[230f479] | 1 | Release Notes |
---|
| 2 | ============= |
---|
| 3 | |
---|
[fd5ac0d] | 4 | SAS Models version 0.4.3 |
---|
[230f479] | 5 | |
---|
| 6 | Package name: sans.models |
---|
| 7 | |
---|
| 8 | 1- What's New in Version 0.4.3 |
---|
| 9 | - Release date: April 21, 2009 |
---|
| 10 | - C extension models now use new C++ classes that incorporate dispersity and averaging |
---|
| 11 | functionality. See utest_dispersity.py for examples of how to use the new dispersion |
---|
| 12 | classes. |
---|
| 13 | |
---|
| 14 | # Create a model |
---|
| 15 | model= CylinderModel() |
---|
| 16 | |
---|
| 17 | # Create a dispersion model |
---|
| 18 | disp = GaussianDispersion() |
---|
| 19 | |
---|
| 20 | # Set the dispersion for a chosen parameter |
---|
| 21 | model.set_dispersion('radius', disp) |
---|
| 22 | |
---|
| 23 | # Set the parameters of the dispersion model |
---|
| 24 | model.dispersion['radius']['width'] = 5.0 |
---|
| 25 | model.dispersion['radius']['npts'] = 100 |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | Version 0.4.3 |
---|
| 29 | -P(Q)*S(Q) added for P(Q)=cylinder, sphere, ellipsoid |
---|
| 30 | -Array dispersion (user defined) added |
---|
| 31 | |
---|
| 32 | Version 0.4.2 |
---|
| 33 | -4 Structure factors added |
---|
| 34 | |
---|
| 35 | Version 0.4.1 |
---|
| 36 | - Release date: 6/9/2008 |
---|
| 37 | - Modified non-shape models so that the 2D output is the 1D output for the length of Q |
---|
| 38 | |
---|
| 39 | Version 0.4.0 |
---|
| 40 | - Release date: 4/15/2008 |
---|
| 41 | - Added shape-independent models. |
---|
| 42 | |
---|
| 43 | Version 0.3.2: |
---|
| 44 | - Release date: 2/14/2008 |
---|
| 45 | - Added models to be used in magnetic analysis. |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | 2- Downloading and Installing |
---|
| 49 | |
---|
| 50 | 2.1- System Requirements: |
---|
| 51 | - Python version >= 2.5 and < 3.0 should be running on the system |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | 2.2- Installing: |
---|
| 55 | - Get the code from svn://danse.us/sans/releases/sansmodels-0.4.3 |
---|
| 56 | - Execute the following: |
---|
| 57 | python setup.py install |
---|
| 58 | |
---|
| 59 | 3- Known Issues |
---|
| 60 | |
---|
| 61 | 3.1- All systems: |
---|
| 62 | - Q range validity of I(q) calculations. |
---|
| 63 | Our 1D models of I(q) use the function of the NCNR library |
---|
| 64 | for their IGOR package (Klein, 2006). That library uses a |
---|
| 65 | fast integration technique in some of its models (cylinders |
---|
| 66 | and ellipsoids). Integration is done using 76 points in the |
---|
| 67 | angle between the axis of the object and the q-vector, which |
---|
| 68 | translates in a larger inaccuracy at high q. Integratiing |
---|
| 69 | the 2D model I(q,phi) over all orientations of the object |
---|
| 70 | will not yield the exact same result as the NCNR calculation |
---|
| 71 | for q > 0.3 A-1. |
---|
| 72 | - Refactoring needs to be done to update the model base class. |
---|
| 73 | We should get rid of the useless arithmetics and store the parameters |
---|
| 74 | as class objects rather than values. This would eliminate the multitude |
---|
| 75 | of dictionaries needed to store all the various aspects of a parameter |
---|
| 76 | (limits, units, dispersity information). The C++ design it relies |
---|
| 77 | on is much cleaner in that respect, but it still depends on the old |
---|
| 78 | C computation. Those should be incorporated in the C++ classes. |
---|
| 79 | |
---|
| 80 | 3.2- Windows: |
---|
| 81 | - None |
---|
| 82 | |
---|
| 83 | 3.3- Linux: |
---|
| 84 | - None |
---|
| 85 | |
---|
| 86 | 4- Troubleshooting |
---|
| 87 | |
---|
| 88 | - None |
---|
| 89 | |
---|
| 90 | 5- Frequently Asked Questions |
---|
| 91 | |
---|
| 92 | - None |
---|
| 93 | |
---|
| 94 | 6- Other Resources |
---|
| 95 | |
---|
| 96 | - See: http://danse.us/trac/sans/wiki/8_2_2_1DModelFitting |
---|
| 97 | - See: http://danse.us/trac/sans/wiki/8_2_3_2DModeling |
---|
| 98 | - See: http://danse.us/trac/sans/wiki/8_2_6_model_extensions |
---|
| 99 | - See: http://danse.us/trac/sans/wiki/8_2_1Nonshape_models |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | |
---|