1 | #include <math.h> |
---|
2 | #include "invertor.h" |
---|
3 | #include <memory.h> |
---|
4 | #include <stdio.h> |
---|
5 | #include <stdlib.h> |
---|
6 | |
---|
7 | double pi = 3.1416; |
---|
8 | |
---|
9 | /** |
---|
10 | * Deallocate memory |
---|
11 | */ |
---|
12 | void invertor_dealloc(Invertor_params *pars) { |
---|
13 | free(pars->x); |
---|
14 | free(pars->y); |
---|
15 | free(pars->err); |
---|
16 | } |
---|
17 | |
---|
18 | void invertor_init(Invertor_params *pars) { |
---|
19 | pars->d_max = 180; |
---|
20 | pars->q_min = -1.0; |
---|
21 | pars->q_max = -1.0; |
---|
22 | pars->has_bck = 0; |
---|
23 | } |
---|
24 | |
---|
25 | |
---|
26 | /** |
---|
27 | * P(r) of a sphere, for test purposes |
---|
28 | * |
---|
29 | * @param R: radius of the sphere |
---|
30 | * @param r: distance, in the same units as the radius |
---|
31 | * @return: P(r) |
---|
32 | */ |
---|
33 | double pr_sphere(double R, double r) { |
---|
34 | if (r <= 2.0*R) { |
---|
35 | return 12.0* pow(0.5*r/R, 2.0) * pow(1.0-0.5*r/R, 2.0) * ( 2.0 + 0.5*r/R ); |
---|
36 | } else { |
---|
37 | return 0.0; |
---|
38 | } |
---|
39 | } |
---|
40 | |
---|
41 | /** |
---|
42 | * Orthogonal functions: |
---|
43 | * B(r) = 2r sin(pi*nr/d) |
---|
44 | * |
---|
45 | */ |
---|
46 | double ortho(double d_max, int n, double r) { |
---|
47 | return 2.0*r*sin(pi*n*r/d_max); |
---|
48 | } |
---|
49 | |
---|
50 | /** |
---|
51 | * Fourier transform of the nth orthogonal function |
---|
52 | * |
---|
53 | */ |
---|
54 | double ortho_transformed(double d_max, int n, double q) { |
---|
55 | return 8.0*pow(pi, 2.0)/q * d_max * n * pow(-1.0, n+1) |
---|
56 | *sin(q*d_max) / ( pow(pi*n, 2.0) - pow(q*d_max, 2.0) ); |
---|
57 | } |
---|
58 | |
---|
59 | /** |
---|
60 | * Slit-smeared Fourier transform of the nth orthogonal function. |
---|
61 | * Smearing follows Lake, Acta Cryst. (1967) 23, 191. |
---|
62 | */ |
---|
63 | double ortho_transformed_smeared(double d_max, int n, double height, double width, double q, int npts) { |
---|
64 | double sum, y, z; |
---|
65 | int i, j, n_height, n_width; |
---|
66 | double count_w; |
---|
67 | double fnpts; |
---|
68 | sum = 0.0; |
---|
69 | fnpts = (float)npts-1.0; |
---|
70 | |
---|
71 | // Check for zero slit size |
---|
72 | n_height = (height>0) ? npts : 1; |
---|
73 | n_width = (width>0) ? npts : 1; |
---|
74 | |
---|
75 | count_w = 0.0; |
---|
76 | |
---|
77 | for(j=0; j<n_height; j++) { |
---|
78 | if(height>0){ |
---|
79 | z = height/fnpts*(float)j; |
---|
80 | } else { |
---|
81 | z = 0.0; |
---|
82 | } |
---|
83 | |
---|
84 | for(i=0; i<n_width; i++) { |
---|
85 | if(width>0){ |
---|
86 | y = -width/2.0+width/fnpts*(float)i; |
---|
87 | } else { |
---|
88 | y = 0.0; |
---|
89 | } |
---|
90 | if (((q-y)*(q-y)+z*z)<=0.0) continue; |
---|
91 | count_w += 1.0; |
---|
92 | sum += ortho_transformed(d_max, n, sqrt((q-y)*(q-y)+z*z)); |
---|
93 | } |
---|
94 | } |
---|
95 | return sum/count_w; |
---|
96 | } |
---|
97 | |
---|
98 | /** |
---|
99 | * First derivative in of the orthogonal function dB(r)/dr |
---|
100 | * |
---|
101 | */ |
---|
102 | double ortho_derived(double d_max, int n, double r) { |
---|
103 | return 2.0*sin(pi*n*r/d_max) + 2.0*r*cos(pi*n*r/d_max); |
---|
104 | } |
---|
105 | |
---|
106 | /** |
---|
107 | * Scattering intensity calculated from the expansion. |
---|
108 | */ |
---|
109 | double iq(double *pars, double d_max, int n_c, double q) { |
---|
110 | double sum = 0.0; |
---|
111 | int i; |
---|
112 | for (i=0; i<n_c; i++) { |
---|
113 | sum += pars[i] * ortho_transformed(d_max, i+1, q); |
---|
114 | } |
---|
115 | return sum; |
---|
116 | } |
---|
117 | |
---|
118 | /** |
---|
119 | * Scattering intensity calculated from the expansion, |
---|
120 | * slit-smeared. |
---|
121 | */ |
---|
122 | double iq_smeared(double *pars, double d_max, int n_c, double height, double width, double q, int npts) { |
---|
123 | double sum = 0.0; |
---|
124 | int i; |
---|
125 | for (i=0; i<n_c; i++) { |
---|
126 | sum += pars[i] * ortho_transformed_smeared(d_max, i+1, height, width, q, npts); |
---|
127 | } |
---|
128 | return sum; |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * P(r) calculated from the expansion. |
---|
133 | */ |
---|
134 | double pr(double *pars, double d_max, int n_c, double r) { |
---|
135 | double sum = 0.0; |
---|
136 | int i; |
---|
137 | for (i=0; i<n_c; i++) { |
---|
138 | sum += pars[i] * ortho(d_max, i+1, r); |
---|
139 | } |
---|
140 | return sum; |
---|
141 | } |
---|
142 | |
---|
143 | /** |
---|
144 | * P(r) calculated from the expansion, with errors |
---|
145 | */ |
---|
146 | void pr_err(double *pars, double *err, double d_max, int n_c, |
---|
147 | double r, double *pr_value, double *pr_value_err) { |
---|
148 | double sum = 0.0; |
---|
149 | double sum_err = 0.0; |
---|
150 | double func_value; |
---|
151 | int i; |
---|
152 | for (i=0; i<n_c; i++) { |
---|
153 | func_value = ortho(d_max, i+1, r); |
---|
154 | sum += pars[i] * func_value; |
---|
155 | //sum_err += err[i]*err[i]*func_value*func_value; |
---|
156 | sum_err += err[i*n_c+i]*func_value*func_value; |
---|
157 | } |
---|
158 | *pr_value = sum; |
---|
159 | if (sum_err>0) { |
---|
160 | *pr_value_err = sqrt(sum_err); |
---|
161 | } else { |
---|
162 | *pr_value_err = sum; |
---|
163 | } |
---|
164 | } |
---|
165 | |
---|
166 | /** |
---|
167 | * dP(r)/dr calculated from the expansion. |
---|
168 | */ |
---|
169 | double dprdr(double *pars, double d_max, int n_c, double r) { |
---|
170 | double sum = 0.0; |
---|
171 | int i; |
---|
172 | for (i=0; i<n_c; i++) { |
---|
173 | sum += pars[i] * 2.0*(sin(pi*(i+1)*r/d_max) + pi*(i+1)*r/d_max * cos(pi*(i+1)*r/d_max)); |
---|
174 | } |
---|
175 | return sum; |
---|
176 | } |
---|
177 | |
---|
178 | /** |
---|
179 | * regularization term calculated from the expansion. |
---|
180 | */ |
---|
181 | double reg_term(double *pars, double d_max, int n_c, int nslice) { |
---|
182 | double sum = 0.0; |
---|
183 | double r; |
---|
184 | double deriv; |
---|
185 | int i; |
---|
186 | for (i=0; i<nslice; i++) { |
---|
187 | r = d_max/(1.0*nslice)*i; |
---|
188 | deriv = dprdr(pars, d_max, n_c, r); |
---|
189 | sum += deriv*deriv; |
---|
190 | } |
---|
191 | return sum/(1.0*nslice)*d_max; |
---|
192 | } |
---|
193 | |
---|
194 | /** |
---|
195 | * regularization term calculated from the expansion. |
---|
196 | */ |
---|
197 | double int_p2(double *pars, double d_max, int n_c, int nslice) { |
---|
198 | double sum = 0.0; |
---|
199 | double r; |
---|
200 | double value; |
---|
201 | int i; |
---|
202 | for (i=0; i<nslice; i++) { |
---|
203 | r = d_max/(1.0*nslice)*i; |
---|
204 | value = pr(pars, d_max, n_c, r); |
---|
205 | sum += value*value; |
---|
206 | } |
---|
207 | return sum/(1.0*nslice)*d_max; |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * Integral of P(r) |
---|
212 | */ |
---|
213 | double int_pr(double *pars, double d_max, int n_c, int nslice) { |
---|
214 | double sum = 0.0; |
---|
215 | double r; |
---|
216 | double value; |
---|
217 | int i; |
---|
218 | for (i=0; i<nslice; i++) { |
---|
219 | r = d_max/(1.0*nslice)*i; |
---|
220 | value = pr(pars, d_max, n_c, r); |
---|
221 | sum += value; |
---|
222 | } |
---|
223 | return sum/(1.0*nslice)*d_max; |
---|
224 | } |
---|
225 | |
---|
226 | /** |
---|
227 | * Get the number of P(r) peaks. |
---|
228 | */ |
---|
229 | int npeaks(double *pars, double d_max, int n_c, int nslice) { |
---|
230 | double r; |
---|
231 | double value; |
---|
232 | int i; |
---|
233 | double previous = 0.0; |
---|
234 | double slope = 0.0; |
---|
235 | int count = 0; |
---|
236 | for (i=0; i<nslice; i++) { |
---|
237 | r = d_max/(1.0*nslice)*i; |
---|
238 | value = pr(pars, d_max, n_c, r); |
---|
239 | if (previous<=value){ |
---|
240 | //if (slope<0) count += 1; |
---|
241 | slope = 1; |
---|
242 | } else { |
---|
243 | //printf("slope -1"); |
---|
244 | if (slope>0) count += 1; |
---|
245 | slope = -1; |
---|
246 | } |
---|
247 | previous = value; |
---|
248 | } |
---|
249 | return count; |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Get the fraction of the integral of P(r) over the whole range |
---|
254 | * of r that is above zero. |
---|
255 | * A valid P(r) is define as being positive for all r. |
---|
256 | */ |
---|
257 | double positive_integral(double *pars, double d_max, int n_c, int nslice) { |
---|
258 | double r; |
---|
259 | double value; |
---|
260 | int i; |
---|
261 | double sum_pos = 0.0; |
---|
262 | double sum = 0.0; |
---|
263 | |
---|
264 | for (i=0; i<nslice; i++) { |
---|
265 | r = d_max/(1.0*nslice)*i; |
---|
266 | value = pr(pars, d_max, n_c, r); |
---|
267 | if (value>0.0) sum_pos += value; |
---|
268 | sum += fabs(value); |
---|
269 | } |
---|
270 | return sum_pos/sum; |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * Get the fraction of the integral of P(r) over the whole range |
---|
275 | * of r that is at least one sigma above zero. |
---|
276 | */ |
---|
277 | double positive_errors(double *pars, double *err, double d_max, int n_c, int nslice) { |
---|
278 | double r; |
---|
279 | int i; |
---|
280 | double sum_pos = 0.0; |
---|
281 | double sum = 0.0; |
---|
282 | double pr_val; |
---|
283 | double pr_val_err; |
---|
284 | |
---|
285 | for (i=0; i<nslice; i++) { |
---|
286 | r = d_max/(1.0*nslice)*i; |
---|
287 | pr_err(pars, err, d_max, n_c, r, &pr_val, &pr_val_err); |
---|
288 | if (pr_val>pr_val_err) sum_pos += pr_val; |
---|
289 | sum += fabs(pr_val); |
---|
290 | |
---|
291 | |
---|
292 | } |
---|
293 | return sum_pos/sum; |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * R_g radius of gyration calculation |
---|
298 | * |
---|
299 | * R_g**2 = integral[r**2 * p(r) dr] / (2.0 * integral[p(r) dr]) |
---|
300 | */ |
---|
301 | double rg(double *pars, double d_max, int n_c, int nslice) { |
---|
302 | double sum_r2 = 0.0; |
---|
303 | double sum = 0.0; |
---|
304 | double r; |
---|
305 | double value; |
---|
306 | int i; |
---|
307 | for (i=0; i<nslice; i++) { |
---|
308 | r = d_max/(1.0*nslice)*i; |
---|
309 | value = pr(pars, d_max, n_c, r); |
---|
310 | sum += value; |
---|
311 | sum_r2 += r*r*value; |
---|
312 | } |
---|
313 | return sqrt(sum_r2/(2.0*sum)); |
---|
314 | } |
---|
315 | |
---|