[3350ad6] | 1 | # pylint: disable=invalid-name |
---|
[51f14603] | 2 | """ |
---|
| 3 | Module to perform P(r) inversion. |
---|
| 4 | The module contains the Invertor class. |
---|
[bc3e38c] | 5 | |
---|
| 6 | FIXME: The way the Invertor interacts with its C component should be cleaned up |
---|
[51f14603] | 7 | """ |
---|
| 8 | |
---|
| 9 | import numpy |
---|
| 10 | import sys |
---|
| 11 | import math |
---|
| 12 | import time |
---|
| 13 | import copy |
---|
| 14 | import os |
---|
| 15 | import re |
---|
[3350ad6] | 16 | import logging |
---|
[51f14603] | 17 | from numpy.linalg import lstsq |
---|
| 18 | from scipy import optimize |
---|
[79492222] | 19 | from sas.pr.core.pr_inversion import Cinvertor |
---|
[51f14603] | 20 | |
---|
| 21 | def help(): |
---|
| 22 | """ |
---|
| 23 | Provide general online help text |
---|
| 24 | Future work: extend this function to allow topic selection |
---|
| 25 | """ |
---|
[3350ad6] | 26 | info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. " |
---|
[51f14603] | 27 | info_txt += "(1980) 13, 168-175.\n\n" |
---|
| 28 | info_txt += "P(r) is set to be equal to an expansion of base functions " |
---|
| 29 | info_txt += "of the type " |
---|
| 30 | info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each " |
---|
| 31 | info_txt += "base functions " |
---|
| 32 | info_txt += "in the expansion is found by performing a least square fit " |
---|
| 33 | info_txt += "with the " |
---|
| 34 | info_txt += "following fit function:\n\n" |
---|
| 35 | info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 +" |
---|
| 36 | info_txt += "Reg_term\n\n" |
---|
| 37 | info_txt += "where I_meas(q) is the measured scattering intensity and " |
---|
| 38 | info_txt += "I_th(q) is " |
---|
| 39 | info_txt += "the prediction from the Fourier transform of the P(r) " |
---|
| 40 | info_txt += "expansion. " |
---|
| 41 | info_txt += "The Reg_term term is a regularization term set to the second" |
---|
| 42 | info_txt += " derivative " |
---|
| 43 | info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce " |
---|
| 44 | info_txt += "a smooth P(r) output.\n\n" |
---|
| 45 | info_txt += "The following are user inputs:\n\n" |
---|
| 46 | info_txt += " - Number of terms: the number of base functions in the P(r)" |
---|
| 47 | info_txt += " expansion.\n\n" |
---|
| 48 | info_txt += " - Regularization constant: a multiplicative constant " |
---|
| 49 | info_txt += "to set the size of " |
---|
| 50 | info_txt += "the regularization term.\n\n" |
---|
| 51 | info_txt += " - Maximum distance: the maximum distance between any " |
---|
| 52 | info_txt += "two points in the system.\n" |
---|
[3350ad6] | 53 | |
---|
[51f14603] | 54 | return info_txt |
---|
[3350ad6] | 55 | |
---|
[51f14603] | 56 | |
---|
| 57 | class Invertor(Cinvertor): |
---|
| 58 | """ |
---|
| 59 | Invertor class to perform P(r) inversion |
---|
[3350ad6] | 60 | |
---|
[51f14603] | 61 | The problem is solved by posing the problem as Ax = b, |
---|
| 62 | where x is the set of coefficients we are looking for. |
---|
[3350ad6] | 63 | |
---|
[51f14603] | 64 | Npts is the number of points. |
---|
[3350ad6] | 65 | |
---|
[51f14603] | 66 | In the following i refers to the ith base function coefficient. |
---|
| 67 | The matrix has its entries j in its first Npts rows set to :: |
---|
| 68 | |
---|
| 69 | A[j][i] = (Fourier transformed base function for point j) |
---|
[3350ad6] | 70 | |
---|
[51f14603] | 71 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 72 | derivative of P(r) at. This is used as our regularization term. |
---|
| 73 | For a vector r of length n_r, the following n_r rows are set to :: |
---|
| 74 | |
---|
| 75 | A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, |
---|
| 76 | evaluated at r[j]) |
---|
[3350ad6] | 77 | |
---|
[51f14603] | 78 | The vector b has its first Npts entries set to :: |
---|
| 79 | |
---|
| 80 | b[j] = (I(q) observed for point j) |
---|
[3350ad6] | 81 | |
---|
[51f14603] | 82 | The following n_r entries are set to zero. |
---|
[3350ad6] | 83 | |
---|
[51f14603] | 84 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 85 | the matrix and find the coefficients x. |
---|
[3350ad6] | 86 | |
---|
[51f14603] | 87 | Methods inherited from Cinvertor: |
---|
| 88 | |
---|
| 89 | * ``get_peaks(pars)``: returns the number of P(r) peaks |
---|
| 90 | * ``oscillations(pars)``: returns the oscillation parameters for the output P(r) |
---|
| 91 | * ``get_positive(pars)``: returns the fraction of P(r) that is above zero |
---|
| 92 | * ``get_pos_err(pars)``: returns the fraction of P(r) that is 1-sigma above zero |
---|
| 93 | """ |
---|
| 94 | ## Chisqr of the last computation |
---|
[3350ad6] | 95 | chi2 = 0 |
---|
[51f14603] | 96 | ## Time elapsed for last computation |
---|
| 97 | elapsed = 0 |
---|
| 98 | ## Alpha to get the reg term the same size as the signal |
---|
| 99 | suggested_alpha = 0 |
---|
| 100 | ## Last number of base functions used |
---|
| 101 | nfunc = 10 |
---|
| 102 | ## Last output values |
---|
| 103 | out = None |
---|
| 104 | ## Last errors on output values |
---|
| 105 | cov = None |
---|
| 106 | ## Background value |
---|
| 107 | background = 0 |
---|
| 108 | ## Information dictionary for application use |
---|
| 109 | info = {} |
---|
[3350ad6] | 110 | |
---|
[51f14603] | 111 | def __init__(self): |
---|
| 112 | Cinvertor.__init__(self) |
---|
[3350ad6] | 113 | |
---|
[51f14603] | 114 | def __setstate__(self, state): |
---|
| 115 | """ |
---|
| 116 | restore the state of invertor for pickle |
---|
| 117 | """ |
---|
| 118 | (self.__dict__, self.alpha, self.d_max, |
---|
| 119 | self.q_min, self.q_max, |
---|
| 120 | self.x, self.y, |
---|
| 121 | self.err, self.has_bck, |
---|
| 122 | self.slit_height, self.slit_width) = state |
---|
[3350ad6] | 123 | |
---|
[51f14603] | 124 | def __reduce_ex__(self, proto): |
---|
| 125 | """ |
---|
| 126 | Overwrite the __reduce_ex__ |
---|
| 127 | """ |
---|
| 128 | |
---|
| 129 | state = (self.__dict__, |
---|
| 130 | self.alpha, self.d_max, |
---|
| 131 | self.q_min, self.q_max, |
---|
| 132 | self.x, self.y, |
---|
| 133 | self.err, self.has_bck, |
---|
| 134 | self.slit_height, self.slit_width, |
---|
[3350ad6] | 135 | ) |
---|
[51f14603] | 136 | return (Invertor, tuple(), state, None, None) |
---|
[3350ad6] | 137 | |
---|
[51f14603] | 138 | def __setattr__(self, name, value): |
---|
| 139 | """ |
---|
| 140 | Set the value of an attribute. |
---|
| 141 | Access the parent class methods for |
---|
| 142 | x, y, err, d_max, q_min, q_max and alpha |
---|
| 143 | """ |
---|
| 144 | if name == 'x': |
---|
| 145 | if 0.0 in value: |
---|
| 146 | msg = "Invertor: one of your q-values is zero. " |
---|
| 147 | msg += "Delete that entry before proceeding" |
---|
| 148 | raise ValueError, msg |
---|
| 149 | return self.set_x(value) |
---|
| 150 | elif name == 'y': |
---|
| 151 | return self.set_y(value) |
---|
| 152 | elif name == 'err': |
---|
| 153 | value2 = abs(value) |
---|
| 154 | return self.set_err(value2) |
---|
| 155 | elif name == 'd_max': |
---|
| 156 | return self.set_dmax(value) |
---|
| 157 | elif name == 'q_min': |
---|
| 158 | if value == None: |
---|
| 159 | return self.set_qmin(-1.0) |
---|
| 160 | return self.set_qmin(value) |
---|
| 161 | elif name == 'q_max': |
---|
| 162 | if value == None: |
---|
| 163 | return self.set_qmax(-1.0) |
---|
| 164 | return self.set_qmax(value) |
---|
| 165 | elif name == 'alpha': |
---|
| 166 | return self.set_alpha(value) |
---|
| 167 | elif name == 'slit_height': |
---|
| 168 | return self.set_slit_height(value) |
---|
| 169 | elif name == 'slit_width': |
---|
| 170 | return self.set_slit_width(value) |
---|
| 171 | elif name == 'has_bck': |
---|
| 172 | if value == True: |
---|
| 173 | return self.set_has_bck(1) |
---|
| 174 | elif value == False: |
---|
| 175 | return self.set_has_bck(0) |
---|
| 176 | else: |
---|
| 177 | raise ValueError, "Invertor: has_bck can only be True or False" |
---|
[3350ad6] | 178 | |
---|
[51f14603] | 179 | return Cinvertor.__setattr__(self, name, value) |
---|
[3350ad6] | 180 | |
---|
[51f14603] | 181 | def __getattr__(self, name): |
---|
| 182 | """ |
---|
| 183 | Return the value of an attribute |
---|
| 184 | """ |
---|
| 185 | #import numpy |
---|
| 186 | if name == 'x': |
---|
| 187 | out = numpy.ones(self.get_nx()) |
---|
| 188 | self.get_x(out) |
---|
| 189 | return out |
---|
| 190 | elif name == 'y': |
---|
| 191 | out = numpy.ones(self.get_ny()) |
---|
| 192 | self.get_y(out) |
---|
| 193 | return out |
---|
| 194 | elif name == 'err': |
---|
| 195 | out = numpy.ones(self.get_nerr()) |
---|
| 196 | self.get_err(out) |
---|
| 197 | return out |
---|
| 198 | elif name == 'd_max': |
---|
| 199 | return self.get_dmax() |
---|
| 200 | elif name == 'q_min': |
---|
| 201 | qmin = self.get_qmin() |
---|
| 202 | if qmin < 0: |
---|
| 203 | return None |
---|
| 204 | return qmin |
---|
| 205 | elif name == 'q_max': |
---|
| 206 | qmax = self.get_qmax() |
---|
| 207 | if qmax < 0: |
---|
| 208 | return None |
---|
| 209 | return qmax |
---|
| 210 | elif name == 'alpha': |
---|
| 211 | return self.get_alpha() |
---|
| 212 | elif name == 'slit_height': |
---|
| 213 | return self.get_slit_height() |
---|
| 214 | elif name == 'slit_width': |
---|
| 215 | return self.get_slit_width() |
---|
| 216 | elif name == 'has_bck': |
---|
| 217 | value = self.get_has_bck() |
---|
| 218 | if value == 1: |
---|
| 219 | return True |
---|
| 220 | else: |
---|
| 221 | return False |
---|
| 222 | elif name in self.__dict__: |
---|
| 223 | return self.__dict__[name] |
---|
| 224 | return None |
---|
[3350ad6] | 225 | |
---|
[51f14603] | 226 | def clone(self): |
---|
| 227 | """ |
---|
| 228 | Return a clone of this instance |
---|
| 229 | """ |
---|
| 230 | #import copy |
---|
[3350ad6] | 231 | |
---|
[51f14603] | 232 | invertor = Invertor() |
---|
[3350ad6] | 233 | invertor.chi2 = self.chi2 |
---|
[51f14603] | 234 | invertor.elapsed = self.elapsed |
---|
[3350ad6] | 235 | invertor.nfunc = self.nfunc |
---|
| 236 | invertor.alpha = self.alpha |
---|
| 237 | invertor.d_max = self.d_max |
---|
| 238 | invertor.q_min = self.q_min |
---|
| 239 | invertor.q_max = self.q_max |
---|
| 240 | |
---|
[51f14603] | 241 | invertor.x = self.x |
---|
| 242 | invertor.y = self.y |
---|
| 243 | invertor.err = self.err |
---|
| 244 | invertor.has_bck = self.has_bck |
---|
| 245 | invertor.slit_height = self.slit_height |
---|
| 246 | invertor.slit_width = self.slit_width |
---|
[3350ad6] | 247 | |
---|
[51f14603] | 248 | invertor.info = copy.deepcopy(self.info) |
---|
[3350ad6] | 249 | |
---|
[51f14603] | 250 | return invertor |
---|
[3350ad6] | 251 | |
---|
[51f14603] | 252 | def invert(self, nfunc=10, nr=20): |
---|
| 253 | """ |
---|
| 254 | Perform inversion to P(r) |
---|
[3350ad6] | 255 | |
---|
[51f14603] | 256 | The problem is solved by posing the problem as Ax = b, |
---|
| 257 | where x is the set of coefficients we are looking for. |
---|
[3350ad6] | 258 | |
---|
[51f14603] | 259 | Npts is the number of points. |
---|
[3350ad6] | 260 | |
---|
[51f14603] | 261 | In the following i refers to the ith base function coefficient. |
---|
| 262 | The matrix has its entries j in its first Npts rows set to :: |
---|
| 263 | |
---|
| 264 | A[i][j] = (Fourier transformed base function for point j) |
---|
[3350ad6] | 265 | |
---|
[51f14603] | 266 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 267 | derivative of P(r) at. This is used as our regularization term. |
---|
| 268 | For a vector r of length n_r, the following n_r rows are set to :: |
---|
| 269 | |
---|
| 270 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
[3350ad6] | 271 | |
---|
[51f14603] | 272 | The vector b has its first Npts entries set to :: |
---|
| 273 | |
---|
| 274 | b[j] = (I(q) observed for point j) |
---|
[3350ad6] | 275 | |
---|
[51f14603] | 276 | The following n_r entries are set to zero. |
---|
[3350ad6] | 277 | |
---|
[51f14603] | 278 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 279 | the matrix and find the coefficients x. |
---|
[3350ad6] | 280 | |
---|
[51f14603] | 281 | :param nfunc: number of base functions to use. |
---|
| 282 | :param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
| 283 | :return: c_out, c_cov - the coefficients with covariance matrix |
---|
| 284 | """ |
---|
| 285 | # Reset the background value before proceeding |
---|
| 286 | self.background = 0.0 |
---|
| 287 | return self.lstsq(nfunc, nr=nr) |
---|
[3350ad6] | 288 | |
---|
[51f14603] | 289 | def iq(self, out, q): |
---|
| 290 | """ |
---|
| 291 | Function to call to evaluate the scattering intensity |
---|
[3350ad6] | 292 | |
---|
[51f14603] | 293 | :param args: c-parameters, and q |
---|
| 294 | :return: I(q) |
---|
[3350ad6] | 295 | |
---|
[51f14603] | 296 | """ |
---|
| 297 | return Cinvertor.iq(self, out, q) + self.background |
---|
[3350ad6] | 298 | |
---|
[51f14603] | 299 | def invert_optimize(self, nfunc=10, nr=20): |
---|
| 300 | """ |
---|
| 301 | Slower version of the P(r) inversion that uses scipy.optimize.leastsq. |
---|
[3350ad6] | 302 | |
---|
[51f14603] | 303 | This probably produce more reliable results, but is much slower. |
---|
| 304 | The minimization function is set to |
---|
| 305 | sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term, |
---|
| 306 | where the reg_term is given by Svergun: it is the integral of |
---|
| 307 | the square of the first derivative |
---|
| 308 | of P(r), d(P(r))/dr, integrated over the full range of r. |
---|
[3350ad6] | 309 | |
---|
[51f14603] | 310 | :param nfunc: number of base functions to use. |
---|
| 311 | :param nr: number of r points to evaluate the 2nd derivative at |
---|
| 312 | for the reg. term. |
---|
[3350ad6] | 313 | |
---|
[51f14603] | 314 | :return: c_out, c_cov - the coefficients with covariance matrix |
---|
[3350ad6] | 315 | |
---|
[51f14603] | 316 | """ |
---|
| 317 | self.nfunc = nfunc |
---|
| 318 | # First, check that the current data is valid |
---|
| 319 | if self.is_valid() <= 0: |
---|
| 320 | msg = "Invertor.invert: Data array are of different length" |
---|
| 321 | raise RuntimeError, msg |
---|
[3350ad6] | 322 | |
---|
[51f14603] | 323 | p = numpy.ones(nfunc) |
---|
| 324 | t_0 = time.time() |
---|
[3350ad6] | 325 | out, cov_x, _, _, _ = optimize.leastsq(self.residuals, p, full_output=1) |
---|
| 326 | |
---|
[51f14603] | 327 | # Compute chi^2 |
---|
| 328 | res = self.residuals(out) |
---|
| 329 | chisqr = 0 |
---|
| 330 | for i in range(len(res)): |
---|
| 331 | chisqr += res[i] |
---|
[3350ad6] | 332 | |
---|
[51f14603] | 333 | self.chi2 = chisqr |
---|
| 334 | |
---|
| 335 | # Store computation time |
---|
| 336 | self.elapsed = time.time() - t_0 |
---|
[3350ad6] | 337 | |
---|
[51f14603] | 338 | if cov_x is None: |
---|
| 339 | cov_x = numpy.ones([nfunc, nfunc]) |
---|
| 340 | cov_x *= math.fabs(chisqr) |
---|
| 341 | return out, cov_x |
---|
[3350ad6] | 342 | |
---|
[51f14603] | 343 | def pr_fit(self, nfunc=5): |
---|
| 344 | """ |
---|
| 345 | This is a direct fit to a given P(r). It assumes that the y data |
---|
| 346 | is set to some P(r) distribution that we are trying to reproduce |
---|
| 347 | with a set of base functions. |
---|
[3350ad6] | 348 | |
---|
[51f14603] | 349 | This method is provided as a test. |
---|
| 350 | """ |
---|
| 351 | # First, check that the current data is valid |
---|
| 352 | if self.is_valid() <= 0: |
---|
| 353 | msg = "Invertor.invert: Data arrays are of different length" |
---|
| 354 | raise RuntimeError, msg |
---|
[3350ad6] | 355 | |
---|
[51f14603] | 356 | p = numpy.ones(nfunc) |
---|
| 357 | t_0 = time.time() |
---|
[3350ad6] | 358 | out, cov_x, _, _, _ = optimize.leastsq(self.pr_residuals, p, full_output=1) |
---|
| 359 | |
---|
[51f14603] | 360 | # Compute chi^2 |
---|
| 361 | res = self.pr_residuals(out) |
---|
| 362 | chisqr = 0 |
---|
| 363 | for i in range(len(res)): |
---|
| 364 | chisqr += res[i] |
---|
[3350ad6] | 365 | |
---|
[51f14603] | 366 | self.chisqr = chisqr |
---|
[3350ad6] | 367 | |
---|
[51f14603] | 368 | # Store computation time |
---|
| 369 | self.elapsed = time.time() - t_0 |
---|
| 370 | |
---|
| 371 | return out, cov_x |
---|
[3350ad6] | 372 | |
---|
[51f14603] | 373 | def pr_err(self, c, c_cov, r): |
---|
| 374 | """ |
---|
| 375 | Returns the value of P(r) for a given r, and base function |
---|
| 376 | coefficients, with error. |
---|
[3350ad6] | 377 | |
---|
[51f14603] | 378 | :param c: base function coefficients |
---|
| 379 | :param c_cov: covariance matrice of the base function coefficients |
---|
| 380 | :param r: r-value to evaluate P(r) at |
---|
[3350ad6] | 381 | |
---|
[51f14603] | 382 | :return: P(r) |
---|
[3350ad6] | 383 | |
---|
[51f14603] | 384 | """ |
---|
| 385 | return self.get_pr_err(c, c_cov, r) |
---|
[3350ad6] | 386 | |
---|
[51f14603] | 387 | def _accept_q(self, q): |
---|
| 388 | """ |
---|
| 389 | Check q-value against user-defined range |
---|
| 390 | """ |
---|
| 391 | if not self.q_min == None and q < self.q_min: |
---|
| 392 | return False |
---|
| 393 | if not self.q_max == None and q > self.q_max: |
---|
| 394 | return False |
---|
| 395 | return True |
---|
[3350ad6] | 396 | |
---|
[51f14603] | 397 | def lstsq(self, nfunc=5, nr=20): |
---|
| 398 | """ |
---|
| 399 | The problem is solved by posing the problem as Ax = b, |
---|
| 400 | where x is the set of coefficients we are looking for. |
---|
[3350ad6] | 401 | |
---|
[51f14603] | 402 | Npts is the number of points. |
---|
[3350ad6] | 403 | |
---|
[51f14603] | 404 | In the following i refers to the ith base function coefficient. |
---|
| 405 | The matrix has its entries j in its first Npts rows set to :: |
---|
| 406 | |
---|
| 407 | A[i][j] = (Fourier transformed base function for point j) |
---|
[3350ad6] | 408 | |
---|
[51f14603] | 409 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 410 | derivative of P(r) at. This is used as our regularization term. |
---|
| 411 | For a vector r of length n_r, the following n_r rows are set to :: |
---|
| 412 | |
---|
| 413 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, |
---|
| 414 | evaluated at r[j]) |
---|
[3350ad6] | 415 | |
---|
[51f14603] | 416 | The vector b has its first Npts entries set to :: |
---|
| 417 | |
---|
| 418 | b[j] = (I(q) observed for point j) |
---|
[3350ad6] | 419 | |
---|
[51f14603] | 420 | The following n_r entries are set to zero. |
---|
[3350ad6] | 421 | |
---|
[51f14603] | 422 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 423 | the matrix and find the coefficients x. |
---|
[3350ad6] | 424 | |
---|
[51f14603] | 425 | :param nfunc: number of base functions to use. |
---|
| 426 | :param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
| 427 | |
---|
| 428 | If the result does not allow us to compute the covariance matrix, |
---|
| 429 | a matrix filled with zeros will be returned. |
---|
| 430 | |
---|
| 431 | """ |
---|
| 432 | # Note: To make sure an array is contiguous: |
---|
| 433 | # blah = numpy.ascontiguousarray(blah_original) |
---|
| 434 | # ... before passing it to C |
---|
[3350ad6] | 435 | |
---|
[51f14603] | 436 | if self.is_valid() < 0: |
---|
| 437 | msg = "Invertor: invalid data; incompatible data lengths." |
---|
| 438 | raise RuntimeError, msg |
---|
[3350ad6] | 439 | |
---|
[51f14603] | 440 | self.nfunc = nfunc |
---|
| 441 | # a -- An M x N matrix. |
---|
| 442 | # b -- An M x nrhs matrix or M vector. |
---|
| 443 | npts = len(self.x) |
---|
[3350ad6] | 444 | nq = nr |
---|
[51f14603] | 445 | sqrt_alpha = math.sqrt(math.fabs(self.alpha)) |
---|
| 446 | if sqrt_alpha < 0.0: |
---|
| 447 | nq = 0 |
---|
| 448 | |
---|
| 449 | # If we need to fit the background, add a term |
---|
| 450 | if self.has_bck == True: |
---|
| 451 | nfunc_0 = nfunc |
---|
| 452 | nfunc += 1 |
---|
| 453 | |
---|
| 454 | a = numpy.zeros([npts + nq, nfunc]) |
---|
| 455 | b = numpy.zeros(npts + nq) |
---|
| 456 | err = numpy.zeros([nfunc, nfunc]) |
---|
[3350ad6] | 457 | |
---|
[51f14603] | 458 | # Construct the a matrix and b vector that represent the problem |
---|
| 459 | t_0 = time.time() |
---|
| 460 | try: |
---|
| 461 | self._get_matrix(nfunc, nq, a, b) |
---|
| 462 | except: |
---|
| 463 | raise RuntimeError, "Invertor: could not invert I(Q)\n %s" % sys.exc_value |
---|
[3350ad6] | 464 | |
---|
[51f14603] | 465 | # Perform the inversion (least square fit) |
---|
| 466 | c, chi2, _, _ = lstsq(a, b) |
---|
| 467 | # Sanity check |
---|
| 468 | try: |
---|
| 469 | float(chi2) |
---|
| 470 | except: |
---|
| 471 | chi2 = -1.0 |
---|
| 472 | self.chi2 = chi2 |
---|
[3350ad6] | 473 | |
---|
[51f14603] | 474 | inv_cov = numpy.zeros([nfunc, nfunc]) |
---|
| 475 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
| 476 | self._get_invcov_matrix(nfunc, nr, a, inv_cov) |
---|
[3350ad6] | 477 | |
---|
[51f14603] | 478 | # Compute the reg term size for the output |
---|
| 479 | sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a) |
---|
[3350ad6] | 480 | |
---|
[51f14603] | 481 | if math.fabs(self.alpha) > 0: |
---|
| 482 | new_alpha = sum_sig / (sum_reg / self.alpha) |
---|
| 483 | else: |
---|
| 484 | new_alpha = 0.0 |
---|
| 485 | self.suggested_alpha = new_alpha |
---|
[3350ad6] | 486 | |
---|
[51f14603] | 487 | try: |
---|
| 488 | cov = numpy.linalg.pinv(inv_cov) |
---|
| 489 | err = math.fabs(chi2 / float(npts - nfunc)) * cov |
---|
| 490 | except: |
---|
| 491 | # We were not able to estimate the errors |
---|
| 492 | # Return an empty error matrix |
---|
[3350ad6] | 493 | logging.error(sys.exc_value) |
---|
| 494 | |
---|
[51f14603] | 495 | # Keep a copy of the last output |
---|
| 496 | if self.has_bck == False: |
---|
| 497 | self.background = 0 |
---|
| 498 | self.out = c |
---|
| 499 | self.cov = err |
---|
| 500 | else: |
---|
| 501 | self.background = c[0] |
---|
[3350ad6] | 502 | |
---|
[51f14603] | 503 | err_0 = numpy.zeros([nfunc, nfunc]) |
---|
| 504 | c_0 = numpy.zeros(nfunc) |
---|
[3350ad6] | 505 | |
---|
[51f14603] | 506 | for i in range(nfunc_0): |
---|
[3350ad6] | 507 | c_0[i] = c[i + 1] |
---|
[51f14603] | 508 | for j in range(nfunc_0): |
---|
[3350ad6] | 509 | err_0[i][j] = err[i + 1][j + 1] |
---|
| 510 | |
---|
[51f14603] | 511 | self.out = c_0 |
---|
| 512 | self.cov = err_0 |
---|
[3350ad6] | 513 | |
---|
[51f14603] | 514 | # Store computation time |
---|
| 515 | self.elapsed = time.time() - t_0 |
---|
[3350ad6] | 516 | |
---|
[51f14603] | 517 | return self.out, self.cov |
---|
[3350ad6] | 518 | |
---|
[51f14603] | 519 | def estimate_numterms(self, isquit_func=None): |
---|
| 520 | """ |
---|
| 521 | Returns a reasonable guess for the |
---|
| 522 | number of terms |
---|
[3350ad6] | 523 | |
---|
[51f14603] | 524 | :param isquit_func: |
---|
| 525 | reference to thread function to call to check whether the computation needs to |
---|
| 526 | be stopped. |
---|
[3350ad6] | 527 | |
---|
[51f14603] | 528 | :return: number of terms, alpha, message |
---|
[3350ad6] | 529 | |
---|
[51f14603] | 530 | """ |
---|
[5f8fc78] | 531 | from num_term import NTermEstimator |
---|
| 532 | estimator = NTermEstimator(self.clone()) |
---|
[51f14603] | 533 | try: |
---|
| 534 | return estimator.num_terms(isquit_func) |
---|
| 535 | except: |
---|
| 536 | # If we fail, estimate alpha and return the default |
---|
| 537 | # number of terms |
---|
| 538 | best_alpha, _, _ = self.estimate_alpha(self.nfunc) |
---|
| 539 | return self.nfunc, best_alpha, "Could not estimate number of terms" |
---|
[3350ad6] | 540 | |
---|
[51f14603] | 541 | def estimate_alpha(self, nfunc): |
---|
| 542 | """ |
---|
| 543 | Returns a reasonable guess for the |
---|
| 544 | regularization constant alpha |
---|
[3350ad6] | 545 | |
---|
[51f14603] | 546 | :param nfunc: number of terms to use in the expansion. |
---|
[3350ad6] | 547 | |
---|
[51f14603] | 548 | :return: alpha, message, elapsed |
---|
[3350ad6] | 549 | |
---|
[51f14603] | 550 | where alpha is the estimate for alpha, |
---|
| 551 | message is a message for the user, |
---|
| 552 | elapsed is the computation time |
---|
| 553 | """ |
---|
| 554 | #import time |
---|
| 555 | try: |
---|
| 556 | pr = self.clone() |
---|
[3350ad6] | 557 | |
---|
[51f14603] | 558 | # T_0 for computation time |
---|
| 559 | starttime = time.time() |
---|
| 560 | elapsed = 0 |
---|
[3350ad6] | 561 | |
---|
[51f14603] | 562 | # If the current alpha is zero, try |
---|
| 563 | # another value |
---|
| 564 | if pr.alpha <= 0: |
---|
| 565 | pr.alpha = 0.0001 |
---|
[3350ad6] | 566 | |
---|
[51f14603] | 567 | # Perform inversion to find the largest alpha |
---|
| 568 | out, _ = pr.invert(nfunc) |
---|
| 569 | elapsed = time.time() - starttime |
---|
| 570 | initial_alpha = pr.alpha |
---|
| 571 | initial_peaks = pr.get_peaks(out) |
---|
[3350ad6] | 572 | |
---|
[51f14603] | 573 | # Try the inversion with the estimated alpha |
---|
| 574 | pr.alpha = pr.suggested_alpha |
---|
| 575 | out, _ = pr.invert(nfunc) |
---|
[3350ad6] | 576 | |
---|
[51f14603] | 577 | npeaks = pr.get_peaks(out) |
---|
| 578 | # if more than one peak to start with |
---|
| 579 | # just return the estimate |
---|
| 580 | if npeaks > 1: |
---|
| 581 | #message = "Your P(r) is not smooth, |
---|
| 582 | #please check your inversion parameters" |
---|
| 583 | message = None |
---|
| 584 | return pr.suggested_alpha, message, elapsed |
---|
| 585 | else: |
---|
[3350ad6] | 586 | |
---|
[51f14603] | 587 | # Look at smaller values |
---|
| 588 | # We assume that for the suggested alpha, we have 1 peak |
---|
| 589 | # if not, send a message to change parameters |
---|
| 590 | alpha = pr.suggested_alpha |
---|
| 591 | best_alpha = pr.suggested_alpha |
---|
| 592 | found = False |
---|
| 593 | for i in range(10): |
---|
[3350ad6] | 594 | pr.alpha = (0.33) ** (i + 1) * alpha |
---|
[51f14603] | 595 | out, _ = pr.invert(nfunc) |
---|
[3350ad6] | 596 | |
---|
[51f14603] | 597 | peaks = pr.get_peaks(out) |
---|
| 598 | if peaks > 1: |
---|
| 599 | found = True |
---|
| 600 | break |
---|
| 601 | best_alpha = pr.alpha |
---|
[3350ad6] | 602 | |
---|
[51f14603] | 603 | # If we didn't find a turning point for alpha and |
---|
| 604 | # the initial alpha already had only one peak, |
---|
| 605 | # just return that |
---|
| 606 | if not found and initial_peaks == 1 and \ |
---|
| 607 | initial_alpha < best_alpha: |
---|
| 608 | best_alpha = initial_alpha |
---|
[3350ad6] | 609 | |
---|
[51f14603] | 610 | # Check whether the size makes sense |
---|
| 611 | message = '' |
---|
[3350ad6] | 612 | |
---|
[51f14603] | 613 | if not found: |
---|
| 614 | message = None |
---|
| 615 | elif best_alpha >= 0.5 * pr.suggested_alpha: |
---|
| 616 | # best alpha is too big, return a |
---|
| 617 | # reasonable value |
---|
[3350ad6] | 618 | message = "The estimated alpha for your system is too " |
---|
[51f14603] | 619 | message += "large. " |
---|
| 620 | message += "Try increasing your maximum distance." |
---|
[3350ad6] | 621 | |
---|
[51f14603] | 622 | return best_alpha, message, elapsed |
---|
[3350ad6] | 623 | |
---|
[51f14603] | 624 | except: |
---|
| 625 | message = "Invertor.estimate_alpha: %s" % sys.exc_value |
---|
| 626 | return 0, message, elapsed |
---|
[3350ad6] | 627 | |
---|
[51f14603] | 628 | def to_file(self, path, npts=100): |
---|
| 629 | """ |
---|
| 630 | Save the state to a file that will be readable |
---|
| 631 | by SliceView. |
---|
[3350ad6] | 632 | |
---|
[51f14603] | 633 | :param path: path of the file to write |
---|
| 634 | :param npts: number of P(r) points to be written |
---|
[3350ad6] | 635 | |
---|
[51f14603] | 636 | """ |
---|
| 637 | file = open(path, 'w') |
---|
| 638 | file.write("#d_max=%g\n" % self.d_max) |
---|
| 639 | file.write("#nfunc=%g\n" % self.nfunc) |
---|
| 640 | file.write("#alpha=%g\n" % self.alpha) |
---|
| 641 | file.write("#chi2=%g\n" % self.chi2) |
---|
| 642 | file.write("#elapsed=%g\n" % self.elapsed) |
---|
| 643 | file.write("#qmin=%s\n" % str(self.q_min)) |
---|
| 644 | file.write("#qmax=%s\n" % str(self.q_max)) |
---|
| 645 | file.write("#slit_height=%g\n" % self.slit_height) |
---|
| 646 | file.write("#slit_width=%g\n" % self.slit_width) |
---|
| 647 | file.write("#background=%g\n" % self.background) |
---|
| 648 | if self.has_bck == True: |
---|
| 649 | file.write("#has_bck=1\n") |
---|
| 650 | else: |
---|
| 651 | file.write("#has_bck=0\n") |
---|
| 652 | file.write("#alpha_estimate=%g\n" % self.suggested_alpha) |
---|
| 653 | if not self.out == None: |
---|
| 654 | if len(self.out) == len(self.cov): |
---|
| 655 | for i in range(len(self.out)): |
---|
| 656 | file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]), |
---|
[3350ad6] | 657 | str(self.cov[i][i]))) |
---|
[51f14603] | 658 | file.write("<r> <Pr> <dPr>\n") |
---|
[3350ad6] | 659 | r = numpy.arange(0.0, self.d_max, self.d_max / npts) |
---|
| 660 | |
---|
[51f14603] | 661 | for r_i in r: |
---|
| 662 | (value, err) = self.pr_err(self.out, self.cov, r_i) |
---|
| 663 | file.write("%g %g %g\n" % (r_i, value, err)) |
---|
[3350ad6] | 664 | |
---|
[51f14603] | 665 | file.close() |
---|
[3350ad6] | 666 | |
---|
[51f14603] | 667 | def from_file(self, path): |
---|
| 668 | """ |
---|
| 669 | Load the state of the Invertor from a file, |
---|
| 670 | to be able to generate P(r) from a set of |
---|
| 671 | parameters. |
---|
[3350ad6] | 672 | |
---|
[51f14603] | 673 | :param path: path of the file to load |
---|
[3350ad6] | 674 | |
---|
[51f14603] | 675 | """ |
---|
| 676 | #import os |
---|
| 677 | #import re |
---|
| 678 | if os.path.isfile(path): |
---|
| 679 | try: |
---|
| 680 | fd = open(path, 'r') |
---|
[3350ad6] | 681 | |
---|
[51f14603] | 682 | buff = fd.read() |
---|
| 683 | lines = buff.split('\n') |
---|
| 684 | for line in lines: |
---|
| 685 | if line.startswith('#d_max='): |
---|
| 686 | toks = line.split('=') |
---|
| 687 | self.d_max = float(toks[1]) |
---|
| 688 | elif line.startswith('#nfunc='): |
---|
| 689 | toks = line.split('=') |
---|
| 690 | self.nfunc = int(toks[1]) |
---|
| 691 | self.out = numpy.zeros(self.nfunc) |
---|
| 692 | self.cov = numpy.zeros([self.nfunc, self.nfunc]) |
---|
| 693 | elif line.startswith('#alpha='): |
---|
| 694 | toks = line.split('=') |
---|
| 695 | self.alpha = float(toks[1]) |
---|
| 696 | elif line.startswith('#chi2='): |
---|
| 697 | toks = line.split('=') |
---|
| 698 | self.chi2 = float(toks[1]) |
---|
| 699 | elif line.startswith('#elapsed='): |
---|
| 700 | toks = line.split('=') |
---|
| 701 | self.elapsed = float(toks[1]) |
---|
| 702 | elif line.startswith('#alpha_estimate='): |
---|
| 703 | toks = line.split('=') |
---|
| 704 | self.suggested_alpha = float(toks[1]) |
---|
| 705 | elif line.startswith('#qmin='): |
---|
| 706 | toks = line.split('=') |
---|
| 707 | try: |
---|
| 708 | self.q_min = float(toks[1]) |
---|
| 709 | except: |
---|
| 710 | self.q_min = None |
---|
| 711 | elif line.startswith('#qmax='): |
---|
| 712 | toks = line.split('=') |
---|
| 713 | try: |
---|
| 714 | self.q_max = float(toks[1]) |
---|
| 715 | except: |
---|
| 716 | self.q_max = None |
---|
| 717 | elif line.startswith('#slit_height='): |
---|
| 718 | toks = line.split('=') |
---|
| 719 | self.slit_height = float(toks[1]) |
---|
| 720 | elif line.startswith('#slit_width='): |
---|
| 721 | toks = line.split('=') |
---|
| 722 | self.slit_width = float(toks[1]) |
---|
| 723 | elif line.startswith('#background='): |
---|
| 724 | toks = line.split('=') |
---|
| 725 | self.background = float(toks[1]) |
---|
| 726 | elif line.startswith('#has_bck='): |
---|
| 727 | toks = line.split('=') |
---|
| 728 | if int(toks[1]) == 1: |
---|
| 729 | self.has_bck = True |
---|
| 730 | else: |
---|
| 731 | self.has_bck = False |
---|
[3350ad6] | 732 | |
---|
[51f14603] | 733 | # Now read in the parameters |
---|
| 734 | elif line.startswith('#C_'): |
---|
| 735 | toks = line.split('=') |
---|
| 736 | p = re.compile('#C_([0-9]+)') |
---|
| 737 | m = p.search(toks[0]) |
---|
| 738 | toks2 = toks[1].split('+-') |
---|
| 739 | i = int(m.group(1)) |
---|
| 740 | self.out[i] = float(toks2[0]) |
---|
[3350ad6] | 741 | |
---|
[51f14603] | 742 | self.cov[i][i] = float(toks2[1]) |
---|
[3350ad6] | 743 | |
---|
[51f14603] | 744 | except: |
---|
| 745 | msg = "Invertor.from_file: corrupted file\n%s" % sys.exc_value |
---|
| 746 | raise RuntimeError, msg |
---|
| 747 | else: |
---|
| 748 | msg = "Invertor.from_file: '%s' is not a file" % str(path) |
---|
| 749 | raise RuntimeError, msg |
---|