[9f7fbd9] | 1 | """ |
---|
| 2 | Define the resolution functions for the data. |
---|
| 3 | |
---|
| 4 | This defines classes for 1D and 2D resolution calculations. |
---|
| 5 | """ |
---|
| 6 | from __future__ import division |
---|
| 7 | from scipy.special import erf |
---|
| 8 | from numpy import sqrt, log, log10 |
---|
| 9 | import numpy as np |
---|
| 10 | |
---|
| 11 | MINIMUM_RESOLUTION = 1e-8 |
---|
| 12 | |
---|
| 13 | class Resolution1D(object): |
---|
| 14 | """ |
---|
| 15 | Abstract base class defining a 1D resolution function. |
---|
| 16 | |
---|
| 17 | *q* is the set of q values at which the data is measured. |
---|
| 18 | |
---|
| 19 | *q_calc* is the set of q values at which the theory needs to be evaluated. |
---|
| 20 | This may extend and interpolate the q values. |
---|
| 21 | |
---|
| 22 | *apply* is the method to call with I(q_calc) to compute the resolution |
---|
| 23 | smeared theory I(q). |
---|
| 24 | """ |
---|
| 25 | q = None |
---|
| 26 | q_calc = None |
---|
| 27 | def apply(self, theory): |
---|
| 28 | """ |
---|
| 29 | Smear *theory* by the resolution function, returning *Iq*. |
---|
| 30 | """ |
---|
| 31 | raise NotImplementedError("Subclass does not define the apply function") |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | class Perfect1D(Resolution1D): |
---|
| 35 | """ |
---|
| 36 | Resolution function to use when there is no actual resolution smearing |
---|
| 37 | to be applied. It has the same interface as the other resolution |
---|
| 38 | functions, but returns the identity function. |
---|
| 39 | """ |
---|
| 40 | def __init__(self, q): |
---|
| 41 | self.q_calc = self.q = q |
---|
| 42 | |
---|
| 43 | def apply(self, theory): |
---|
| 44 | return theory |
---|
| 45 | |
---|
| 46 | |
---|
| 47 | class Pinhole1D(Resolution1D): |
---|
| 48 | r""" |
---|
| 49 | Pinhole aperture with q-dependent gaussian resolution. |
---|
| 50 | |
---|
| 51 | *q* points at which the data is measured. |
---|
| 52 | |
---|
| 53 | *q_width* gaussian 1-sigma resolution at each data point. |
---|
| 54 | |
---|
| 55 | *q_calc* is the list of points to calculate, or None if this should |
---|
| 56 | be estimated from the *q* and *q_width*. |
---|
| 57 | """ |
---|
[a3f125f0] | 58 | def __init__(self, q, q_width, q_calc=None, nsigma=3): |
---|
[9f7fbd9] | 59 | #*min_step* is the minimum point spacing to use when computing the |
---|
| 60 | #underlying model. It should be on the order of |
---|
| 61 | #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes |
---|
| 62 | #are computed with sufficient density to avoid aliasing effects. |
---|
| 63 | |
---|
| 64 | # Protect against calls with q_width=0. The extend_q function will |
---|
| 65 | # not extend the q if q_width is 0, but q_width must be non-zero when |
---|
| 66 | # constructing the weight matrix to avoid division by zero errors. |
---|
| 67 | # In practice this should never be needed, since resolution should |
---|
| 68 | # default to Perfect1D if the pinhole geometry is not defined. |
---|
| 69 | self.q, self.q_width = q, q_width |
---|
[a3f125f0] | 70 | self.q_calc = pinhole_extend_q(q, q_width, nsigma=nsigma) \ |
---|
[9f7fbd9] | 71 | if q_calc is None else np.sort(q_calc) |
---|
| 72 | self.weight_matrix = pinhole_resolution(self.q_calc, |
---|
| 73 | self.q, np.maximum(q_width, MINIMUM_RESOLUTION)) |
---|
| 74 | |
---|
| 75 | def apply(self, theory): |
---|
| 76 | return apply_resolution_matrix(self.weight_matrix, theory) |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | class Slit1D(Resolution1D): |
---|
| 80 | """ |
---|
| 81 | Slit aperture with a complicated resolution function. |
---|
| 82 | |
---|
| 83 | *q* points at which the data is measured. |
---|
| 84 | |
---|
| 85 | *qx_width* slit width |
---|
| 86 | |
---|
| 87 | *qy_height* slit height |
---|
| 88 | |
---|
| 89 | *q_calc* is the list of points to calculate, or None if this should |
---|
| 90 | be estimated from the *q* and *q_width*. |
---|
| 91 | |
---|
| 92 | The *weight_matrix* is computed by :func:`slit1d_resolution` |
---|
| 93 | """ |
---|
| 94 | def __init__(self, q, width, height, q_calc=None): |
---|
| 95 | # TODO: maybe issue warnings rather than raising errors |
---|
| 96 | if not np.isscalar(width): |
---|
| 97 | if np.any(np.diff(width) > 0.0): |
---|
| 98 | raise ValueError("Slit resolution requires fixed width slits") |
---|
| 99 | width = width[0] |
---|
| 100 | if not np.isscalar(height): |
---|
| 101 | if np.any(np.diff(height) > 0.0): |
---|
| 102 | raise ValueError("Slit resolution requires fixed height slits") |
---|
| 103 | height = height[0] |
---|
| 104 | |
---|
| 105 | # Remember what width/height was used even though we won't need them |
---|
| 106 | # after the weight matrix is constructed |
---|
| 107 | self.width, self.height = width, height |
---|
| 108 | |
---|
| 109 | self.q = q.flatten() |
---|
| 110 | self.q_calc = slit_extend_q(q, width, height) \ |
---|
| 111 | if q_calc is None else np.sort(q_calc) |
---|
| 112 | self.weight_matrix = \ |
---|
| 113 | slit_resolution(self.q_calc, self.q, width, height) |
---|
| 114 | |
---|
| 115 | def apply(self, theory): |
---|
| 116 | return apply_resolution_matrix(self.weight_matrix, theory) |
---|
| 117 | |
---|
| 118 | |
---|
| 119 | def apply_resolution_matrix(weight_matrix, theory): |
---|
| 120 | """ |
---|
| 121 | Apply the resolution weight matrix to the computed theory function. |
---|
| 122 | """ |
---|
| 123 | #print "apply shapes", theory.shape, weight_matrix.shape |
---|
| 124 | Iq = np.dot(theory[None,:], weight_matrix) |
---|
| 125 | #print "result shape",Iq.shape |
---|
| 126 | return Iq.flatten() |
---|
| 127 | |
---|
| 128 | |
---|
| 129 | def pinhole_resolution(q_calc, q, q_width): |
---|
| 130 | """ |
---|
| 131 | Compute the convolution matrix *W* for pinhole resolution 1-D data. |
---|
| 132 | |
---|
| 133 | Each row *W[i]* determines the normalized weight that the corresponding |
---|
| 134 | points *q_calc* contribute to the resolution smeared point *q[i]*. Given |
---|
| 135 | *W*, the resolution smearing can be computed using *dot(W,q)*. |
---|
| 136 | |
---|
| 137 | *q_calc* must be increasing. *q_width* must be greater than zero. |
---|
| 138 | """ |
---|
| 139 | # The current algorithm is a midpoint rectangle rule. In the test case, |
---|
| 140 | # neither trapezoid nor Simpson's rule improved the accuracy. |
---|
| 141 | edges = bin_edges(q_calc) |
---|
| 142 | edges[edges<0.0] = 0.0 # clip edges below zero |
---|
| 143 | G = erf( (edges[:,None] - q[None,:]) / (sqrt(2.0)*q_width)[None,:] ) |
---|
| 144 | weights = G[1:] - G[:-1] |
---|
| 145 | weights /= np.sum(weights, axis=0)[None,:] |
---|
| 146 | return weights |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | def slit_resolution(q_calc, q, width, height): |
---|
| 150 | r""" |
---|
| 151 | Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given |
---|
| 152 | $q_v$ = *width* and $q_h$ = *height*. |
---|
| 153 | |
---|
| 154 | *width* and *height* are scalars since current instruments use the |
---|
| 155 | same slit settings for all measurement points. |
---|
| 156 | |
---|
| 157 | If slit height is large relative to width, use: |
---|
| 158 | |
---|
| 159 | .. math:: |
---|
| 160 | |
---|
| 161 | I_s(q_o) = \frac{1}{\Delta q_v} |
---|
| 162 | \int_0^{\Delta q_v} I(\sqrt{q_o^2 + u^2} du |
---|
| 163 | |
---|
| 164 | If slit width is large relative to height, use: |
---|
| 165 | |
---|
| 166 | .. math:: |
---|
| 167 | |
---|
| 168 | I_s(q_o) = \frac{1}{2 \Delta q_v} |
---|
| 169 | \int_{-\Delta q_v}^{\Delta q_v} I(u) du |
---|
| 170 | """ |
---|
| 171 | if width == 0.0 and height == 0.0: |
---|
| 172 | #print "condition zero" |
---|
| 173 | return 1 |
---|
| 174 | |
---|
| 175 | q_edges = bin_edges(q_calc) # Note: requires q > 0 |
---|
| 176 | q_edges[q_edges<0.0] = 0.0 # clip edges below zero |
---|
| 177 | |
---|
| 178 | #np.set_printoptions(linewidth=10000) |
---|
| 179 | if width <= 100.0 * height or height == 0: |
---|
| 180 | # The current algorithm is a midpoint rectangle rule. In the test case, |
---|
| 181 | # neither trapezoid nor Simpson's rule improved the accuracy. |
---|
| 182 | #print "condition h", q_edges.shape, q.shape, q_calc.shape |
---|
| 183 | weights = np.zeros((len(q), len(q_calc)), 'd') |
---|
| 184 | for i, qi in enumerate(q): |
---|
| 185 | weights[i, :] = np.diff(q_to_u(q_edges, qi)) |
---|
| 186 | weights /= width |
---|
| 187 | weights = weights.T |
---|
| 188 | else: |
---|
| 189 | #print "condition w" |
---|
| 190 | # Make q_calc into a row vector, and q into a column vector |
---|
| 191 | q, q_calc = q[None,:], q_calc[:,None] |
---|
| 192 | in_x = (q_calc >= q-width) * (q_calc <= q+width) |
---|
| 193 | weights = np.diff(q_edges)[:,None] * in_x |
---|
| 194 | |
---|
| 195 | return weights |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | def pinhole_extend_q(q, q_width, nsigma=3): |
---|
| 199 | """ |
---|
| 200 | Given *q* and *q_width*, find a set of sampling points *q_calc* so |
---|
| 201 | that each point I(q) has sufficient support from the underlying |
---|
| 202 | function. |
---|
| 203 | """ |
---|
| 204 | q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width) |
---|
[a3f125f0] | 205 | return linear_extrapolation(q, q_min, q_max) |
---|
[9f7fbd9] | 206 | |
---|
| 207 | |
---|
| 208 | def slit_extend_q(q, width, height): |
---|
| 209 | """ |
---|
| 210 | Given *q*, *width* and *height*, find a set of sampling points *q_calc* so |
---|
| 211 | that each point I(q) has sufficient support from the underlying |
---|
| 212 | function. |
---|
| 213 | """ |
---|
| 214 | height # keep lint happy |
---|
| 215 | q_min, q_max = np.min(q), np.max(np.sqrt(q**2 + width**2)) |
---|
| 216 | return geometric_extrapolation(q, q_min, q_max) |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | def bin_edges(x): |
---|
| 220 | """ |
---|
| 221 | Determine bin edges from bin centers, assuming that edges are centered |
---|
| 222 | between the bins. |
---|
| 223 | |
---|
| 224 | Note: this uses the arithmetic mean, which may not be appropriate for |
---|
| 225 | log-scaled data. |
---|
| 226 | """ |
---|
| 227 | if len(x) < 2 or (np.diff(x)<0).any(): |
---|
| 228 | raise ValueError("Expected bins to be an increasing set") |
---|
| 229 | edges = np.hstack([ |
---|
| 230 | x[0] - 0.5*(x[1] - x[0]), # first point minus half first interval |
---|
| 231 | 0.5*(x[1:] + x[:-1]), # mid points of all central intervals |
---|
| 232 | x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval |
---|
| 233 | ]) |
---|
| 234 | return edges |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | def q_to_u(q, q0): |
---|
| 238 | """ |
---|
| 239 | Convert *q* values to *u* values for the integral computed at *q0*. |
---|
| 240 | """ |
---|
| 241 | # array([value])**2 - value**2 is not always zero |
---|
| 242 | qpsq = q**2 - q0**2 |
---|
| 243 | qpsq[qpsq<0] = 0 |
---|
| 244 | return sqrt(qpsq) |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | def interpolate(q, max_step): |
---|
| 248 | """ |
---|
| 249 | Returns *q_calc* with points spaced at most max_step apart. |
---|
| 250 | """ |
---|
| 251 | step = np.diff(q) |
---|
| 252 | index = step>max_step |
---|
| 253 | if np.any(index): |
---|
| 254 | inserts = [] |
---|
| 255 | for q_i,step_i in zip(q[:-1][index],step[index]): |
---|
| 256 | n = np.ceil(step_i/max_step) |
---|
| 257 | inserts.extend(q_i + np.arange(1,n)*(step_i/n)) |
---|
| 258 | # Extend a couple of fringes beyond the end of the data |
---|
| 259 | inserts.extend(q[-1] + np.arange(1,8)*max_step) |
---|
| 260 | q_calc = np.sort(np.hstack((q,inserts))) |
---|
| 261 | else: |
---|
| 262 | q_calc = q |
---|
| 263 | return q_calc |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | def linear_extrapolation(q, q_min, q_max): |
---|
| 267 | """ |
---|
| 268 | Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as |
---|
[a3f125f0] | 269 | a guide. Extrapolation below uses about the same size as the first |
---|
| 270 | interval. Extrapolation above uses about the same size as the final |
---|
[9f7fbd9] | 271 | interval. |
---|
| 272 | |
---|
| 273 | if *q_min* is zero or less then *q[0]/10* is used instead. |
---|
| 274 | """ |
---|
| 275 | q = np.sort(q) |
---|
| 276 | if q_min < q[0]: |
---|
| 277 | if q_min <= 0: q_min = q[0]/10 |
---|
[a3f125f0] | 278 | n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1]>q[0] else 15 |
---|
| 279 | q_low = np.linspace(q_min, q[0], n_low+1)[:-1] |
---|
[9f7fbd9] | 280 | else: |
---|
| 281 | q_low = [] |
---|
| 282 | if q_max > q[-1]: |
---|
[a3f125f0] | 283 | n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1]>q[-2] else 15 |
---|
| 284 | q_high = np.linspace(q[-1], q_max, n_high+1)[1:] |
---|
[9f7fbd9] | 285 | else: |
---|
| 286 | q_high = [] |
---|
| 287 | return np.concatenate([q_low, q, q_high]) |
---|
| 288 | |
---|
| 289 | |
---|
[a3f125f0] | 290 | def geometric_extrapolation(q, q_min, q_max, points_per_decade=None): |
---|
[9f7fbd9] | 291 | r""" |
---|
| 292 | Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the |
---|
| 293 | average geometric step size in *q* as the step size. |
---|
| 294 | |
---|
| 295 | if *q_min* is zero or less then *q[0]/10* is used instead. |
---|
| 296 | |
---|
[a3f125f0] | 297 | *points_per_decade* sets the ratio between consecutive steps such |
---|
| 298 | that there will be $n$ points used for every factor of 10 increase |
---|
| 299 | in *q*. |
---|
| 300 | |
---|
| 301 | If *points_per_decade* is not given, it will be estimated as follows. |
---|
| 302 | Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$ |
---|
| 303 | in $n$ points gives a geometric average of: |
---|
[9f7fbd9] | 304 | |
---|
| 305 | .. math:: |
---|
| 306 | |
---|
| 307 | \log \Delta q = (\log q_n - log q_1) / (n - 1) |
---|
| 308 | |
---|
| 309 | From this we can compute the number of steps required to extend $q$ |
---|
| 310 | from $q_n$ to $q_\text{max}$ by $\Delta q$ as: |
---|
| 311 | |
---|
| 312 | .. math:: |
---|
| 313 | |
---|
| 314 | n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q |
---|
| 315 | |
---|
| 316 | Substituting: |
---|
| 317 | |
---|
| 318 | n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n) |
---|
| 319 | / (\log q_n - log q_1) |
---|
| 320 | """ |
---|
| 321 | q = np.sort(q) |
---|
[a3f125f0] | 322 | if points_per_decade is None: |
---|
| 323 | log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0])) |
---|
| 324 | else: |
---|
| 325 | log_delta_q = log(10.) / points_per_decade |
---|
[9f7fbd9] | 326 | if q_min < q[0]: |
---|
| 327 | if q_min < 0: q_min = q[0]/10 |
---|
[a3f125f0] | 328 | n_low = log_delta_q * (log(q[0])-log(q_min)) |
---|
[9f7fbd9] | 329 | q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1] |
---|
| 330 | else: |
---|
| 331 | q_low = [] |
---|
| 332 | if q_max > q[-1]: |
---|
[a3f125f0] | 333 | n_high = log_delta_q * (log(q_max)-log(q[-1])) |
---|
[9f7fbd9] | 334 | q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:] |
---|
| 335 | else: |
---|
| 336 | q_high = [] |
---|
| 337 | return np.concatenate([q_low, q, q_high]) |
---|
| 338 | |
---|
[a3f125f0] | 339 | |
---|
| 340 | ############################################################################ |
---|
| 341 | # unit tests |
---|
| 342 | ############################################################################ |
---|
| 343 | import unittest |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | def eval_form(q, form, pars): |
---|
| 347 | from sasmodels import core |
---|
| 348 | kernel = core.make_kernel(form, [q]) |
---|
| 349 | theory = core.call_kernel(kernel, pars) |
---|
| 350 | kernel.release() |
---|
| 351 | return theory |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | def gaussian(q, q0, dq): |
---|
| 355 | from numpy import exp, pi |
---|
| 356 | return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq) |
---|
| 357 | |
---|
| 358 | |
---|
| 359 | def romberg_slit_1d(q, delta_qv, form, pars): |
---|
| 360 | """ |
---|
| 361 | Romberg integration for slit resolution. |
---|
| 362 | |
---|
| 363 | This is an adaptive integration technique. It is called with settings |
---|
| 364 | that make it slow to evaluate but give it good accuracy. |
---|
| 365 | """ |
---|
| 366 | from scipy.integrate import romberg |
---|
| 367 | |
---|
| 368 | if any(k not in form.info['defaults'] for k in pars.keys()): |
---|
| 369 | keys = set(form.info['defaults'].keys()) |
---|
| 370 | extra = set(pars.keys()) - keys |
---|
| 371 | raise ValueError("bad parameters: [%s] not in [%s]"% |
---|
| 372 | (", ".join(sorted(extra)), ", ".join(sorted(keys)))) |
---|
| 373 | |
---|
| 374 | _fn = lambda u, q0: eval_form(sqrt(q0**2 + u**2), form, pars) |
---|
| 375 | r = [romberg(_fn, 0, delta_qv[0], args=(qi,), |
---|
| 376 | divmax=100, vec_func=True, tol=0, rtol=1e-8) |
---|
| 377 | for qi in q] |
---|
| 378 | # r should be [float, ...], but it is [array([float]), array([float]),...] |
---|
| 379 | return np.asarray(r).flatten()/delta_qv[0] |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5): |
---|
| 383 | """ |
---|
| 384 | Romberg integration for pinhole resolution. |
---|
| 385 | |
---|
| 386 | This is an adaptive integration technique. It is called with settings |
---|
| 387 | that make it slow to evaluate but give it good accuracy. |
---|
| 388 | """ |
---|
| 389 | from scipy.integrate import romberg |
---|
| 390 | |
---|
| 391 | if any(k not in form.info['defaults'] for k in pars.keys()): |
---|
| 392 | keys = set(form.info['defaults'].keys()) |
---|
| 393 | extra = set(pars.keys()) - keys |
---|
| 394 | raise ValueError("bad parameters: [%s] not in [%s]"% |
---|
| 395 | (", ".join(sorted(extra)), ", ".join(sorted(keys)))) |
---|
| 396 | |
---|
| 397 | _fn = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq) |
---|
| 398 | r = [romberg(_fn, max(qi-nsigma*dqi,1e-10*q[0]), qi+nsigma*dqi, args=(qi, dqi), |
---|
| 399 | divmax=100, vec_func=True, tol=0, rtol=1e-8) |
---|
| 400 | for qi,dqi in zip(q,q_width)] |
---|
| 401 | return np.asarray(r).flatten() |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | class ResolutionTest(unittest.TestCase): |
---|
| 405 | |
---|
| 406 | def setUp(self): |
---|
| 407 | self.x = 0.001*np.arange(1, 11) |
---|
| 408 | self.y = self.Iq(self.x) |
---|
| 409 | |
---|
| 410 | def Iq(self, q): |
---|
| 411 | "Linear function for resolution unit test" |
---|
| 412 | return 12.0 - 1000.0*q |
---|
| 413 | |
---|
| 414 | def test_perfect(self): |
---|
| 415 | """ |
---|
| 416 | Perfect resolution and no smearing. |
---|
| 417 | """ |
---|
| 418 | resolution = Perfect1D(self.x) |
---|
| 419 | theory = self.Iq(resolution.q_calc) |
---|
| 420 | output = resolution.apply(theory) |
---|
| 421 | np.testing.assert_equal(output, self.y) |
---|
| 422 | |
---|
| 423 | def test_slit_zero(self): |
---|
| 424 | """ |
---|
| 425 | Slit smearing with perfect resolution. |
---|
| 426 | """ |
---|
| 427 | resolution = Slit1D(self.x, width=0, height=0, q_calc=self.x) |
---|
| 428 | theory = self.Iq(resolution.q_calc) |
---|
| 429 | output = resolution.apply(theory) |
---|
| 430 | np.testing.assert_equal(output, self.y) |
---|
| 431 | |
---|
| 432 | @unittest.skip("not yet supported") |
---|
| 433 | def test_slit_high(self): |
---|
| 434 | """ |
---|
| 435 | Slit smearing with height 0.005 |
---|
| 436 | """ |
---|
| 437 | resolution = Slit1D(self.x, width=0, height=0.005, q_calc=self.x) |
---|
| 438 | theory = self.Iq(resolution.q_calc) |
---|
| 439 | output = resolution.apply(theory) |
---|
| 440 | answer = [ 9.0618, 8.6402, 8.1187, 7.1392, 6.1528, |
---|
| 441 | 5.5555, 4.5584, 3.5606, 2.5623, 2.0000 ] |
---|
| 442 | np.testing.assert_allclose(output, answer, atol=1e-4) |
---|
| 443 | |
---|
| 444 | @unittest.skip("not yet supported") |
---|
| 445 | def test_slit_both_high(self): |
---|
| 446 | """ |
---|
| 447 | Slit smearing with width < 100*height. |
---|
| 448 | """ |
---|
| 449 | q = np.logspace(-4, -1, 10) |
---|
| 450 | resolution = Slit1D(q, width=0.2, height=np.inf) |
---|
| 451 | theory = 1000*self.Iq(resolution.q_calc**4) |
---|
| 452 | output = resolution.apply(theory) |
---|
| 453 | answer = [ 8.85785, 8.43012, 7.92687, 6.94566, 6.03660, |
---|
| 454 | 5.40363, 4.40655, 3.40880, 2.41058, 2.00000 ] |
---|
| 455 | np.testing.assert_allclose(output, answer, atol=1e-4) |
---|
| 456 | |
---|
| 457 | @unittest.skip("not yet supported") |
---|
| 458 | def test_slit_wide(self): |
---|
| 459 | """ |
---|
| 460 | Slit smearing with width 0.0002 |
---|
| 461 | """ |
---|
| 462 | resolution = Slit1D(self.x, width=0.0002, height=0, q_calc=self.x) |
---|
| 463 | theory = self.Iq(resolution.q_calc) |
---|
| 464 | output = resolution.apply(theory) |
---|
| 465 | answer = [ 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0 ] |
---|
| 466 | np.testing.assert_allclose(output, answer, atol=1e-4) |
---|
| 467 | |
---|
| 468 | @unittest.skip("not yet supported") |
---|
| 469 | def test_slit_both_wide(self): |
---|
| 470 | """ |
---|
| 471 | Slit smearing with width > 100*height. |
---|
| 472 | """ |
---|
| 473 | resolution = Slit1D(self.x, width=0.0002, height=0.000001, |
---|
| 474 | q_calc=self.x) |
---|
| 475 | theory = self.Iq(resolution.q_calc) |
---|
| 476 | output = resolution.apply(theory) |
---|
| 477 | answer = [ 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0 ] |
---|
| 478 | np.testing.assert_allclose(output, answer, atol=1e-4) |
---|
| 479 | |
---|
| 480 | def test_pinhole_zero(self): |
---|
| 481 | """ |
---|
| 482 | Pinhole smearing with perfect resolution |
---|
| 483 | """ |
---|
| 484 | resolution = Pinhole1D(self.x, 0.0*self.x) |
---|
| 485 | theory = self.Iq(resolution.q_calc) |
---|
| 486 | output = resolution.apply(theory) |
---|
| 487 | np.testing.assert_equal(output, self.y) |
---|
| 488 | |
---|
| 489 | def test_pinhole(self): |
---|
| 490 | """ |
---|
| 491 | Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001] |
---|
| 492 | """ |
---|
| 493 | resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x), |
---|
| 494 | q_calc=self.x) |
---|
| 495 | theory = 12.0-1000.0*resolution.q_calc |
---|
| 496 | output = resolution.apply(theory) |
---|
| 497 | answer = [ 10.44785079, 9.84991299, 8.98101708, |
---|
| 498 | 7.99906585, 6.99998311, 6.00001689, |
---|
| 499 | 5.00093415, 4.01898292, 3.15008701, 2.55214921] |
---|
| 500 | np.testing.assert_allclose(output, answer, atol=1e-8) |
---|
| 501 | |
---|
| 502 | |
---|
| 503 | class IgorComparisonTest(unittest.TestCase): |
---|
| 504 | |
---|
| 505 | def setUp(self): |
---|
| 506 | self.pars = TEST_PARS_PINHOLE_SPHERE |
---|
| 507 | from sasmodels import core |
---|
| 508 | from sasmodels.models import sphere |
---|
| 509 | self.model = core.load_model(sphere, dtype='double') |
---|
| 510 | |
---|
| 511 | def Iq_sphere(self, pars, resolution): |
---|
| 512 | from sasmodels import core |
---|
| 513 | kernel = core.make_kernel(self.model, [resolution.q_calc]) |
---|
| 514 | theory = core.call_kernel(kernel, pars) |
---|
| 515 | result = resolution.apply(theory) |
---|
| 516 | kernel.release() |
---|
| 517 | return result |
---|
| 518 | |
---|
| 519 | def compare(self, q, output, answer, tolerance): |
---|
| 520 | err = (output - answer)/answer |
---|
| 521 | idx = abs(err) >= tolerance |
---|
| 522 | problem = zip(q[idx], output[idx], answer[idx], err[idx]) |
---|
| 523 | print "\n".join(str(v) for v in problem) |
---|
| 524 | np.testing.assert_allclose(output, answer, rtol=tolerance) |
---|
| 525 | |
---|
| 526 | def test_perfect(self): |
---|
| 527 | """ |
---|
| 528 | Compare sphere model with NIST Igor SANS, no resolution smearing. |
---|
| 529 | """ |
---|
| 530 | pars = TEST_PARS_SLIT_SPHERE |
---|
| 531 | data_string = TEST_DATA_SLIT_SPHERE |
---|
| 532 | |
---|
| 533 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 534 | q, width, answer, _ = data |
---|
| 535 | resolution = Perfect1D(q) |
---|
| 536 | output = self.Iq_sphere(pars, resolution) |
---|
| 537 | self.compare(q, output, answer, 1e-6) |
---|
| 538 | |
---|
| 539 | def test_pinhole(self): |
---|
| 540 | """ |
---|
| 541 | Compare pinhole resolution smearing with NIST Igor SANS |
---|
| 542 | """ |
---|
| 543 | pars = TEST_PARS_PINHOLE_SPHERE |
---|
| 544 | data_string = TEST_DATA_PINHOLE_SPHERE |
---|
| 545 | |
---|
| 546 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 547 | q, q_width, answer = data |
---|
| 548 | resolution = Pinhole1D(q, q_width) |
---|
| 549 | output = self.Iq_sphere(pars, resolution) |
---|
| 550 | # TODO: relative error should be lower |
---|
| 551 | self.compare(q, output, answer, 3e-4) |
---|
| 552 | |
---|
| 553 | def test_pinhole_romberg(self): |
---|
| 554 | """ |
---|
| 555 | Compare pinhole resolution smearing with romberg integration result. |
---|
| 556 | """ |
---|
| 557 | pars = TEST_PARS_PINHOLE_SPHERE |
---|
| 558 | data_string = TEST_DATA_PINHOLE_SPHERE |
---|
| 559 | pars['radius'] *= 5 |
---|
| 560 | radius = pars['radius'] |
---|
| 561 | |
---|
| 562 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 563 | q, q_width, answer = data |
---|
| 564 | answer = romberg_pinhole_1d(q, q_width, self.model, pars) |
---|
| 565 | ## Getting 0.1% requires 5 sigma and 200 points per fringe |
---|
| 566 | #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5), |
---|
| 567 | # 2*np.pi/radius/200) |
---|
| 568 | #tol = 0.001 |
---|
| 569 | ## The default 3 sigma and no extra points gets 1% |
---|
| 570 | q_calc, tol = None, 0.01 |
---|
| 571 | resolution = Pinhole1D(q, q_width, q_calc=q_calc) |
---|
| 572 | output = self.Iq_sphere(pars, resolution) |
---|
| 573 | if 0: # debug plot |
---|
| 574 | import matplotlib.pyplot as plt |
---|
| 575 | resolution = Perfect1D(q) |
---|
| 576 | source = self.Iq_sphere(pars, resolution) |
---|
| 577 | plt.loglog(q, source, '.') |
---|
| 578 | plt.loglog(q, answer, '-', hold=True) |
---|
| 579 | plt.loglog(q, output, '-', hold=True) |
---|
| 580 | plt.show() |
---|
| 581 | self.compare(q, output, answer, tol) |
---|
| 582 | |
---|
| 583 | def test_slit(self): |
---|
| 584 | """ |
---|
| 585 | Compare slit resolution smearing with NIST Igor SANS |
---|
| 586 | """ |
---|
| 587 | pars = TEST_PARS_SLIT_SPHERE |
---|
| 588 | data_string = TEST_DATA_SLIT_SPHERE |
---|
| 589 | |
---|
| 590 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 591 | q, delta_qv, _, answer = data |
---|
| 592 | resolution = Slit1D(q, width=delta_qv, height=0) |
---|
| 593 | output = self.Iq_sphere(pars, resolution) |
---|
| 594 | # TODO: eliminate Igor test since it is too inaccurate to be useful. |
---|
| 595 | # This means we can eliminate the test data as well, and instead |
---|
| 596 | # use a generated q vector. |
---|
| 597 | self.compare(q, output, answer, 0.5) |
---|
| 598 | |
---|
| 599 | def test_slit_romberg(self): |
---|
| 600 | """ |
---|
| 601 | Compare slit resolution smearing with romberg integration result. |
---|
| 602 | """ |
---|
| 603 | pars = TEST_PARS_SLIT_SPHERE |
---|
| 604 | data_string = TEST_DATA_SLIT_SPHERE |
---|
| 605 | radius = pars['radius'] |
---|
| 606 | |
---|
| 607 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 608 | q, delta_qv, _, answer = data |
---|
| 609 | answer = romberg_slit_1d(q, delta_qv, self.model, pars) |
---|
| 610 | q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20), |
---|
| 611 | delta_qv[0], delta_qv[0]) |
---|
| 612 | resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc) |
---|
| 613 | output = self.Iq_sphere(pars, resolution) |
---|
| 614 | # TODO: relative error should be lower |
---|
| 615 | self.compare(q, output, answer, 0.025) |
---|
| 616 | |
---|
| 617 | def test_ellipsoid(self): |
---|
| 618 | """ |
---|
| 619 | Compare romberg integration for ellipsoid model. |
---|
| 620 | """ |
---|
| 621 | from .core import load_model |
---|
| 622 | pars = { |
---|
| 623 | 'scale':0.05, |
---|
| 624 | 'rpolar':500, 'requatorial':15000, |
---|
| 625 | 'sld':6, 'solvent_sld': 1, |
---|
| 626 | } |
---|
| 627 | form = load_model('ellipsoid', dtype='double') |
---|
| 628 | q = np.logspace(log10(4e-5),log10(2.5e-2), 68) |
---|
| 629 | delta_qv = [0.117] |
---|
| 630 | resolution = Slit1D(q, width=delta_qv, height=0) |
---|
| 631 | answer = romberg_slit_1d(q, delta_qv, form, pars) |
---|
| 632 | output = resolution.apply(eval_form(resolution.q_calc, form, pars)) |
---|
| 633 | # TODO: 10% is too much error; use better algorithm |
---|
| 634 | self.compare(q, output, answer, 0.1) |
---|
| 635 | |
---|
| 636 | #TODO: can sas q spacing be too sparse for the resolution calculation? |
---|
| 637 | @unittest.skip("suppress sparse data test; not supported by current code") |
---|
| 638 | def test_pinhole_sparse(self): |
---|
| 639 | """ |
---|
| 640 | Compare pinhole resolution smearing with NIST Igor SANS on sparse data |
---|
| 641 | """ |
---|
| 642 | pars = TEST_PARS_PINHOLE_SPHERE |
---|
| 643 | data_string = TEST_DATA_PINHOLE_SPHERE |
---|
| 644 | |
---|
| 645 | data = np.loadtxt(data_string.split('\n')).T |
---|
| 646 | q, q_width, answer = data[:, ::20] # Take every nth point |
---|
| 647 | resolution = Pinhole1D(q, q_width) |
---|
| 648 | output = self.Iq_sphere(pars, resolution) |
---|
| 649 | self.compare(q, output, answer, 1e-6) |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | # pinhole sphere parameters |
---|
| 653 | TEST_PARS_PINHOLE_SPHERE = { |
---|
| 654 | 'scale': 1.0, 'background': 0.01, |
---|
| 655 | 'radius': 60.0, 'sld': 1, 'solvent_sld': 6.3, |
---|
| 656 | } |
---|
| 657 | # Q, dQ, I(Q) calculated by NIST Igor SANS package |
---|
| 658 | TEST_DATA_PINHOLE_SPHERE = """\ |
---|
| 659 | 0.001278 0.0002847 2538.41176383 |
---|
| 660 | 0.001562 0.0002905 2536.91820405 |
---|
| 661 | 0.001846 0.0002956 2535.13182479 |
---|
| 662 | 0.002130 0.0003017 2533.06217813 |
---|
| 663 | 0.002414 0.0003087 2530.70378586 |
---|
| 664 | 0.002698 0.0003165 2528.05024192 |
---|
| 665 | 0.002982 0.0003249 2525.10408349 |
---|
| 666 | 0.003266 0.0003340 2521.86667499 |
---|
| 667 | 0.003550 0.0003437 2518.33907750 |
---|
| 668 | 0.003834 0.0003539 2514.52246995 |
---|
| 669 | 0.004118 0.0003646 2510.41798319 |
---|
| 670 | 0.004402 0.0003757 2506.02690988 |
---|
| 671 | 0.004686 0.0003872 2501.35067884 |
---|
| 672 | 0.004970 0.0003990 2496.38678318 |
---|
| 673 | 0.005253 0.0004112 2491.16237596 |
---|
| 674 | 0.005537 0.0004237 2485.63911673 |
---|
| 675 | 0.005821 0.0004365 2479.83657083 |
---|
| 676 | 0.006105 0.0004495 2473.75676948 |
---|
| 677 | 0.006389 0.0004628 2467.40145990 |
---|
| 678 | 0.006673 0.0004762 2460.77293372 |
---|
| 679 | 0.006957 0.0004899 2453.86724627 |
---|
| 680 | 0.007241 0.0005037 2446.69623838 |
---|
| 681 | 0.007525 0.0005177 2439.25775219 |
---|
| 682 | 0.007809 0.0005318 2431.55421398 |
---|
| 683 | 0.008093 0.0005461 2423.58785521 |
---|
| 684 | 0.008377 0.0005605 2415.36158137 |
---|
| 685 | 0.008661 0.0005750 2406.87009473 |
---|
| 686 | 0.008945 0.0005896 2398.12841186 |
---|
| 687 | 0.009229 0.0006044 2389.13360806 |
---|
| 688 | 0.009513 0.0006192 2379.88958042 |
---|
| 689 | 0.009797 0.0006341 2370.39776774 |
---|
| 690 | 0.010080 0.0006491 2360.69528793 |
---|
| 691 | 0.010360 0.0006641 2350.85169027 |
---|
| 692 | 0.010650 0.0006793 2340.42023633 |
---|
| 693 | 0.010930 0.0006945 2330.11206013 |
---|
| 694 | 0.011220 0.0007097 2319.20109972 |
---|
| 695 | 0.011500 0.0007251 2308.43503981 |
---|
| 696 | 0.011780 0.0007404 2297.44820179 |
---|
| 697 | 0.012070 0.0007558 2285.83853677 |
---|
| 698 | 0.012350 0.0007713 2274.41290746 |
---|
| 699 | 0.012640 0.0007868 2262.36219581 |
---|
| 700 | 0.012920 0.0008024 2250.51169731 |
---|
| 701 | 0.013200 0.0008180 2238.45596231 |
---|
| 702 | 0.013490 0.0008336 2225.76495666 |
---|
| 703 | 0.013770 0.0008493 2213.29618391 |
---|
| 704 | 0.014060 0.0008650 2200.19110751 |
---|
| 705 | 0.014340 0.0008807 2187.34050325 |
---|
| 706 | 0.014620 0.0008965 2174.30529864 |
---|
| 707 | 0.014910 0.0009123 2160.61632548 |
---|
| 708 | 0.015190 0.0009281 2147.21038112 |
---|
| 709 | 0.015470 0.0009440 2133.62023580 |
---|
| 710 | 0.015760 0.0009598 2119.37907426 |
---|
| 711 | 0.016040 0.0009757 2105.45234903 |
---|
| 712 | 0.016330 0.0009916 2090.86319102 |
---|
| 713 | 0.016610 0.0010080 2076.60576032 |
---|
| 714 | 0.016890 0.0010240 2062.19214565 |
---|
| 715 | 0.017180 0.0010390 2047.10550219 |
---|
| 716 | 0.017460 0.0010550 2032.38715621 |
---|
| 717 | 0.017740 0.0010710 2017.52560123 |
---|
| 718 | 0.018030 0.0010880 2001.99124318 |
---|
| 719 | 0.018310 0.0011040 1986.84662060 |
---|
| 720 | 0.018600 0.0011200 1971.03389745 |
---|
| 721 | 0.018880 0.0011360 1955.61395119 |
---|
| 722 | 0.019160 0.0011520 1940.08291563 |
---|
| 723 | 0.019450 0.0011680 1923.87672225 |
---|
| 724 | 0.019730 0.0011840 1908.10656374 |
---|
| 725 | 0.020020 0.0012000 1891.66297192 |
---|
| 726 | 0.020300 0.0012160 1875.66789021 |
---|
| 727 | 0.020580 0.0012320 1859.56357196 |
---|
| 728 | 0.020870 0.0012490 1842.79468290 |
---|
| 729 | 0.021150 0.0012650 1826.50064489 |
---|
| 730 | 0.021430 0.0012810 1810.11533702 |
---|
| 731 | 0.021720 0.0012970 1793.06840882 |
---|
| 732 | 0.022000 0.0013130 1776.51153580 |
---|
| 733 | 0.022280 0.0013290 1759.87201249 |
---|
| 734 | 0.022570 0.0013460 1742.57354412 |
---|
| 735 | 0.022850 0.0013620 1725.79397319 |
---|
| 736 | 0.023140 0.0013780 1708.35831550 |
---|
| 737 | 0.023420 0.0013940 1691.45256069 |
---|
| 738 | 0.023700 0.0014110 1674.48561783 |
---|
| 739 | 0.023990 0.0014270 1656.86525366 |
---|
| 740 | 0.024270 0.0014430 1639.79847285 |
---|
| 741 | 0.024550 0.0014590 1622.68887088 |
---|
| 742 | 0.024840 0.0014760 1604.96421100 |
---|
| 743 | 0.025120 0.0014920 1587.85768129 |
---|
| 744 | 0.025410 0.0015080 1569.99297335 |
---|
| 745 | 0.025690 0.0015240 1552.84580279 |
---|
| 746 | 0.025970 0.0015410 1535.54074115 |
---|
| 747 | 0.026260 0.0015570 1517.75249337 |
---|
| 748 | 0.026540 0.0015730 1500.40115023 |
---|
| 749 | 0.026820 0.0015900 1483.03632237 |
---|
| 750 | 0.027110 0.0016060 1465.05942429 |
---|
| 751 | 0.027390 0.0016220 1447.67682181 |
---|
| 752 | 0.027670 0.0016390 1430.46495191 |
---|
| 753 | 0.027960 0.0016550 1412.49232282 |
---|
| 754 | 0.028240 0.0016710 1395.13182318 |
---|
| 755 | 0.028520 0.0016880 1377.93439837 |
---|
| 756 | 0.028810 0.0017040 1359.99528971 |
---|
| 757 | 0.029090 0.0017200 1342.67274512 |
---|
| 758 | 0.029370 0.0017370 1325.55375609 |
---|
| 759 | """ |
---|
| 760 | |
---|
| 761 | # Slit sphere parameters |
---|
| 762 | TEST_PARS_SLIT_SPHERE = { |
---|
| 763 | 'scale': 0.01, 'background': 0.01, |
---|
| 764 | 'radius': 60000, 'sld': 1, 'solvent_sld': 4, |
---|
| 765 | } |
---|
| 766 | # Q dQ I(Q) I_smeared(Q) |
---|
| 767 | TEST_DATA_SLIT_SPHERE = """\ |
---|
| 768 | 2.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06 |
---|
| 769 | 2.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06 |
---|
| 770 | 2.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06 |
---|
| 771 | 3.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06 |
---|
| 772 | 3.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05 |
---|
| 773 | 3.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05 |
---|
| 774 | 4.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05 |
---|
| 775 | 5.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05 |
---|
| 776 | 5.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05 |
---|
| 777 | 6.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04 |
---|
| 778 | 6.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04 |
---|
| 779 | 7.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04 |
---|
| 780 | 7.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04 |
---|
| 781 | 8.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04 |
---|
| 782 | 8.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04 |
---|
| 783 | 9.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04 |
---|
| 784 | 1.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04 |
---|
| 785 | 1.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04 |
---|
| 786 | 1.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04 |
---|
| 787 | 1.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03 |
---|
| 788 | 1.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03 |
---|
| 789 | 1.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03 |
---|
| 790 | 1.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03 |
---|
| 791 | 1.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03 |
---|
| 792 | 1.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03 |
---|
| 793 | 1.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03 |
---|
| 794 | 2.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03 |
---|
| 795 | 2.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03 |
---|
| 796 | 2.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03 |
---|
| 797 | 2.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03 |
---|
| 798 | 2.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03 |
---|
| 799 | 2.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03 |
---|
| 800 | 2.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03 |
---|
| 801 | 2.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02 |
---|
| 802 | 3.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02 |
---|
| 803 | 3.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02 |
---|
| 804 | 3.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02 |
---|
| 805 | 3.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02 |
---|
| 806 | 4.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02 |
---|
| 807 | 4.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02 |
---|
| 808 | 4.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02 |
---|
| 809 | 4.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02 |
---|
| 810 | 5.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02 |
---|
| 811 | 5.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01 |
---|
| 812 | 6.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01 |
---|
| 813 | 6.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01 |
---|
| 814 | 7.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01 |
---|
| 815 | 7.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01 |
---|
| 816 | 8.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01 |
---|
| 817 | 8.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01 |
---|
| 818 | 9.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01 |
---|
| 819 | 9.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01 |
---|
| 820 | 1.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01 |
---|
| 821 | 1.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01 |
---|
| 822 | 1.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00 |
---|
| 823 | 1.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00 |
---|
| 824 | 1.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00 |
---|
| 825 | 1.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00 |
---|
| 826 | 1.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00 |
---|
| 827 | 1.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00 |
---|
| 828 | 1.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00 |
---|
| 829 | 1.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00 |
---|
| 830 | 2.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00 |
---|
| 831 | 2.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00 |
---|
| 832 | 2.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00 |
---|
| 833 | 2.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00 |
---|
| 834 | 2.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00 |
---|
| 835 | 2.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00 |
---|
| 836 | """ |
---|
| 837 | |
---|
| 838 | def main(): |
---|
| 839 | """ |
---|
| 840 | Run tests given is sys.argv. |
---|
| 841 | |
---|
| 842 | Returns 0 if success or 1 if any tests fail. |
---|
| 843 | """ |
---|
| 844 | import sys |
---|
| 845 | import xmlrunner |
---|
| 846 | |
---|
| 847 | suite = unittest.TestSuite() |
---|
| 848 | suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__])) |
---|
| 849 | |
---|
| 850 | runner = xmlrunner.XMLTestRunner(output='logs') |
---|
| 851 | result = runner.run(suite) |
---|
| 852 | return 1 if result.failures or result.errors else 0 |
---|
| 853 | |
---|
| 854 | |
---|
| 855 | ############################################################################ |
---|
| 856 | # usage demo |
---|
| 857 | ############################################################################ |
---|
| 858 | |
---|
| 859 | def _eval_demo_1d(resolution, title): |
---|
| 860 | from sasmodels import core |
---|
| 861 | from sasmodels.models import cylinder |
---|
| 862 | ## or alternatively: |
---|
| 863 | # cylinder = core.load_model_definition('cylinder') |
---|
| 864 | model = core.load_model(cylinder) |
---|
| 865 | |
---|
| 866 | kernel = core.make_kernel(model, [resolution.q_calc]) |
---|
| 867 | theory = core.call_kernel(kernel, {'length':210, 'radius':500}) |
---|
| 868 | Iq = resolution.apply(theory) |
---|
| 869 | |
---|
| 870 | import matplotlib.pyplot as plt |
---|
| 871 | plt.loglog(resolution.q_calc, theory, label='unsmeared') |
---|
| 872 | plt.loglog(resolution.q, Iq, label='smeared', hold=True) |
---|
| 873 | plt.legend() |
---|
| 874 | plt.title(title) |
---|
| 875 | plt.xlabel("Q (1/Ang)") |
---|
| 876 | plt.ylabel("I(Q) (1/cm)") |
---|
| 877 | |
---|
| 878 | def demo_pinhole_1d(): |
---|
| 879 | q = np.logspace(-3, -1, 400) |
---|
| 880 | q_width = 0.1*q |
---|
| 881 | resolution = Pinhole1D(q, q_width) |
---|
| 882 | _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution") |
---|
| 883 | |
---|
| 884 | def demo_slit_1d(): |
---|
| 885 | q = np.logspace(-3, -1, 400) |
---|
| 886 | qx_width = 0.005 |
---|
| 887 | qy_width = 0.0 |
---|
| 888 | resolution = Slit1D(q, qx_width, qy_width) |
---|
| 889 | _eval_demo_1d(resolution, title="0.005 Qx Slit Resolution") |
---|
| 890 | |
---|
| 891 | def demo(): |
---|
| 892 | import matplotlib.pyplot as plt |
---|
| 893 | plt.subplot(121) |
---|
| 894 | demo_pinhole_1d() |
---|
| 895 | plt.subplot(122) |
---|
| 896 | demo_slit_1d() |
---|
| 897 | plt.show() |
---|
| 898 | |
---|
| 899 | |
---|
| 900 | if __name__ == "__main__": |
---|
| 901 | #demo() |
---|
| 902 | main() |
---|