its first Npts rows set to ::
263
264            A[i][j] = (Fourier transformed base function for point j)
265
266        We them choose a number of r-points, n_r, to evaluate the second
267        derivative of P(r) at. This is used as our regularization term.
268        For a vector r of length n_r, the following n_r rows are set to ::
269
270            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j])
271
272        The vector b has its first Npts entries set to ::
273
274            b[j] = (I(q) observed for point j)
275
276        The following n_r entries are set to zero.
277
278        The result is found by using scipy.linalg.basic.lstsq to invert
279        the matrix and find the coefficients x.
280
281        :param nfunc: number of base functions to use.
282        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
283        :return: c_out, c_cov - the coefficients with covariance matrix
284        """
285        # Reset the background value before proceeding
286        self.background = 0.0
287        return self.lstsq(nfunc, nr=nr)
288
289    def iq(self, out, q):
290        """
291        Function to call to evaluate the scattering intensity
292
293        :param args: c-parameters, and q
294        :return: I(q)
295
296        """
297        return Cinvertor.iq(self, out, q) + self.background
298
299    def invert_optimize(self, nfunc=10, nr=20):
300        """
301        Slower version of the P(r) inversion that uses scipy.optimize.leastsq.
302
303        This probably produce more reliable results, but is much slower.
304        The minimization function is set to
305        sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term,
306        where the reg_term is given by Svergun: it is the integral of
307        the square of the first derivative
308        of P(r), d(P(r))/dr, integrated over the full range of r.
309
310        :param nfunc: number of base functions to use.
311        :param nr: number of r points to evaluate the 2nd derivative at
312            for the reg. term.
313
314        :return: c_out, c_cov - the coefficients with covariance matrix
315
316        """
317        self.nfunc = nfunc
318        # First, check that the current data is valid
319        if self.is_valid() <= 0:
320            msg = "Invertor.invert: Data array are of different length"
321            raise RuntimeError, msg
322
323        p = numpy.ones(nfunc)
324        t_0 = time.time()
325        out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1)
326
327        # Compute chi^2
328        res = self.residuals(out)
329        chisqr = 0
330        for i in range(len(res)):
331            chisqr += res[i]
332
333        self.chi2 = chisqr
334
335        # Store computation time
336        self.elapsed = time.time() - t_0
337
338        if cov_x is None:
339            cov_x = numpy.ones([nfunc, nfunc])
340            cov_x *= math.fabs(chisqr)
341        return out, cov_x
342
343    def pr_fit(self, nfunc=5):
344        """
345        This is a direct fit to a given P(r). It assumes that the y data
346        is set to some P(r) distribution that we are trying to reproduce
347        with a set of base functions.
348
349        This method is provided as a test.
350        """
351        # First, check that the current data is valid
352        if self.is_valid() <= 0:
353            msg = "Invertor.invert: Data arrays are of different length"
354            raise RuntimeError, msg
355
356        p = numpy.ones(nfunc)
357        t_0 = time.time()
358        out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1)
359
360        # Compute chi^2
361        res = self.pr_residuals(out)
362        chisqr = 0
363        for i in range(len(res)):
364            chisqr += res[i]
365
366        self.chisqr = chisqr
367
368        # Store computation time
369        self.elapsed = time.time() - t_0
370
371        return out, cov_x
372
373    def pr_err(self, c, c_cov, r):
374        """
375        Returns the value of P(r) for a given r, and base function
376        coefficients, with error.
377
378        :param c: base function coefficients
379        :param c_cov: covariance matrice of the base function coefficients
380        :param r: r-value to evaluate P(r) at
381
382        :return: P(r)
383
384        """
385        return self.get_pr_err(c, c_cov, r)
386
387    def _accept_q(self, q):
388        """
389        Check q-value against user-defined range
390        """
391        if not self.q_min == None and q < self.q_min:
392            return False
393        if not self.q_max == None and q > self.q_max:
394            return False
395        return True
396
397    def lstsq(self, nfunc=5, nr=20):
398        """
399        The problem is solved by posing the problem as  Ax = b,
400        where x is the set of coefficients we are looking for.
401
402        Npts is the number of points.
403
404        In the following i refers to the ith base function coefficient.
405        The matrix has its entries j in its first Npts rows set to ::
406
407            A[i][j] = (Fourier transformed base function for point j)
408
409        We them choose a number of r-points, n_r, to evaluate the second
410        derivative of P(r) at. This is used as our regularization term.
411        For a vector r of length n_r, the following n_r rows are set to ::
412
413            A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2,
414            evaluated at r[j])
415
416        The vector b has its first Npts entries set to ::
417
418            b[j] = (I(q) observed for point j)
419
420        The following n_r entries are set to zero.
421
422        The result is found by using scipy.linalg.basic.lstsq to invert
423        the matrix and find the coefficients x.
424
425        :param nfunc: number of base functions to use.
426        :param nr: number of r points to evaluate the 2nd derivative at for the reg. term.
427
428        If the result does not allow us to compute the covariance matrix,
429        a matrix filled with zeros will be returned.
430
431        """
432        # Note: To make sure an array is contiguous:
433        # blah = numpy.ascontiguousarray(blah_original)
434        # ... before passing it to C
435
436        if self.is_valid() < 0:
437            msg = "Invertor: invalid data; incompatible data lengths."
438            raise RuntimeError, msg
439
440        self.nfunc = nfunc
441        # a -- An M x N matrix.
442        # b -- An M x nrhs matrix or M vector.
443        npts = len(self.x)
444        nq = nr
445        sqrt_alpha = math.sqrt(math.fabs(self.alpha))
446        if sqrt_alpha < 0.0:
447            nq = 0
448
449        # If we need to fit the background, add a term
450        if self.has_bck == True:
451            nfunc_0 = nfunc
452            nfunc += 1
453
454        a = numpy.zeros([npts + nq, nfunc])
455        b = numpy.zeros(npts + nq)
456        err = numpy.zeros([nfunc, nfunc])
457
458        # Construct the a matrix and b vector that represent the problem
459        t_0 = time.time()
460        try:
461            self._get_matrix(nfunc, nq, a, b)
462        except:
463            raise RuntimeError, "Invertor: could not invert I(Q)\n  %s" % sys.exc_value
464
465        # Perform the inversion (least square fit)
466        c, chi2, _, _ = lstsq(a, b)
467        # Sanity check
468        try:
469            float(chi2)
470        except:
471            chi2 = -1.0
472        self.chi2 = chi2
473
474        inv_cov = numpy.zeros([nfunc, nfunc])
475        # Get the covariance matrix, defined as inv_cov = a_transposed * a
476        self._get_invcov_matrix(nfunc, nr, a, inv_cov)
477
478        # Compute the reg term size for the output
479        sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a)
480
481        if math.fabs(self.alpha) > 0:
482            new_alpha = sum_sig / (sum_reg / self.alpha)
483        else:
484            new_alpha = 0.0
485        self.suggested_alpha = new_alpha
486
487        try:
488            cov = numpy.linalg.pinv(inv_cov)
489            err = math.fabs(chi2 / float(npts - nfunc)) * cov
490        except:
491            # We were not able to estimate the errors
492            # Return an empty error matrix
493            logging.error(sys.exc_value)
494
495        # Keep a copy of the last output
496        if self.has_bck == False:
497            self.background = 0
498            self.out = c
499            self.cov = err
500        else:
501            self.background = c[0]
502
503            err_0 = numpy.zeros([nfunc, nfunc])
504            c_0 = numpy.zeros(nfunc)
505
506            for i in range(nfunc_0):
507                c_0[i] = c[i + 1]
508                for j in range(nfunc_0):
509                    err_0[i][j] = err[i + 1][j + 1]
510
511            self.out = c_0
512            self.cov = err_0
513
514        # Store computation time
515        self.elapsed = time.time() - t_0
516
517        return self.out, self.cov
518
519    def estimate_numterms(self, isquit_func=None):
520        """
521        Returns a reasonable guess for the
522        number of terms
523
524        :param isquit_func:
525          reference to thread function to call to check whether the computation needs to
526          be stopped.
527
528        :return: number of terms, alpha, message
529
530        """
531        from num_term import NTermEstimator
532        estimator = NTermEstimator(self.clone())
533        try:
534            return estimator.num_terms(isquit_func)
535        except:
536            # If we fail, estimate alpha and return the default
537            # number of terms
538            best_alpha, _, _ = self.estimate_alpha(self.nfunc)
539            return self.nfunc, best_alpha, "Could not estimate number of terms"
540
541    def estimate_alpha(self, nfunc):
542        """
543        Returns a reasonable guess for the
544        regularization constant alpha
545
546        :param nfunc: number of terms to use in the expansion.
547
548        :return: alpha, message, elapsed
549
550        where alpha is the estimate for alpha,
551        message is a message for the user,
552        elapsed is the computation time
553        """
554        #import time
555        try:
556            pr = self.clone()
557
558            # T_0 for computation time
559            starttime = time.time()
560            elapsed = 0
561
562            # If the current alpha is zero, try
563            # another value
564            if pr.alpha <= 0:
565                pr.alpha = 0.0001
566
567            # Perform inversion to find the largest alpha
568            out, _ = pr.invert(nfunc)
569            elapsed = time.time() - starttime
570            initial_alpha = pr.alpha
571            initial_peaks = pr.get_peaks(out)
572
573            # Try the inversion with the estimated alpha
574            pr.alpha = pr.suggested_alpha
575            out, _ = pr.invert(nfunc)
576
577            npeaks = pr.get_peaks(out)
578            # if more than one peak to start with
579            # just return the estimate
580            if npeaks > 1:
581                #message = "Your P(r) is not smooth,
582                #please check your inversion parameters"
583                message = None
584                return pr.suggested_alpha, message, elapsed
585            else:
586
587                # Look at smaller values
588                # We assume that for the suggested alpha, we have 1 peak
589                # if not, send a message to change parameters
590                alpha = pr.suggested_alpha
591                best_alpha = pr.suggested_alpha
592                found = False
593                for i in range(10):
594                    pr.alpha = (0.33) ** (i + 1) * alpha
595                    out, _ = pr.invert(nfunc)
596
597                    peaks = pr.get_peaks(out)
598                    if peaks > 1:
599                        found = True
600                        break
601                    best_alpha = pr.alpha
602
603                # If we didn't find a turning point for alpha and
604                # the initial alpha already had only one peak,
605                # just return that
606                if not found and initial_peaks == 1 and \
607                    initial_alpha < best_alpha:
608                    best_alpha = initial_alpha
609
610                # Check whether the size makes sense
611                message = ''
612
613                if not found:
614                    message = None
615                elif best_alpha >= 0.5 * pr.suggested_alpha:
616                    # best alpha is too big, return a
617                    # reasonable value
618                    message = "The estimated alpha for your system is too "
619                    message += "large. "
620                    message += "Try increasing your maximum distance."
621
622                return best_alpha, message, elapsed
623
624        except:
625            message = "Invertor.estimate_alpha: %s" % sys.exc_value
626            return 0, message, elapsed
627
628    def to_file(self, path, npts=100):
629        """
630        Save the state to a file that will be readable
631        by SliceView.
632
633        :param path: path of the file to write
634        :param npts: number of P(r) points to be written
635
636        """
637        file = open(path, 'w')
638        file.write("#d_max=%g\n" % self.d_max)
639        file.write("#nfunc=%g\n" % self.nfunc)
640        file.write("#alpha=%g\n" % self.alpha)
641        file.write("#chi2=%g\n" % self.chi2)
642        file.write("#elapsed=%g\n" % self.elapsed)
643        file.write("#qmin=%s\n" % str(self.q_min))
644        file.write("#qmax=%s\n" % str(self.q_max))
645        file.write("#slit_height=%g\n" % self.slit_height)
646        file.write("#slit_width=%g\n" % self.slit_width)
647        file.write("#background=%g\n" % self.background)
648        if self.has_bck == True:
649            file.write("#has_bck=1\n")
650        else:
651            file.write("#has_bck=0\n")
652        file.write("#alpha_estimate=%g\n" % self.suggested_alpha)
653        if not self.out == None:
654            if len(self.out) == len(self.cov):
655                for i in range(len(self.out)):
656                    file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]),
657                                                   str(self.cov[i][i])))
658        file.write("<r>  <Pr>  <dPr>\n")
659        r = numpy.arange(0.0, self.d_max, self.d_max / npts)
660
661        for r_i in r:
662            (value, err) = self.pr_err(self.out, self.cov, r_i)
663            file.write("%g  %g  %g\n" % (r_i, value, err))
664
665        file.close()
666
667    def from_file(self, path):
668        """
669        Load the state of the Invertor from a file,
670        to be able to generate P(r) from a set of
671        parameters.
672
673        :param path: path of the file to load
674
675        """
676        #import os
677        #import re
678        if os.path.isfile(path):
679            try:
680                fd = open(path, 'r')
681
682                buff = fd.read()
683                lines = buff.split('\n')
684                for line in lines:
685                    if line.startswith('#d_max='):
686                        toks = line.split('=')
687                        self.d_max = float(toks[1])
688                    elif line.startswith('#nfunc='):
689                        toks = line.split('=')
690                        self.nfunc = int(toks[1])
691                        self.out = numpy.zeros(self.nfunc)
692                        self.cov = numpy.zeros([self.nfunc, self.nfunc])
693                    elif line.startswith('#alpha='):
694                        toks = line.split('=')
695                        self.alpha = float(toks[1])
696                    elif line.startswith('#chi2='):
697                        toks = line.split('=')
698                        self.chi2 = float(toks[1])
699                    elif line.startswith('#elapsed='):
700                        toks = line.split('=')
701                        self.elapsed = float(toks[1])
702                    elif line.startswith('#alpha_estimate='):
703                        toks = line.split('=')
704                        self.suggested_alpha = float(toks[1])
705                    elif line.startswith('#qmin='):
706                        toks = line.split('=')
707                        try:
708                            self.q_min = float(toks[1])
709                        except:
710                            self.q_min = None
711                    elif line.startswith('#qmax='):
712                        toks = line.split('=')
713                        try:
714                            self.q_max = float(toks[1])
715                        except:
716                            self.q_max = None
717                    elif line.startswith('#slit_height='):
718                        toks = line.split('=')
719                        self.slit_height = float(toks[1])
720                    elif line.startswith('#slit_width='):
721                        toks = line.split('=')
722                        self.slit_width = float(toks[1])
723                    elif line.startswith('#background='):
724                        toks = line.split('=')
725                        self.background = float(toks[1])
726                    elif line.startswith('#has_bck='):
727                        toks = line.split('=')
728                        if int(toks[1]) == 1:
729                            self.has_bck = True
730                        else:
731                            self.has_bck = False
732
733                    # Now read in the parameters
734                    elif line.startswith('#C_'):
735                        toks = line.split('=')
736                        p = re.compile('#C_([0-9]+)')
737                        m = p.search(toks[0])
738                        toks2 = toks[1].split('+-')
739                        i = int(m.group(1))
740                        self.out[i] = float(toks2[0])
741
742                        self.cov[i][i] = float(toks2[1])
743
744            except:
745                msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value
746                raise RuntimeError, msg
747        else:
748            msg = "Invertor.from_file: '%s' is not a file" % str(path)
749            raise RuntimeError, msg
Note: See TracBrowser for help on using the repository browser.