1 | """ |
---|
2 | Handle Q smearing |
---|
3 | """ |
---|
4 | ##################################################################### |
---|
5 | #This software was developed by the University of Tennessee as part of the |
---|
6 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
7 | #project funded by the US National Science Foundation. |
---|
8 | #See the license text in license.txt |
---|
9 | #copyright 2008, University of Tennessee |
---|
10 | ###################################################################### |
---|
11 | import numpy |
---|
12 | import math |
---|
13 | import logging |
---|
14 | import sys |
---|
15 | import sas.models.sas_extension.smearer as smearer |
---|
16 | from sas.models.smearing_2d import Smearer2D |
---|
17 | |
---|
18 | def smear_selection(data1D, model = None): |
---|
19 | """ |
---|
20 | Creates the right type of smearer according |
---|
21 | to the data. |
---|
22 | |
---|
23 | The canSAS format has a rule that either |
---|
24 | slit smearing data OR resolution smearing data |
---|
25 | is available. |
---|
26 | |
---|
27 | For the present purpose, we choose the one that |
---|
28 | has none-zero data. If both slit and resolution |
---|
29 | smearing arrays are filled with good data |
---|
30 | (which should not happen), then we choose the |
---|
31 | resolution smearing data. |
---|
32 | |
---|
33 | :param data1D: Data1D object |
---|
34 | :param model: sas.model instance |
---|
35 | """ |
---|
36 | # Sanity check. If we are not dealing with a SAS Data1D |
---|
37 | # object, just return None |
---|
38 | if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
39 | if data1D == None: |
---|
40 | return None |
---|
41 | elif data1D.dqx_data == None or data1D.dqy_data == None: |
---|
42 | return None |
---|
43 | return Smearer2D(data1D) |
---|
44 | |
---|
45 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ |
---|
46 | and not hasattr(data1D, "dxw"): |
---|
47 | return None |
---|
48 | |
---|
49 | # Look for resolution smearing data |
---|
50 | _found_resolution = False |
---|
51 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
52 | |
---|
53 | # Check that we have non-zero data |
---|
54 | if data1D.dx[0] > 0.0: |
---|
55 | _found_resolution = True |
---|
56 | #print "_found_resolution",_found_resolution |
---|
57 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
58 | # If we found resolution smearing data, return a QSmearer |
---|
59 | if _found_resolution == True: |
---|
60 | return QSmearer(data1D, model) |
---|
61 | #return pinhole_smear(data1D, model) |
---|
62 | |
---|
63 | # Look for slit smearing data |
---|
64 | _found_slit = False |
---|
65 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ |
---|
66 | and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
67 | |
---|
68 | # Check that we have non-zero data |
---|
69 | if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: |
---|
70 | _found_slit = True |
---|
71 | |
---|
72 | # Sanity check: all data should be the same as a function of Q |
---|
73 | for item in data1D.dxl: |
---|
74 | if data1D.dxl[0] != item: |
---|
75 | _found_resolution = False |
---|
76 | break |
---|
77 | |
---|
78 | for item in data1D.dxw: |
---|
79 | if data1D.dxw[0] != item: |
---|
80 | _found_resolution = False |
---|
81 | break |
---|
82 | # If we found slit smearing data, return a slit smearer |
---|
83 | if _found_slit == True: |
---|
84 | #return SlitSmearer(data1D, model) |
---|
85 | return slit_smear(data1D, model) |
---|
86 | return None |
---|
87 | |
---|
88 | |
---|
89 | class _BaseSmearer(object): |
---|
90 | """ |
---|
91 | Base class for smearers |
---|
92 | """ |
---|
93 | def __init__(self): |
---|
94 | self.nbins = 0 |
---|
95 | self.nbins_low = 0 |
---|
96 | self.nbins_high = 0 |
---|
97 | self._weights = None |
---|
98 | ## Internal flag to keep track of C++ smearer initialization |
---|
99 | self._init_complete = False |
---|
100 | self._smearer = None |
---|
101 | self.model = None |
---|
102 | self.min = None |
---|
103 | self.max = None |
---|
104 | self.qvalues = [] |
---|
105 | |
---|
106 | def __deepcopy__(self, memo=None): |
---|
107 | """ |
---|
108 | Return a valid copy of self. |
---|
109 | Avoid copying the _smearer C object and force a matrix recompute |
---|
110 | when the copy is used. |
---|
111 | """ |
---|
112 | result = _BaseSmearer() |
---|
113 | result.nbins = self.nbins |
---|
114 | return result |
---|
115 | |
---|
116 | def _compute_matrix(self): |
---|
117 | """ |
---|
118 | Place holder for matrix computation |
---|
119 | """ |
---|
120 | return NotImplemented |
---|
121 | |
---|
122 | def get_unsmeared_range(self, q_min=None, q_max=None): |
---|
123 | """ |
---|
124 | Place holder for method returning unsmeared range |
---|
125 | """ |
---|
126 | return NotImplemented |
---|
127 | |
---|
128 | def get_bin_range(self, q_min=None, q_max=None): |
---|
129 | """ |
---|
130 | |
---|
131 | :param q_min: minimum q-value to smear |
---|
132 | :param q_max: maximum q-value to smear |
---|
133 | |
---|
134 | """ |
---|
135 | # If this is the first time we call for smearing, |
---|
136 | # initialize the C++ smearer object first |
---|
137 | if not self._init_complete: |
---|
138 | self._initialize_smearer() |
---|
139 | if q_min == None: |
---|
140 | q_min = self.min |
---|
141 | if q_max == None: |
---|
142 | q_max = self.max |
---|
143 | |
---|
144 | _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, |
---|
145 | q_max) |
---|
146 | _first_bin = None |
---|
147 | _last_bin = None |
---|
148 | |
---|
149 | #step = (self.max - self.min) / (self.nbins - 1.0) |
---|
150 | # Find the first and last bin number in all extrapolated and real data |
---|
151 | try: |
---|
152 | for i in range(self.nbins): |
---|
153 | q_i = smearer.get_q(self._smearer, i) |
---|
154 | if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): |
---|
155 | # Identify first and last bin |
---|
156 | if _first_bin is None: |
---|
157 | _first_bin = i |
---|
158 | else: |
---|
159 | _last_bin = i |
---|
160 | except: |
---|
161 | msg = "_BaseSmearer.get_bin_range: " |
---|
162 | msg += " error getting range\n %s" % sys.exc_value |
---|
163 | raise RuntimeError, msg |
---|
164 | |
---|
165 | # Find the first and last bin number only in the real data |
---|
166 | _first_bin, _last_bin = self._get_unextrapolated_bin( \ |
---|
167 | _first_bin, _last_bin) |
---|
168 | |
---|
169 | return _first_bin, _last_bin |
---|
170 | |
---|
171 | def __call__(self, iq_in, first_bin = 0, last_bin = None): |
---|
172 | """ |
---|
173 | Perform smearing |
---|
174 | """ |
---|
175 | # If this is the first time we call for smearing, |
---|
176 | # initialize the C++ smearer object first |
---|
177 | if not self._init_complete: |
---|
178 | self._initialize_smearer() |
---|
179 | |
---|
180 | if last_bin is None or last_bin >= len(iq_in): |
---|
181 | last_bin = len(iq_in) - 1 |
---|
182 | # Check that the first bin is positive |
---|
183 | if first_bin < 0: |
---|
184 | first_bin = 0 |
---|
185 | |
---|
186 | # With a model given, compute I for the extrapolated points and append |
---|
187 | # to the iq_in |
---|
188 | iq_in_temp = iq_in |
---|
189 | if self.model != None: |
---|
190 | temp_first, temp_last = self._get_extrapolated_bin( \ |
---|
191 | first_bin, last_bin) |
---|
192 | if self.nbins_low > 0: |
---|
193 | iq_in_low = self.model.evalDistribution( \ |
---|
194 | numpy.fabs(self.qvalues[0:self.nbins_low])) |
---|
195 | iq_in_high = self.model.evalDistribution( \ |
---|
196 | self.qvalues[(len(self.qvalues) - \ |
---|
197 | self.nbins_high - 1):]) |
---|
198 | # Todo: find out who is sending iq[last_poin] = 0. |
---|
199 | if iq_in[len(iq_in) - 1] == 0: |
---|
200 | iq_in[len(iq_in) - 1] = iq_in_high[0] |
---|
201 | # Append the extrapolated points to the data points |
---|
202 | if self.nbins_low > 0: |
---|
203 | iq_in_temp = numpy.append(iq_in_low, iq_in) |
---|
204 | if self.nbins_high > 0: |
---|
205 | iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:]) |
---|
206 | else: |
---|
207 | temp_first = first_bin |
---|
208 | temp_last = last_bin |
---|
209 | #iq_in_temp = iq_in |
---|
210 | |
---|
211 | # Sanity check |
---|
212 | if len(iq_in_temp) != self.nbins: |
---|
213 | msg = "Invalid I(q) vector: inconsistent array " |
---|
214 | msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins)) |
---|
215 | raise RuntimeError, msg |
---|
216 | |
---|
217 | # Storage for smeared I(q) |
---|
218 | iq_out = numpy.zeros(self.nbins) |
---|
219 | |
---|
220 | smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out, |
---|
221 | #0, self.nbins - 1) |
---|
222 | temp_first, temp_last) |
---|
223 | #first_bin, last_bin) |
---|
224 | if smear_output < 0: |
---|
225 | msg = "_BaseSmearer: could not smear, code = %g" % smear_output |
---|
226 | raise RuntimeError, msg |
---|
227 | |
---|
228 | temp_first = first_bin + self.nbins_low |
---|
229 | temp_last = self.nbins - self.nbins_high |
---|
230 | out = iq_out[temp_first: temp_last] |
---|
231 | |
---|
232 | return out |
---|
233 | |
---|
234 | def _initialize_smearer(self): |
---|
235 | """ |
---|
236 | Place holder for initializing data smearer |
---|
237 | """ |
---|
238 | return NotImplemented |
---|
239 | |
---|
240 | |
---|
241 | def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
242 | """ |
---|
243 | Get unextrapolated first bin and the last bin |
---|
244 | |
---|
245 | : param first_bin: extrapolated first_bin |
---|
246 | : param last_bin: extrapolated last_bin |
---|
247 | |
---|
248 | : return fist_bin, last_bin: unextrapolated first and last bin |
---|
249 | """ |
---|
250 | # For first bin |
---|
251 | if first_bin <= self.nbins_low: |
---|
252 | first_bin = 0 |
---|
253 | else: |
---|
254 | first_bin = first_bin - self.nbins_low |
---|
255 | # For last bin |
---|
256 | if last_bin >= (self.nbins - self.nbins_high): |
---|
257 | last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1) |
---|
258 | elif last_bin >= self.nbins_low: |
---|
259 | last_bin = last_bin - self.nbins_low |
---|
260 | else: |
---|
261 | last_bin = 0 |
---|
262 | return first_bin, last_bin |
---|
263 | |
---|
264 | def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
265 | """ |
---|
266 | Get extrapolated first bin and the last bin |
---|
267 | |
---|
268 | : param first_bin: unextrapolated first_bin |
---|
269 | : param last_bin: unextrapolated last_bin |
---|
270 | |
---|
271 | : return first_bin, last_bin: extrapolated first and last bin |
---|
272 | """ |
---|
273 | # For the first bin |
---|
274 | # In the case that needs low extrapolation data |
---|
275 | first_bin = 0 |
---|
276 | # For last bin |
---|
277 | if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1): |
---|
278 | # In the case that needs higher q extrapolation data |
---|
279 | last_bin = self.nbins - 1 |
---|
280 | else: |
---|
281 | # In the case that doesn't need higher q extrapolation data |
---|
282 | last_bin += self.nbins_low |
---|
283 | |
---|
284 | return first_bin, last_bin |
---|
285 | |
---|
286 | class _SlitSmearer(_BaseSmearer): |
---|
287 | """ |
---|
288 | Slit smearing for I(q) array |
---|
289 | """ |
---|
290 | |
---|
291 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
292 | """ |
---|
293 | Initialization |
---|
294 | |
---|
295 | :param iq: I(q) array [cm-1] |
---|
296 | :param width: slit width [A-1] |
---|
297 | :param height: slit height [A-1] |
---|
298 | :param min: Q_min [A-1] |
---|
299 | :param max: Q_max [A-1] |
---|
300 | |
---|
301 | """ |
---|
302 | _BaseSmearer.__init__(self) |
---|
303 | ## Slit width in Q units |
---|
304 | self.width = width |
---|
305 | ## Slit height in Q units |
---|
306 | self.height = height |
---|
307 | ## Q_min (Min Q-value for I(q)) |
---|
308 | self.min = min |
---|
309 | ## Q_max (Max Q_value for I(q)) |
---|
310 | self.max = max |
---|
311 | ## Number of Q bins |
---|
312 | self.nbins = nbins |
---|
313 | ## Number of points used in the smearing computation |
---|
314 | self.npts = 3000 |
---|
315 | ## Smearing matrix |
---|
316 | self._weights = None |
---|
317 | self.qvalues = None |
---|
318 | |
---|
319 | def _initialize_smearer(self): |
---|
320 | """ |
---|
321 | Initialize the C++ smearer object. |
---|
322 | This method HAS to be called before smearing |
---|
323 | """ |
---|
324 | #self._smearer = smearer.new_slit_smearer(self.width, |
---|
325 | # self.height, self.min, self.max, self.nbins) |
---|
326 | self._smearer = smearer.new_slit_smearer_with_q(self.width, |
---|
327 | self.height, self.qvalues) |
---|
328 | self._init_complete = True |
---|
329 | |
---|
330 | def get_unsmeared_range(self, q_min, q_max): |
---|
331 | """ |
---|
332 | Determine the range needed in unsmeared-Q to cover |
---|
333 | the smeared Q range |
---|
334 | """ |
---|
335 | # Range used for input to smearing |
---|
336 | _qmin_unsmeared = q_min |
---|
337 | _qmax_unsmeared = q_max |
---|
338 | try: |
---|
339 | _qmin_unsmeared = self.min |
---|
340 | _qmax_unsmeared = self.max |
---|
341 | except: |
---|
342 | logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) |
---|
343 | return _qmin_unsmeared, _qmax_unsmeared |
---|
344 | |
---|
345 | class SlitSmearer(_SlitSmearer): |
---|
346 | """ |
---|
347 | Adaptor for slit smearing class and SAS data |
---|
348 | """ |
---|
349 | def __init__(self, data1D, model = None): |
---|
350 | """ |
---|
351 | Assumption: equally spaced bins of increasing q-values. |
---|
352 | |
---|
353 | :param data1D: data used to set the smearing parameters |
---|
354 | """ |
---|
355 | # Initialization from parent class |
---|
356 | super(SlitSmearer, self).__init__() |
---|
357 | |
---|
358 | ## Slit width |
---|
359 | self.width = 0 |
---|
360 | self.nbins_low = 0 |
---|
361 | self.nbins_high = 0 |
---|
362 | self.model = model |
---|
363 | if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
364 | self.width = data1D.dxw[0] |
---|
365 | # Sanity check |
---|
366 | for value in data1D.dxw: |
---|
367 | if value != self.width: |
---|
368 | msg = "Slit smearing parameters must " |
---|
369 | msg += " be the same for all data" |
---|
370 | raise RuntimeError, msg |
---|
371 | ## Slit height |
---|
372 | self.height = 0 |
---|
373 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): |
---|
374 | self.height = data1D.dxl[0] |
---|
375 | # Sanity check |
---|
376 | for value in data1D.dxl: |
---|
377 | if value != self.height: |
---|
378 | msg = "Slit smearing parameters must be" |
---|
379 | msg += " the same for all data" |
---|
380 | raise RuntimeError, msg |
---|
381 | # If a model is given, get the q extrapolation |
---|
382 | if self.model == None: |
---|
383 | data1d_x = data1D.x |
---|
384 | else: |
---|
385 | # Take larger sigma |
---|
386 | if self.height > self.width: |
---|
387 | # The denominator (2.0) covers all the possible w^2 + h^2 range |
---|
388 | sigma_in = data1D.dxl / 2.0 |
---|
389 | elif self.width > 0: |
---|
390 | sigma_in = data1D.dxw / 2.0 |
---|
391 | else: |
---|
392 | sigma_in = [] |
---|
393 | |
---|
394 | self.nbins_low, self.nbins_high, _, data1d_x = \ |
---|
395 | get_qextrapolate(sigma_in, data1D.x) |
---|
396 | |
---|
397 | ## Number of Q bins |
---|
398 | self.nbins = len(data1d_x) |
---|
399 | ## Minimum Q |
---|
400 | self.min = min(data1d_x) |
---|
401 | ## Maximum |
---|
402 | self.max = max(data1d_x) |
---|
403 | ## Q-values |
---|
404 | self.qvalues = data1d_x |
---|
405 | |
---|
406 | |
---|
407 | class _QSmearer(_BaseSmearer): |
---|
408 | """ |
---|
409 | Perform Gaussian Q smearing |
---|
410 | """ |
---|
411 | |
---|
412 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
413 | """ |
---|
414 | Initialization |
---|
415 | |
---|
416 | :param nbins: number of Q bins |
---|
417 | :param width: array standard deviation in Q [A-1] |
---|
418 | :param min: Q_min [A-1] |
---|
419 | :param max: Q_max [A-1] |
---|
420 | """ |
---|
421 | _BaseSmearer.__init__(self) |
---|
422 | ## Standard deviation in Q [A-1] |
---|
423 | self.width = width |
---|
424 | ## Q_min (Min Q-value for I(q)) |
---|
425 | self.min = min |
---|
426 | ## Q_max (Max Q_value for I(q)) |
---|
427 | self.max = max |
---|
428 | ## Number of Q bins |
---|
429 | self.nbins = nbins |
---|
430 | ## Smearing matrix |
---|
431 | self._weights = None |
---|
432 | self.qvalues = None |
---|
433 | |
---|
434 | def _initialize_smearer(self): |
---|
435 | """ |
---|
436 | Initialize the C++ smearer object. |
---|
437 | This method HAS to be called before smearing |
---|
438 | """ |
---|
439 | #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), |
---|
440 | # self.min, self.max, self.nbins) |
---|
441 | self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), |
---|
442 | self.qvalues) |
---|
443 | self._init_complete = True |
---|
444 | |
---|
445 | def get_unsmeared_range(self, q_min, q_max): |
---|
446 | """ |
---|
447 | Determine the range needed in unsmeared-Q to cover |
---|
448 | the smeared Q range |
---|
449 | Take 3 sigmas as the offset between smeared and unsmeared space |
---|
450 | """ |
---|
451 | # Range used for input to smearing |
---|
452 | _qmin_unsmeared = q_min |
---|
453 | _qmax_unsmeared = q_max |
---|
454 | try: |
---|
455 | offset = 3.0 * max(self.width) |
---|
456 | _qmin_unsmeared = self.min#max([self.min, q_min - offset]) |
---|
457 | _qmax_unsmeared = self.max#min([self.max, q_max + offset]) |
---|
458 | except: |
---|
459 | logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) |
---|
460 | return _qmin_unsmeared, _qmax_unsmeared |
---|
461 | |
---|
462 | |
---|
463 | class QSmearer(_QSmearer): |
---|
464 | """ |
---|
465 | Adaptor for Gaussian Q smearing class and SAS data |
---|
466 | """ |
---|
467 | def __init__(self, data1D, model = None): |
---|
468 | """ |
---|
469 | Assumption: equally spaced bins of increasing q-values. |
---|
470 | |
---|
471 | :param data1D: data used to set the smearing parameters |
---|
472 | """ |
---|
473 | # Initialization from parent class |
---|
474 | super(QSmearer, self).__init__() |
---|
475 | data1d_x = [] |
---|
476 | self.nbins_low = 0 |
---|
477 | self.nbins_high = 0 |
---|
478 | self.model = model |
---|
479 | ## Resolution |
---|
480 | #self.width = numpy.zeros(len(data1D.x)) |
---|
481 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
482 | self.width = data1D.dx |
---|
483 | |
---|
484 | if self.model == None: |
---|
485 | data1d_x = data1D.x |
---|
486 | else: |
---|
487 | self.nbins_low, self.nbins_high, self.width, data1d_x = \ |
---|
488 | get_qextrapolate(self.width, data1D.x) |
---|
489 | |
---|
490 | ## Number of Q bins |
---|
491 | self.nbins = len(data1d_x) |
---|
492 | ## Minimum Q |
---|
493 | self.min = min(data1d_x) |
---|
494 | ## Maximum |
---|
495 | self.max = max(data1d_x) |
---|
496 | ## Q-values |
---|
497 | self.qvalues = data1d_x |
---|
498 | |
---|
499 | |
---|
500 | def get_qextrapolate(width, data_x): |
---|
501 | """ |
---|
502 | Make fake data_x points extrapolated outside of the data_x points |
---|
503 | |
---|
504 | :param width: array of std of q resolution |
---|
505 | :param Data1D.x: Data1D.x array |
---|
506 | |
---|
507 | :return new_width, data_x_ext: extrapolated width array and x array |
---|
508 | |
---|
509 | :assumption1: data_x is ordered from lower q to higher q |
---|
510 | :assumption2: len(data) = len(width) |
---|
511 | :assumption3: the distance between the data points is more compact than the size of width |
---|
512 | :Todo1: Make sure that the assumptions are correct for Data1D |
---|
513 | :Todo2: This fixes the edge problem in Qsmearer but still needs to make smearer interface |
---|
514 | """ |
---|
515 | # Length of the width |
---|
516 | length = len(width) |
---|
517 | width_low = math.fabs(width[0]) |
---|
518 | width_high = math.fabs(width[length -1]) |
---|
519 | nbins_low = 0.0 |
---|
520 | nbins_high = 0.0 |
---|
521 | # Compare width(dQ) to the data bin size and take smaller one as the bin |
---|
522 | # size of the extrapolation; this will correct some weird behavior |
---|
523 | # at the edge: This method was out (commented) |
---|
524 | # because it becomes very expansive when |
---|
525 | # bin size is very small comparing to the width. |
---|
526 | # Now on, we will just give the bin size of the extrapolated points |
---|
527 | # based on the width. |
---|
528 | # Find bin sizes |
---|
529 | #bin_size_low = math.fabs(data_x[1] - data_x[0]) |
---|
530 | #bin_size_high = math.fabs(data_x[length - 1] - data_x[length - 2]) |
---|
531 | # Let's set the bin size 1/3 of the width(sigma), it is good as long as |
---|
532 | # the scattering is monotonous. |
---|
533 | #if width_low < (bin_size_low): |
---|
534 | bin_size_low = width_low / 10.0 |
---|
535 | #if width_high < (bin_size_high): |
---|
536 | bin_size_high = width_high / 10.0 |
---|
537 | |
---|
538 | # Number of q points required below the 1st data point in order to extend |
---|
539 | # them 3 times of the width (std) |
---|
540 | if width_low > 0.0: |
---|
541 | nbins_low = math.ceil(3.0 * width_low / bin_size_low) |
---|
542 | # Number of q points required above the last data point |
---|
543 | if width_high > 0.0: |
---|
544 | nbins_high = math.ceil(3.0 * width_high / bin_size_high) |
---|
545 | # Make null q points |
---|
546 | extra_low = numpy.zeros(nbins_low) |
---|
547 | extra_high = numpy.zeros(nbins_high) |
---|
548 | # Give extrapolated values |
---|
549 | ind = 0 |
---|
550 | qvalue = data_x[0] - bin_size_low |
---|
551 | #if qvalue > 0: |
---|
552 | while(ind < nbins_low): |
---|
553 | extra_low[nbins_low - (ind + 1)] = qvalue |
---|
554 | qvalue -= bin_size_low |
---|
555 | ind += 1 |
---|
556 | #if qvalue <= 0: |
---|
557 | # break |
---|
558 | # Redefine nbins_low |
---|
559 | nbins_low = ind |
---|
560 | # Reset ind for another extrapolation |
---|
561 | ind = 0 |
---|
562 | qvalue = data_x[length -1] + bin_size_high |
---|
563 | while(ind < nbins_high): |
---|
564 | extra_high[ind] = qvalue |
---|
565 | qvalue += bin_size_high |
---|
566 | ind += 1 |
---|
567 | # Make a new qx array |
---|
568 | if nbins_low > 0: |
---|
569 | data_x_ext = numpy.append(extra_low, data_x) |
---|
570 | else: |
---|
571 | data_x_ext = data_x |
---|
572 | data_x_ext = numpy.append(data_x_ext, extra_high) |
---|
573 | |
---|
574 | # Redefine extra_low and high based on corrected nbins |
---|
575 | # And note that it is not necessary for extra_width to be a non-zero |
---|
576 | if nbins_low > 0: |
---|
577 | extra_low = numpy.zeros(nbins_low) |
---|
578 | extra_high = numpy.zeros(nbins_high) |
---|
579 | # Make new width array |
---|
580 | new_width = numpy.append(extra_low, width) |
---|
581 | new_width = numpy.append(new_width, extra_high) |
---|
582 | |
---|
583 | # nbins corrections due to the negative q value |
---|
584 | nbins_low = nbins_low - len(data_x_ext[data_x_ext <= 0]) |
---|
585 | return nbins_low, nbins_high, \ |
---|
586 | new_width[data_x_ext > 0], data_x_ext[data_x_ext > 0] |
---|
587 | |
---|
588 | |
---|
589 | |
---|
590 | from .resolution import Slit1D, Pinhole1D |
---|
591 | class PySmear(object): |
---|
592 | """ |
---|
593 | Wrapper for pure python sasmodels resolution functions. |
---|
594 | """ |
---|
595 | def __init__(self, resolution, model): |
---|
596 | self.model = model |
---|
597 | self.resolution = resolution |
---|
598 | self.offset = numpy.searchsorted(self.resolution.q_calc, self.resolution.q[0]) |
---|
599 | |
---|
600 | def apply(self, iq_in, first_bin=0, last_bin=None): |
---|
601 | """ |
---|
602 | Apply the resolution function to the data. |
---|
603 | |
---|
604 | Note that this is called with iq_in matching data.x, but with |
---|
605 | iq_in[first_bin:last_bin] set to theory values for these bins, |
---|
606 | and the remainder left undefined. The first_bin, last_bin values |
---|
607 | should be those returned from get_bin_range. |
---|
608 | |
---|
609 | The returned value is of the same length as iq_in, with the range |
---|
610 | first_bin:last_bin set to the resolution smeared values. |
---|
611 | """ |
---|
612 | if last_bin is None: last_bin = len(iq_in) |
---|
613 | start, end = first_bin + self.offset, last_bin + self.offset |
---|
614 | q_calc = self.resolution.q_calc |
---|
615 | iq_calc = numpy.empty_like(q_calc) |
---|
616 | if start > 0: |
---|
617 | iq_calc[:start] = self.model.evalDistribution(q_calc[:start]) |
---|
618 | if end+1 < len(q_calc): |
---|
619 | iq_calc[end+1:] = self.model.evalDistribution(q_calc[end+1:]) |
---|
620 | iq_calc[start:end+1] = iq_in[first_bin:last_bin+1] |
---|
621 | smeared = self.resolution.apply(iq_calc) |
---|
622 | return smeared |
---|
623 | __call__ = apply |
---|
624 | |
---|
625 | def get_bin_range(self, q_min=None, q_max=None): |
---|
626 | """ |
---|
627 | For a given q_min, q_max, find the corresponding indices in the data. |
---|
628 | |
---|
629 | Returns first, last. |
---|
630 | |
---|
631 | Note that these are indexes into q from the data, not the q_calc |
---|
632 | needed by the resolution function. Note also that these are the |
---|
633 | indices, not the range limits. That is, the complete range will be |
---|
634 | q[first:last+1]. |
---|
635 | """ |
---|
636 | q = self.resolution.q |
---|
637 | first = numpy.searchsorted(q, q_min) |
---|
638 | last = numpy.searchsorted(q, q_max) |
---|
639 | return first, min(last,len(q)-1) |
---|
640 | |
---|
641 | def slit_smear(data, model=None): |
---|
642 | q = data.x |
---|
643 | width = data.dxw if data.dxw is not None else 0 |
---|
644 | height = data.dxl if data.dxl is not None else 0 |
---|
645 | # TODO: width and height seem to be reversed |
---|
646 | return PySmear(Slit1D(q, height, width), model) |
---|
647 | |
---|
648 | def pinhole_smear(data, model=None): |
---|
649 | q = data.x |
---|
650 | width = data.dx if data.dx is not None else 0 |
---|
651 | return PySmear(Pinhole1D(q, width), model) |
---|