1 | #if !defined(cylinder_h) |
---|
2 | #define cylinder_h |
---|
3 | #include "parameters.hh" |
---|
4 | |
---|
5 | /** Structure definition for cylinder parameters |
---|
6 | * [PYTHONCLASS] = CylinderModel |
---|
7 | * [DISP_PARAMS] = radius, length, cyl_theta, cyl_phi |
---|
8 | [DESCRIPTION] = <text> f(q)= 2*(sldCyl - sldSolv)*V*sin(qLcos(alpha/2)) |
---|
9 | /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)] |
---|
10 | |
---|
11 | P(q,alpha)= scale/V*f(q)^(2)+bkg |
---|
12 | V: Volume of the cylinder |
---|
13 | R: Radius of the cylinder |
---|
14 | L: Length of the cylinder |
---|
15 | J1: The bessel function |
---|
16 | alpha: angle betweenthe axis of the |
---|
17 | cylinder and the q-vector for 1D |
---|
18 | :the ouput is P(q)=scale/V*integral |
---|
19 | from pi/2 to zero of... |
---|
20 | f(q)^(2)*sin(alpha)*dalpha+ bkg |
---|
21 | </text> |
---|
22 | [FIXED]= <text>cyl_phi.width; cyl_theta.width; length.width;radius.width</text> |
---|
23 | [ORIENTATION_PARAMS]= <text>cyl_phi; cyl_theta; cyl_phi.width; cyl_theta.width;M0_sld_cyl; M_theta_cyl; M_phi_cyl;M0_sld_solv; M_theta_solv; M_phi_solv; Up_frac_i; Up_frac_f; Up_theta;</text> |
---|
24 | [MAGNETIC_PARAMS]= <text> M0_sld_cyl; M_theta_cyl; M_phi_cyl; M0_sld_solv; M_theta_solv; M_phi_solv; Up_frac_i; Up_frac_f; Up_theta; </text> |
---|
25 | |
---|
26 | **/ |
---|
27 | class CylinderModel{ |
---|
28 | public: |
---|
29 | // Model parameters |
---|
30 | |
---|
31 | /// Scale factor |
---|
32 | // [DEFAULT]=scale=1.0 |
---|
33 | Parameter scale; |
---|
34 | |
---|
35 | /// Radius of the cylinder [A] |
---|
36 | // [DEFAULT]=radius=20.0 [A] 0.0 inf |
---|
37 | Parameter radius; |
---|
38 | |
---|
39 | /// Length of the cylinder [A] |
---|
40 | // [DEFAULT]=length=400.0 [A] 0.0 inf |
---|
41 | Parameter length; |
---|
42 | |
---|
43 | /// Contrast [1/A^(2)] |
---|
44 | // [DEFAULT]=sldCyl=4.0e-6 [1/A^(2)] |
---|
45 | Parameter sldCyl; |
---|
46 | |
---|
47 | /// sldCyl [1/A^(2)] |
---|
48 | // [DEFAULT]=sldSolv=1.0e-6 [1/A^(2)] |
---|
49 | Parameter sldSolv; |
---|
50 | |
---|
51 | /// Incoherent Background [1/cm] 0.00 |
---|
52 | // [DEFAULT]=background=0.0 [1/cm] |
---|
53 | Parameter background; |
---|
54 | |
---|
55 | /// Orientation of the cylinder axis w/respect incoming beam [deg] |
---|
56 | // [DEFAULT]=cyl_theta=60.0 [deg] |
---|
57 | Parameter cyl_theta; |
---|
58 | |
---|
59 | /// Orientation of the cylinder in the plane of the detector [deg] |
---|
60 | // [DEFAULT]=cyl_phi=60.0 [deg] |
---|
61 | Parameter cyl_phi; |
---|
62 | |
---|
63 | /// M0_sld_cyl |
---|
64 | // [DEFAULT]=M0_sld_cyl=0.0e-6 [1/A^(2)] |
---|
65 | Parameter M0_sld_cyl; |
---|
66 | |
---|
67 | /// M_theta_cyl |
---|
68 | // [DEFAULT]=M_theta_cyl=0.0 [deg] |
---|
69 | Parameter M_theta_cyl; |
---|
70 | |
---|
71 | /// M_phi_cyl |
---|
72 | // [DEFAULT]=M_phi_cyl=0.0 [deg] |
---|
73 | Parameter M_phi_cyl; |
---|
74 | |
---|
75 | /// M0_sld_solv |
---|
76 | // [DEFAULT]=M0_sld_solv=0.0e-6 [1/A^(2)] |
---|
77 | Parameter M0_sld_solv; |
---|
78 | |
---|
79 | /// M_theta_solv |
---|
80 | // [DEFAULT]=M_theta_solv=0.0 [deg] |
---|
81 | Parameter M_theta_solv; |
---|
82 | |
---|
83 | /// M_phi_solv |
---|
84 | // [DEFAULT]=M_phi_solv=0.0 [deg] |
---|
85 | Parameter M_phi_solv; |
---|
86 | |
---|
87 | /// Up_frac_i |
---|
88 | // [DEFAULT]=Up_frac_i=0.5 [u/(u+d)] |
---|
89 | Parameter Up_frac_i; |
---|
90 | |
---|
91 | /// Up_frac_f |
---|
92 | // [DEFAULT]=Up_frac_f=0.5 [u/(u+d)] |
---|
93 | Parameter Up_frac_f; |
---|
94 | |
---|
95 | /// Up_theta |
---|
96 | // [DEFAULT]=Up_theta=0.0 [deg] |
---|
97 | Parameter Up_theta; |
---|
98 | |
---|
99 | // Constructor |
---|
100 | CylinderModel(); |
---|
101 | |
---|
102 | // Operators to get I(Q) |
---|
103 | double operator()(double q); |
---|
104 | double operator()(double qx, double qy); |
---|
105 | double calculate_ER(); |
---|
106 | double calculate_VR(); |
---|
107 | double evaluate_rphi(double q, double phi); |
---|
108 | }; |
---|
109 | |
---|
110 | #endif |
---|