[ec392464] | 1 | .. invariant_help.rst |
---|
| 2 | |
---|
| 3 | .. This is a port of the original SasView html help file to ReSTructured text |
---|
| 4 | .. by S King, ISIS, during SasView CodeCamp-III in Feb 2015. |
---|
| 5 | |
---|
| 6 | Invariant Calculation Perspective |
---|
| 7 | ================================= |
---|
| 8 | |
---|
| 9 | Scattering_Invariant_ |
---|
| 10 | |
---|
| 11 | Volume_Fraction_ |
---|
| 12 | |
---|
| 13 | Specific_Surface_Area_ |
---|
| 14 | |
---|
| 15 | Definitions_ |
---|
| 16 | |
---|
| 17 | Reference_ |
---|
| 18 | |
---|
| 19 | How_to_Use_ |
---|
| 20 | |
---|
| 21 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 22 | |
---|
| 23 | .. _Scattering_Invariant: |
---|
| 24 | |
---|
| 25 | Scattering Invariant |
---|
| 26 | -------------------- |
---|
| 27 | |
---|
| 28 | The scattering invariant (Q*) is a model-independent quantity that can be |
---|
| 29 | easily calculated from scattering data. |
---|
| 30 | |
---|
| 31 | For two phase systems, the scattering invariant, Q*, is defined as the |
---|
| 32 | integral of the square of the wave transfer (q) multiplied by the scattering |
---|
| 33 | cross section over the full range of q. |
---|
| 34 | |
---|
| 35 | Q* is given by the following equation |
---|
| 36 | |
---|
| 37 | .. image:: image001.gif |
---|
| 38 | |
---|
| 39 | This model independent quantity (Q*) is calculated from the scattering data |
---|
| 40 | that can be used to determine the volume fraction and the specific area of the |
---|
| 41 | sample under consideration. |
---|
| 42 | |
---|
| 43 | These quantities are useful in their own right and can be used in further |
---|
| 44 | analysis. With this scattering invariant module users will also be able to |
---|
| 45 | determine the consistency of those properties between data. There is no real |
---|
| 46 | data defined from zero to infinity, there usually have limited range. |
---|
| 47 | |
---|
| 48 | Q* is not really computed from zero to infinity. Our maximum q range is |
---|
| 49 | 1e-5 ~ 10 (1/Angstrom). The lower and/or higher q range than data given can be |
---|
| 50 | extrapolated by fitting some data nearby. |
---|
| 51 | |
---|
| 52 | The scattering invariant is computed as follows |
---|
| 53 | |
---|
| 54 | *I(q)* = *I(q)* w/o background : If the data includes a background, user sets |
---|
| 55 | the value to subtract the background for the Q* computation. |
---|
| 56 | |
---|
| 57 | Reset *I(q)* = *I(q)* scaling factor* , delta *I(q) =* delta *I(q)*scaling |
---|
| 58 | factor* : If non-zero scaling factor is given, it will be considered. |
---|
| 59 | |
---|
| 60 | Invariant |
---|
| 61 | |
---|
| 62 | .. image:: image001.gif |
---|
| 63 | |
---|
| 64 | where *g =q* for the pinhole geometry and *g =qv* (the slit height) for the |
---|
| 65 | slit geometry which can be given in data or as a value. |
---|
| 66 | |
---|
| 67 | Higher q-region (\>= qmax in data) |
---|
| 68 | |
---|
| 69 | Power law (w/o background term) function = C/q4will be used |
---|
| 70 | |
---|
| 71 | where the constant C(=2pi(delta(rho))Sv) is to be found by fitting part of |
---|
| 72 | data with the range of qN-mto qN(m\<N). |
---|
| 73 | |
---|
| 74 | Lower q-region (\<= qmin in data): |
---|
| 75 | |
---|
| 76 | Guinier function = *I0exp(-Rg2q2/3)* where I0and Rgare obtained by fitting, |
---|
| 77 | |
---|
| 78 | similarly to the high q region above. |
---|
| 79 | |
---|
| 80 | Power law can also be used. |
---|
| 81 | |
---|
| 82 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 83 | |
---|
| 84 | .. _Volume_Fraction: |
---|
| 85 | |
---|
| 86 | Volume Fraction |
---|
| 87 | --------------- |
---|
| 88 | |
---|
| 89 | .. image:: image002.gif |
---|
| 90 | |
---|
| 91 | where delta(rho) is the SLD contrast of which value is given by users. |
---|
| 92 | |
---|
| 93 | .. image:: image003.gif |
---|
| 94 | |
---|
| 95 | Thus |
---|
| 96 | |
---|
| 97 | where 0 =\< *A* =\<1/4 in order for these values to be physically valid. |
---|
| 98 | |
---|
| 99 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 100 | |
---|
| 101 | .. _Specific_Surface_Area: |
---|
| 102 | |
---|
| 103 | Specific Surface Area |
---|
| 104 | --------------------- |
---|
| 105 | |
---|
| 106 | .. image:: image004.gif |
---|
| 107 | |
---|
| 108 | where *A* and *Q** are obtained from previous sections, and the Porod |
---|
| 109 | constant *Cp* is given by users. |
---|
| 110 | |
---|
| 111 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 112 | |
---|
| 113 | .. _Definitions: |
---|
| 114 | |
---|
| 115 | Definitions |
---|
| 116 | ----------- |
---|
| 117 | |
---|
| 118 | Q: the magnitude of neutron (or X-ray) momentum transfer vector. |
---|
| 119 | |
---|
| 120 | I(Q): the scattering intensity as a function of the momentum transfer Q. |
---|
| 121 | |
---|
| 122 | Invariant total is the sum of the invariant calculated from datas q range and |
---|
| 123 | the invariant resulting from extrapolation at low q range and at high q range |
---|
| 124 | if considered. |
---|
| 125 | |
---|
| 126 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 127 | |
---|
| 128 | .. _Reference: |
---|
| 129 | |
---|
| 130 | References |
---|
| 131 | ---------- |
---|
| 132 | |
---|
| 133 | Chapter 2 in O. Glatter and O. Kratky, "Small Angle X-Ray Scattering", Academic |
---|
| 134 | Press, New York, 1982 |
---|
| 135 | |
---|
| 136 | http://physchem.kfunigraz.ac.at/sm/ |
---|
| 137 | |
---|
| 138 | .. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
---|
| 139 | |
---|
| 140 | .. _How_to_Use: |
---|
| 141 | |
---|
| 142 | How to Use |
---|
| 143 | ---------- |
---|
| 144 | |
---|
| 145 | 1. Loading data to the panel: Open the data file from File in the menu bar. |
---|
| 146 | Select loaded data from a plot panel by highlighting that it until its color |
---|
| 147 | turns yellow. Then right click on that the data and selects the option Compute |
---|
| 148 | Invariant. The application automatically computes the invariant value if the |
---|
| 149 | data loaded is valid. |
---|
| 150 | |
---|
| 151 | 2. To subtract a background or/and to rescale the data, type the values in |
---|
| 152 | Customized Input box. |
---|
| 153 | |
---|
| 154 | 3. If you want to calculate the volume fraction and the specific surface |
---|
| 155 | area, type the optional inputs in the customized input box, and then press |
---|
| 156 | 'Compute' button. |
---|
| 157 | |
---|
| 158 | 4. The invariant can also be calculated including the outside of the data Q |
---|
| 159 | range: To include the lower Q and/or the higher Q range, check in the enable |
---|
| 160 | extrapolation check box in 'Extrapolation' box. If the power low is chosen, |
---|
| 161 | the power (exponent) can be either held or fitted by checking the |
---|
| 162 | corresponding radio button. The Npts that is being used for the extrapolation |
---|
| 163 | can be specified. |
---|
| 164 | |
---|
| 165 | 5. If the invariant calculated from the extrapolated region is too large, it |
---|
| 166 | will be warn in red at the top of the panel, which means that your data is not |
---|
| 167 | proper to calculate the invariant. |
---|
| 168 | |
---|
| 169 | 6. The details of the calculation is available by clicking the 'Details' |
---|
| 170 | button in the middle of the panel. |
---|
| 171 | |
---|
| 172 | .. image:: image005.gif |
---|