1 | /* SimpleFit.c |
---|
2 | |
---|
3 | A simplified project designed to act as a template for your curve fitting function. |
---|
4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
5 | */ |
---|
6 | |
---|
7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
8 | #include "GaussWeights.h" |
---|
9 | #include "libSphere.h" |
---|
10 | |
---|
11 | |
---|
12 | static double |
---|
13 | gammln(double xx) { |
---|
14 | double x,y,tmp,ser; |
---|
15 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
16 | 24.01409824083091,-1.231739572450155, |
---|
17 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
18 | int j; |
---|
19 | |
---|
20 | y=x=xx; |
---|
21 | tmp=x+5.5; |
---|
22 | tmp -= (x+0.5)*log(tmp); |
---|
23 | ser=1.000000000190015; |
---|
24 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
25 | return -tmp+log(2.5066282746310005*ser/x); |
---|
26 | } |
---|
27 | |
---|
28 | static double |
---|
29 | LogNormal_distr(double sig, double mu, double pt) |
---|
30 | { |
---|
31 | double retval,pi; |
---|
32 | |
---|
33 | pi = 4.0*atan(1.0); |
---|
34 | retval = (1.0/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
35 | return(retval); |
---|
36 | } |
---|
37 | |
---|
38 | static double |
---|
39 | Gauss_distr(double sig, double avg, double pt) |
---|
40 | { |
---|
41 | double retval,Pi; |
---|
42 | |
---|
43 | Pi = 4.0*atan(1.0); |
---|
44 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
45 | return(retval); |
---|
46 | } |
---|
47 | |
---|
48 | static double SchulzPoint(double x, double avg, double zz) { |
---|
49 | double dr; |
---|
50 | dr = zz*log(x) - gammln(zz+1.0)+(zz+1.0)*log((zz+1.0)/avg)-(x/avg*(zz+1.0)); |
---|
51 | return (exp(dr)); |
---|
52 | }; |
---|
53 | |
---|
54 | |
---|
55 | // scattering from a sphere - hardly needs to be an XOP... |
---|
56 | double |
---|
57 | SphereForm(double dp[], double q) |
---|
58 | { |
---|
59 | double scale,radius,delrho,bkg,sldSph,sldSolv; //my local names |
---|
60 | double bes,f,vol,f2,pi,qr; |
---|
61 | |
---|
62 | pi = 4.0*atan(1.0); |
---|
63 | scale = dp[0]; |
---|
64 | radius = dp[1]; |
---|
65 | sldSph = dp[2]; |
---|
66 | sldSolv = dp[3]; |
---|
67 | bkg = dp[4]; |
---|
68 | |
---|
69 | delrho = sldSph - sldSolv; |
---|
70 | //handle qr==0 separately |
---|
71 | qr = q*radius; |
---|
72 | if(qr == 0.0){ |
---|
73 | bes = 1.0; |
---|
74 | }else{ |
---|
75 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
76 | } |
---|
77 | |
---|
78 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
79 | f = vol*bes*delrho; // [=] A-1 |
---|
80 | // normalize to single particle volume, convert to 1/cm |
---|
81 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
82 | |
---|
83 | return(scale*f2+bkg); //scale, and add in the background |
---|
84 | } |
---|
85 | |
---|
86 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
87 | double |
---|
88 | CoreShellForm(double dp[], double q) |
---|
89 | { |
---|
90 | double x,pi; |
---|
91 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
92 | double bes,f,vol,qr,contr,f2; |
---|
93 | |
---|
94 | pi = 4.0*atan(1.0); |
---|
95 | x=q; |
---|
96 | |
---|
97 | scale = dp[0]; |
---|
98 | rcore = dp[1]; |
---|
99 | thick = dp[2]; |
---|
100 | rhocore = dp[3]; |
---|
101 | rhoshel = dp[4]; |
---|
102 | rhosolv = dp[5]; |
---|
103 | bkg = dp[6]; |
---|
104 | // core first, then add in shell |
---|
105 | qr=x*rcore; |
---|
106 | contr = rhocore-rhoshel; |
---|
107 | if(qr == 0.0){ |
---|
108 | bes = 1.0; |
---|
109 | }else{ |
---|
110 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
111 | } |
---|
112 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
113 | f = vol*bes*contr; |
---|
114 | //now the shell |
---|
115 | qr=x*(rcore+thick); |
---|
116 | contr = rhoshel-rhosolv; |
---|
117 | if(qr == 0.0){ |
---|
118 | bes = 1.0; |
---|
119 | }else{ |
---|
120 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
121 | } |
---|
122 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
123 | f += vol*bes*contr; |
---|
124 | |
---|
125 | // normalize to particle volume and rescale from [A-1] to [cm-1] |
---|
126 | f2 = f*f/vol*1.0e8; |
---|
127 | |
---|
128 | //scale if desired |
---|
129 | f2 *= scale; |
---|
130 | // then add in the background |
---|
131 | f2 += bkg; |
---|
132 | |
---|
133 | return(f2); |
---|
134 | } |
---|
135 | |
---|
136 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
137 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
138 | double |
---|
139 | VesicleForm(double dp[], double q) |
---|
140 | { |
---|
141 | double x,pi; |
---|
142 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
143 | double bes,f,vol,qr,contr,f2; |
---|
144 | pi = 4.0*atan(1.0); |
---|
145 | x= q; |
---|
146 | |
---|
147 | scale = dp[0]; |
---|
148 | rcore = dp[1]; |
---|
149 | thick = dp[2]; |
---|
150 | rhocore = dp[3]; |
---|
151 | rhosolv = rhocore; |
---|
152 | rhoshel = dp[4]; |
---|
153 | bkg = dp[5]; |
---|
154 | // core first, then add in shell |
---|
155 | qr=x*rcore; |
---|
156 | contr = rhocore-rhoshel; |
---|
157 | if(qr == 0){ |
---|
158 | bes = 1.0; |
---|
159 | }else{ |
---|
160 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
161 | } |
---|
162 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
163 | f = vol*bes*contr; |
---|
164 | //now the shell |
---|
165 | qr=x*(rcore+thick); |
---|
166 | contr = rhoshel-rhosolv; |
---|
167 | if(qr == 0.0){ |
---|
168 | bes = 1.0; |
---|
169 | }else{ |
---|
170 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
171 | } |
---|
172 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
173 | f += vol*bes*contr; |
---|
174 | |
---|
175 | // normalize to the particle volume and rescale from [A-1] to [cm-1] |
---|
176 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
177 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
178 | f2 = f*f/vol*1.0e8; |
---|
179 | |
---|
180 | //scale if desired |
---|
181 | f2 *= scale; |
---|
182 | // then add in the background |
---|
183 | f2 += bkg; |
---|
184 | |
---|
185 | return(f2); |
---|
186 | } |
---|
187 | |
---|
188 | |
---|
189 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
190 | // |
---|
191 | double |
---|
192 | PolyCoreForm(double dp[], double q) |
---|
193 | { |
---|
194 | double pi; |
---|
195 | double scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
196 | double d, g ,h; |
---|
197 | double qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
198 | double t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
199 | double zp3,vpoly; |
---|
200 | double s2y, arg1, arg2, arg3, drh1, drh2; |
---|
201 | |
---|
202 | pi = 4.0*atan(1.0); |
---|
203 | qq= q; |
---|
204 | scale = dp[0]; |
---|
205 | corrad = dp[1]; |
---|
206 | sig = dp[2]; |
---|
207 | del = dp[3]; |
---|
208 | drho1 = dp[4]-dp[5]; //core-shell |
---|
209 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
210 | bkg = dp[7]; |
---|
211 | |
---|
212 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
213 | |
---|
214 | h=qq; |
---|
215 | |
---|
216 | drh1 = drho1; |
---|
217 | drh2 = drho2; |
---|
218 | g = drh2 * -1. / drh1; |
---|
219 | zp1 = zz + 1.; |
---|
220 | zp2 = zz + 2.; |
---|
221 | zp3 = zz + 3.; |
---|
222 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
223 | |
---|
224 | |
---|
225 | // remember that h is the passed in value of q for the calculation |
---|
226 | y = h *del; |
---|
227 | x = h *corrad; |
---|
228 | d = atan(x * 2. / zp1); |
---|
229 | arg1 = zp1 * d; |
---|
230 | arg2 = zp2 * d; |
---|
231 | arg3 = zp3 * d; |
---|
232 | sy = sin(y); |
---|
233 | cy = cos(y); |
---|
234 | s2y = sin(y * 2.); |
---|
235 | c2y = cos(y * 2.); |
---|
236 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
237 | c2 = g * y * (g - cy); |
---|
238 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
239 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
240 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
241 | c6 = c3 - g * g * sy * sy; |
---|
242 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
243 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
244 | c9 = g * sy * (1. - g * cy); |
---|
245 | |
---|
246 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
247 | tb1 = exp(zp1 * .5 * tb); |
---|
248 | tb2 = exp(zp2 * .5 * tb); |
---|
249 | tb3 = exp(zp3 * .5 * tb); |
---|
250 | |
---|
251 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
252 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
253 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
254 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
255 | t5 = t1 + t2 + t3 + t4; |
---|
256 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
257 | // normalize by the average volume !!! corrected for polydispersity |
---|
258 | // and convert to cm-1 |
---|
259 | form /= vpoly; |
---|
260 | form *= 1.0e8; |
---|
261 | //Scale |
---|
262 | form *= scale; |
---|
263 | // then add in the background |
---|
264 | form += bkg; |
---|
265 | |
---|
266 | return(form); |
---|
267 | } |
---|
268 | |
---|
269 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
270 | // structure factor effects are explicitly and correctly included. |
---|
271 | // |
---|
272 | double |
---|
273 | PolyHardSphereIntensity(double dp[], double q) |
---|
274 | { |
---|
275 | double pi; |
---|
276 | double rad,z2,phi,cont,bkg,sigma; //my local names |
---|
277 | double mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
278 | double ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
279 | double ka,zz,v1,v2,p1,p2; |
---|
280 | double h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
281 | double capl,capl1,capmu,capmu1,r3,pq; |
---|
282 | double ka2,r1,heff; |
---|
283 | double hh,k,slds,sld; |
---|
284 | |
---|
285 | pi = 4.0*atan(1.0); |
---|
286 | k= q; |
---|
287 | |
---|
288 | rad = dp[0]; // radius (A) |
---|
289 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
290 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
291 | slds = dp[3]; |
---|
292 | sld = dp[4]; |
---|
293 | cont = (slds - sld)*1.0e4; // contrast (odd units) |
---|
294 | bkg = dp[5]; |
---|
295 | sigma = 2*rad; |
---|
296 | |
---|
297 | zz=1.0/(z2*z2)-1.0; |
---|
298 | bb = sigma/(zz+1.0); |
---|
299 | cc = zz+1.0; |
---|
300 | |
---|
301 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
302 | r1 = sigma/2.0; |
---|
303 | r3 = r1*r1*r1; |
---|
304 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
305 | rho=phi/(1.3333333333*pi*r3); |
---|
306 | t1 = rho*bb*cc; |
---|
307 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
308 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
309 | capd = 1.0-pi*t3/6.0; |
---|
310 | //************ |
---|
311 | v1=1.0/(1.0+bb*bb*k*k); |
---|
312 | v2=1.0/(4.0+bb*bb*k*k); |
---|
313 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
314 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
315 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
316 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
317 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
318 | s1=bb*cc; |
---|
319 | s2=cc*(cc+1.0)*bb*bb; |
---|
320 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
321 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
322 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
323 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
324 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
325 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
326 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
327 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
328 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
329 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
330 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
331 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
332 | |
---|
333 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
334 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
335 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
336 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
337 | |
---|
338 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
339 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
340 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
341 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
342 | |
---|
343 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
344 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
345 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
346 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
347 | |
---|
348 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
349 | |
---|
350 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
351 | |
---|
352 | //* This part computes the first integral in equation (1). It also |
---|
353 | // generates the KC approximated effective structure factor.*/ |
---|
354 | |
---|
355 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
356 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
357 | |
---|
358 | ka=k*(sigma/2.0); |
---|
359 | // |
---|
360 | hh=hint1+hint2; // this is the model intensity |
---|
361 | // |
---|
362 | heff=1.0+hint1/hint2; |
---|
363 | ka2=ka*ka; |
---|
364 | //* |
---|
365 | // heff is PY analytical solution for intensity divided by the |
---|
366 | // form factor. happ is the KC approximated effective S(q) |
---|
367 | |
---|
368 | //******************* |
---|
369 | // add in the background then return the intensity value |
---|
370 | |
---|
371 | return(hh+bkg); //scale, and add in the background |
---|
372 | } |
---|
373 | |
---|
374 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
375 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
376 | // |
---|
377 | double |
---|
378 | BimodalSchulzSpheres(double dp[], double q) |
---|
379 | { |
---|
380 | double x,pq; |
---|
381 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
382 | double scale2,ravg2,pd2,rho2; //my local names |
---|
383 | |
---|
384 | x= q; |
---|
385 | |
---|
386 | scale = dp[0]; |
---|
387 | ravg = dp[1]; |
---|
388 | pd = dp[2]; |
---|
389 | rho = dp[3]; |
---|
390 | scale2 = dp[4]; |
---|
391 | ravg2 = dp[5]; |
---|
392 | pd2 = dp[6]; |
---|
393 | rho2 = dp[7]; |
---|
394 | rhos = dp[8]; |
---|
395 | bkg = dp[9]; |
---|
396 | |
---|
397 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
398 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
399 | // add in the background |
---|
400 | pq += bkg; |
---|
401 | |
---|
402 | return (pq); |
---|
403 | } |
---|
404 | |
---|
405 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
406 | // |
---|
407 | double |
---|
408 | SchulzSpheres(double dp[], double q) |
---|
409 | { |
---|
410 | double x,pq; |
---|
411 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
412 | |
---|
413 | x= q; |
---|
414 | |
---|
415 | scale = dp[0]; |
---|
416 | ravg = dp[1]; |
---|
417 | pd = dp[2]; |
---|
418 | rho = dp[3]; |
---|
419 | rhos = dp[4]; |
---|
420 | bkg = dp[5]; |
---|
421 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
422 | // add in the background |
---|
423 | pq += bkg; |
---|
424 | |
---|
425 | return(pq); |
---|
426 | } |
---|
427 | |
---|
428 | // calculates everything but the background |
---|
429 | double |
---|
430 | SchulzSphere_Fn(double scale, double ravg, double pd, double rho, double rhos, double x) |
---|
431 | { |
---|
432 | double zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
433 | double aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
434 | double v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
435 | double i_zero,Rg2,zp8; |
---|
436 | |
---|
437 | pi = 4.0*atan(1.0); |
---|
438 | delrho = rho-rhos; |
---|
439 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
440 | |
---|
441 | zp1 = zz + 1.0; |
---|
442 | zp2 = zz + 2.0; |
---|
443 | zp3 = zz + 3.0; |
---|
444 | zp4 = zz + 4.0; |
---|
445 | zp5 = zz + 5.0; |
---|
446 | zp6 = zz + 6.0; |
---|
447 | zp7 = zz + 7.0; |
---|
448 | // |
---|
449 | |
---|
450 | //small QR limit - use Guinier approx |
---|
451 | zp8 = zz+8.0; |
---|
452 | if(x*ravg < 0.1) { |
---|
453 | i_zero = scale*delrho*delrho*1.e8*4.*pi/3.*pow(ravg,3); |
---|
454 | i_zero *= zp6*zp5*zp4/zp1/zp1/zp1; //6th moment / 3rd moment |
---|
455 | Rg2 = 3.*zp8*zp7/5./(zp1*zp1)*ravg*ravg; |
---|
456 | pq = i_zero*exp(-x*x*Rg2/3.); |
---|
457 | //pq += bkg; //unlike the Igor code, the backgorund is added in the wrapper (above) |
---|
458 | return(pq); |
---|
459 | } |
---|
460 | // |
---|
461 | |
---|
462 | aa = (zz+1.0)/x/ravg; |
---|
463 | |
---|
464 | at1 = atan(1.0/aa); |
---|
465 | at2 = atan(2.0/aa); |
---|
466 | // |
---|
467 | // calculations are performed to avoid large # errors |
---|
468 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
469 | // |
---|
470 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
471 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
472 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
473 | // print t1,t2,t3 |
---|
474 | rt1 = pow(10,t1); |
---|
475 | rt2 = pow(10,t2); |
---|
476 | rt3 = pow(10,t3); |
---|
477 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
478 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
479 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
480 | g1 = (v1+v2+v3); |
---|
481 | |
---|
482 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
483 | pq = pow(10,pq)*8.0*pi*pi*delrho*delrho; |
---|
484 | |
---|
485 | // |
---|
486 | // beta factor is not used here, but could be for the |
---|
487 | // decoupling approximation |
---|
488 | // |
---|
489 | // g11 = g1 |
---|
490 | // gd = -zp7*log(aa) |
---|
491 | // g1 = log(g11) + gd |
---|
492 | // |
---|
493 | // t1 = zp1*at1 |
---|
494 | // t2 = zp2*at1 |
---|
495 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
496 | // g22 = g2*g2 |
---|
497 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
498 | // beta = 2*alog(beta) |
---|
499 | |
---|
500 | //re-normalize by the average volume |
---|
501 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
502 | pq /= vpoly; |
---|
503 | //scale, convert to cm^-1 |
---|
504 | pq *= scale * 1.0e8; |
---|
505 | |
---|
506 | return(pq); |
---|
507 | } |
---|
508 | |
---|
509 | // scattering from a uniform sphere with a rectangular size distribution |
---|
510 | // |
---|
511 | double |
---|
512 | PolyRectSpheres(double dp[], double q) |
---|
513 | { |
---|
514 | double pi,x; |
---|
515 | double scale,rad,pd,cont,bkg; //my local names |
---|
516 | double inten,h1,qw,qr,width,sig,averad3,Rg2,slds,sld; |
---|
517 | |
---|
518 | pi = 4.0*atan(1.0); |
---|
519 | x= q; |
---|
520 | |
---|
521 | scale = dp[0]; |
---|
522 | rad = dp[1]; // radius (A) |
---|
523 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
524 | slds = dp[3]; |
---|
525 | sld = dp[4]; |
---|
526 | cont = slds - sld; // contrast (A^-2) |
---|
527 | bkg = dp[5]; |
---|
528 | |
---|
529 | // as usual, poly = sig/ravg |
---|
530 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
531 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
532 | |
---|
533 | sig = pd*rad; |
---|
534 | width = sqrt(3.0)*sig; |
---|
535 | |
---|
536 | //x is the q-value |
---|
537 | qw = x*width; |
---|
538 | qr = x*rad; |
---|
539 | |
---|
540 | // as for the numerical inatabilities at low QR, the function is calculating the sines and cosines |
---|
541 | // just fine - the problem seems to be that the |
---|
542 | // leading terms nearly cancel with the last term (the -6*qr... term), to within machine |
---|
543 | // precision - the difference is on the order of 10^-20 |
---|
544 | // so just use the limiting Guiner value |
---|
545 | if(qr<0.1) { |
---|
546 | h1 = scale*cont*cont*1.e8*4.*pi/3.0*pow(rad,3); |
---|
547 | h1 *= (1. + 15.*pow(pd,2) + 27.*pow(pd,4) +27./7.*pow(pd,6) ); //6th moment |
---|
548 | h1 /= (1.+3.*pd*pd); //3rd moment |
---|
549 | Rg2 = 3.0/5.0*rad*rad*( 1.+28.*pow(pd,2)+126.*pow(pd,4)+108.*pow(pd,6)+27.*pow(pd,8) ); |
---|
550 | Rg2 /= (1.+15.*pow(pd,2)+27.*pow(pd,4)+27./7.*pow(pd,6)); |
---|
551 | h1 *= exp(-1./3.*Rg2*x*x); |
---|
552 | h1 += bkg; |
---|
553 | return(h1); |
---|
554 | } |
---|
555 | |
---|
556 | // normal calculation |
---|
557 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
558 | h1 -= 5.0/2.0*cos(2.0*qr)*sin(qw)*cos(qw); |
---|
559 | h1 += 0.5*qr*qr*cos(2.0*qr)*sin(2.0*qw); |
---|
560 | h1 += 0.5*qw*qw*cos(2.0*qr)*sin(2.0*qw); |
---|
561 | h1 += qw*qr*sin(2.0*qr)*cos(2.0*qw); |
---|
562 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
563 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
564 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
565 | |
---|
566 | // calculate P(q) = <f^2> |
---|
567 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
568 | |
---|
569 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
570 | // with |
---|
571 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
572 | |
---|
573 | // normalize to the average volume |
---|
574 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
575 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
576 | |
---|
577 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
578 | inten /= 4.0*pi/3.0*averad3; |
---|
579 | //resacle to 1/cm |
---|
580 | inten *= 1.0e8; |
---|
581 | //scale the result |
---|
582 | inten *= scale; |
---|
583 | // then add in the background |
---|
584 | inten += bkg; |
---|
585 | |
---|
586 | return(inten); |
---|
587 | } |
---|
588 | |
---|
589 | |
---|
590 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
591 | // |
---|
592 | double |
---|
593 | GaussPolySphere(double dp[], double q) |
---|
594 | { |
---|
595 | double pi,x; |
---|
596 | double scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
597 | double va,vb,zi,yy,summ,inten; |
---|
598 | int nord=20,ii; |
---|
599 | |
---|
600 | pi = 4.0*atan(1.0); |
---|
601 | x= q; |
---|
602 | |
---|
603 | scale=dp[0]; |
---|
604 | rad=dp[1]; |
---|
605 | pd=dp[2]; |
---|
606 | sig=pd*rad; |
---|
607 | rho=dp[3]; |
---|
608 | rhos=dp[4]; |
---|
609 | delrho=rho-rhos; |
---|
610 | bkg=dp[5]; |
---|
611 | |
---|
612 | va = -4.0*sig + rad; |
---|
613 | if (va<0.0) { |
---|
614 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
615 | } |
---|
616 | vb = 4.0*sig +rad; |
---|
617 | |
---|
618 | summ = 0.0; // initialize integral |
---|
619 | for(ii=0;ii<nord;ii+=1) { |
---|
620 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
621 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
622 | // calculate sphere scattering |
---|
623 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
624 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
625 | yy *= yy; |
---|
626 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
627 | |
---|
628 | summ += yy; //add to the running total of the quadrature |
---|
629 | } |
---|
630 | // calculate value of integral to return |
---|
631 | inten = (vb-va)/2.0*summ; |
---|
632 | |
---|
633 | //re-normalize by polydisperse sphere volume |
---|
634 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
635 | |
---|
636 | inten *= 1.0e8; |
---|
637 | inten *= scale; |
---|
638 | inten += bkg; |
---|
639 | |
---|
640 | return(inten); //scale, and add in the background |
---|
641 | } |
---|
642 | |
---|
643 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
644 | // |
---|
645 | double |
---|
646 | LogNormalPolySphere(double dp[], double q) |
---|
647 | { |
---|
648 | double pi,x; |
---|
649 | double scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
650 | double va,vb,zi,yy,summ,inten; |
---|
651 | int nord=76,ii; |
---|
652 | |
---|
653 | pi = 4.0*atan(1.0); |
---|
654 | x= q; |
---|
655 | |
---|
656 | scale=dp[0]; |
---|
657 | rad=dp[1]; //rad is the median radius |
---|
658 | mu = log(dp[1]); |
---|
659 | sig=dp[2]; |
---|
660 | rho=dp[3]; |
---|
661 | rhos=dp[4]; |
---|
662 | delrho=rho-rhos; |
---|
663 | bkg=dp[5]; |
---|
664 | |
---|
665 | va = -3.5*sig + mu; |
---|
666 | va = exp(va); |
---|
667 | if (va<0.0) { |
---|
668 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
669 | } |
---|
670 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
671 | vb = exp(vb); |
---|
672 | |
---|
673 | summ = 0.0; // initialize integral |
---|
674 | for(ii=0;ii<nord;ii+=1) { |
---|
675 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
676 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
677 | // calculate sphere scattering |
---|
678 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
679 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
680 | yy *= yy; |
---|
681 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
682 | |
---|
683 | summ += yy; //add to the running total of the quadrature |
---|
684 | } |
---|
685 | // calculate value of integral to return |
---|
686 | inten = (vb-va)/2.0*summ; |
---|
687 | |
---|
688 | //re-normalize by polydisperse sphere volume |
---|
689 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
690 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
691 | |
---|
692 | inten *= 1.0e8; |
---|
693 | inten *= scale; |
---|
694 | inten += bkg; |
---|
695 | |
---|
696 | return(inten); |
---|
697 | } |
---|
698 | |
---|
699 | /* |
---|
700 | static double |
---|
701 | LogNormal_distr(double sig, double mu, double pt) |
---|
702 | { |
---|
703 | double retval,pi; |
---|
704 | |
---|
705 | pi = 4.0*atan(1.0); |
---|
706 | retval = (1.0/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
707 | return(retval); |
---|
708 | } |
---|
709 | |
---|
710 | static double |
---|
711 | Gauss_distr(double sig, double avg, double pt) |
---|
712 | { |
---|
713 | double retval,Pi; |
---|
714 | |
---|
715 | Pi = 4.0*atan(1.0); |
---|
716 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
717 | return(retval); |
---|
718 | } |
---|
719 | */ |
---|
720 | |
---|
721 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
722 | // - the polydispersity is of the WHOLE sphere |
---|
723 | // |
---|
724 | double |
---|
725 | PolyCoreShellRatio(double dp[], double q) |
---|
726 | { |
---|
727 | double pi,x; |
---|
728 | double scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
729 | double sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
730 | double pi43,c1,c2,form,volume,arg1,arg2; |
---|
731 | |
---|
732 | pi = 4.0*atan(1.0); |
---|
733 | x= q; |
---|
734 | |
---|
735 | scale = dp[0]; |
---|
736 | corrad = dp[1]; |
---|
737 | thick = dp[2]; |
---|
738 | sig = dp[3]; |
---|
739 | sld1 = dp[4]; |
---|
740 | sld2 = dp[5]; |
---|
741 | sld3 = dp[6]; |
---|
742 | bkg = dp[7]; |
---|
743 | |
---|
744 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
745 | shlrad = corrad + thick; |
---|
746 | drho1 = sld1-sld2; //core-shell |
---|
747 | drho2 = sld2-sld3; //shell-solvent |
---|
748 | zp1 = zz + 1.; |
---|
749 | zp2 = zz + 2.; |
---|
750 | zp3 = zz + 3.; |
---|
751 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
752 | |
---|
753 | // the beta factor is not calculated |
---|
754 | // the calculated form factor <f^2> has units [length^2] |
---|
755 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
756 | // conversion to get to absolute scale |
---|
757 | |
---|
758 | pi43=4.0/3.0*pi; |
---|
759 | pp=corrad/shlrad; |
---|
760 | volume=pi43*shlrad*shlrad*shlrad; |
---|
761 | c1=drho1*volume; |
---|
762 | c2=drho2*volume; |
---|
763 | |
---|
764 | arg1 = x*shlrad*pp; |
---|
765 | arg2 = x*shlrad; |
---|
766 | |
---|
767 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
768 | form += c2*c2*fnt2(arg2,zz); |
---|
769 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
770 | |
---|
771 | //convert the result to [cm^-1] |
---|
772 | |
---|
773 | //scale the result |
---|
774 | // - divide by the polydisperse volume, mult by 10^8 |
---|
775 | form /= vpoly; |
---|
776 | form *= 1.0e8; |
---|
777 | form *= scale; |
---|
778 | |
---|
779 | //add in the background |
---|
780 | form += bkg; |
---|
781 | |
---|
782 | return(form); |
---|
783 | } |
---|
784 | |
---|
785 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
786 | //c |
---|
787 | //c function fnt2(y,z) |
---|
788 | //c |
---|
789 | double |
---|
790 | fnt2(double yy, double zz) |
---|
791 | { |
---|
792 | double z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
793 | |
---|
794 | z1=zz+1.0; |
---|
795 | z2=zz+2.0; |
---|
796 | z3=zz+3.0; |
---|
797 | u=yy/z1; |
---|
798 | ww=atan(2.0*u); |
---|
799 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
800 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
801 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
802 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
803 | |
---|
804 | return(ans); |
---|
805 | } |
---|
806 | |
---|
807 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
808 | //c |
---|
809 | //c function fnt3(y,p,z) |
---|
810 | //c |
---|
811 | double |
---|
812 | fnt3(double yy, double pp, double zz) |
---|
813 | { |
---|
814 | double z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
815 | |
---|
816 | z1=zz+1.0; |
---|
817 | z2=zz+2.0; |
---|
818 | z3=zz+3.0; |
---|
819 | yp=(1.0+pp)*yy; |
---|
820 | yn=(1.0-pp)*yy; |
---|
821 | up=yp/z1; |
---|
822 | un=yn/z1; |
---|
823 | vp=atan(up); |
---|
824 | vn=atan(un); |
---|
825 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
826 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
827 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
828 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
829 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
830 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
831 | ans=4.5/z1/pow(yy,6); |
---|
832 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
833 | |
---|
834 | return(ans); |
---|
835 | } |
---|
836 | |
---|
837 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
838 | // are properly accounted for... |
---|
839 | // Input (fitting) variables are: |
---|
840 | // larger sphere radius(angstroms) = guess[0] |
---|
841 | // smaller sphere radius (A) = w[1] |
---|
842 | // number fraction of larger spheres = guess[2] |
---|
843 | // total volume fraction of spheres = guess[3] |
---|
844 | // size ratio, alpha(0<a<1) = derived |
---|
845 | // SLD(A-2) of larger particle = guess[4] |
---|
846 | // SLD(A-2) of smaller particle = guess[5] |
---|
847 | // SLD(A-2) of the solvent = guess[6] |
---|
848 | // background = guess[7] |
---|
849 | double |
---|
850 | BinaryHS(double dp[], double q) |
---|
851 | { |
---|
852 | double x,pi; |
---|
853 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
854 | double psf11,psf12,psf22; |
---|
855 | double phi1,phi2,phr,a3; |
---|
856 | double v1,v2,n1,n2,qr1,qr2,b1,b2,sc1,sc2; |
---|
857 | int err; |
---|
858 | |
---|
859 | pi = 4.0*atan(1.0); |
---|
860 | x= q; |
---|
861 | r2 = dp[0]; |
---|
862 | r1 = dp[1]; |
---|
863 | phi2 = dp[2]; |
---|
864 | phi1 = dp[3]; |
---|
865 | rho2 = dp[4]; |
---|
866 | rho1 = dp[5]; |
---|
867 | rhos = dp[6]; |
---|
868 | bgd = dp[7]; |
---|
869 | |
---|
870 | |
---|
871 | phi = phi1 + phi2; |
---|
872 | aa = r1/r2; |
---|
873 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
874 | a3=aa*aa*aa; |
---|
875 | phr=phi2/phi; |
---|
876 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
877 | // calculate the PSF's here |
---|
878 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
879 | |
---|
880 | // /* do form factor calculations */ |
---|
881 | |
---|
882 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
883 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
884 | |
---|
885 | n1 = phi1/v1; |
---|
886 | n2 = phi2/v2; |
---|
887 | |
---|
888 | qr1 = r1*x; |
---|
889 | qr2 = r2*x; |
---|
890 | |
---|
891 | if (qr1 == 0){ |
---|
892 | sc1 = 1.0/3.0; |
---|
893 | }else{ |
---|
894 | sc1 = (sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
895 | } |
---|
896 | if (qr2 == 0){ |
---|
897 | sc2 = 1.0/3.0; |
---|
898 | }else{ |
---|
899 | sc2 = (sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
900 | } |
---|
901 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*sc1; |
---|
902 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*sc2; |
---|
903 | inten = n1*b1*b1*psf11; |
---|
904 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
905 | inten += n2*b2*b2*psf22; |
---|
906 | ///* convert I(1/A) to (1/cm) */ |
---|
907 | inten *= 1.0e8; |
---|
908 | |
---|
909 | inten += bgd; |
---|
910 | |
---|
911 | return(inten); |
---|
912 | } |
---|
913 | |
---|
914 | double |
---|
915 | BinaryHS_PSF11(double dp[], double q) |
---|
916 | { |
---|
917 | double x,pi; |
---|
918 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
919 | double psf11,psf12,psf22; |
---|
920 | double phi1,phi2,phr,a3; |
---|
921 | int err; |
---|
922 | |
---|
923 | pi = 4.0*atan(1.0); |
---|
924 | x= q; |
---|
925 | r2 = dp[0]; |
---|
926 | r1 = dp[1]; |
---|
927 | phi2 = dp[2]; |
---|
928 | phi1 = dp[3]; |
---|
929 | rho2 = dp[4]; |
---|
930 | rho1 = dp[5]; |
---|
931 | rhos = dp[6]; |
---|
932 | bgd = dp[7]; |
---|
933 | phi = phi1 + phi2; |
---|
934 | aa = r1/r2; |
---|
935 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
936 | a3=aa*aa*aa; |
---|
937 | phr=phi2/phi; |
---|
938 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
939 | // calculate the PSF's here |
---|
940 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
941 | |
---|
942 | return(psf11); //scale, and add in the background |
---|
943 | } |
---|
944 | |
---|
945 | double |
---|
946 | BinaryHS_PSF12(double dp[], double q) |
---|
947 | { |
---|
948 | double x,pi; |
---|
949 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
950 | double psf11,psf12,psf22; |
---|
951 | double phi1,phi2,phr,a3; |
---|
952 | int err; |
---|
953 | |
---|
954 | pi = 4.0*atan(1.0); |
---|
955 | x= q; |
---|
956 | r2 = dp[0]; |
---|
957 | r1 = dp[1]; |
---|
958 | phi2 = dp[2]; |
---|
959 | phi1 = dp[3]; |
---|
960 | rho2 = dp[4]; |
---|
961 | rho1 = dp[5]; |
---|
962 | rhos = dp[6]; |
---|
963 | bgd = dp[7]; |
---|
964 | phi = phi1 + phi2; |
---|
965 | aa = r1/r2; |
---|
966 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
967 | a3=aa*aa*aa; |
---|
968 | phr=phi2/phi; |
---|
969 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
970 | // calculate the PSF's here |
---|
971 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
972 | |
---|
973 | return(psf12); //scale, and add in the background |
---|
974 | } |
---|
975 | |
---|
976 | double |
---|
977 | BinaryHS_PSF22(double dp[], double q) |
---|
978 | { |
---|
979 | double x,pi; |
---|
980 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
981 | double psf11,psf12,psf22; |
---|
982 | double phi1,phi2,phr,a3; |
---|
983 | int err; |
---|
984 | |
---|
985 | pi = 4.0*atan(1.0); |
---|
986 | x= q; |
---|
987 | |
---|
988 | r2 = dp[0]; |
---|
989 | r1 = dp[1]; |
---|
990 | phi2 = dp[2]; |
---|
991 | phi1 = dp[3]; |
---|
992 | rho2 = dp[4]; |
---|
993 | rho1 = dp[5]; |
---|
994 | rhos = dp[6]; |
---|
995 | bgd = dp[7]; |
---|
996 | phi = phi1 + phi2; |
---|
997 | aa = r1/r2; |
---|
998 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
999 | a3=aa*aa*aa; |
---|
1000 | phr=phi2/phi; |
---|
1001 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
1002 | // calculate the PSF's here |
---|
1003 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
1004 | |
---|
1005 | return(psf22); //scale, and add in the background |
---|
1006 | } |
---|
1007 | |
---|
1008 | int |
---|
1009 | ashcroft(double qval, double r2, double nf2, double aa, double phi, double *s11, double *s22, double *s12) |
---|
1010 | { |
---|
1011 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
1012 | |
---|
1013 | // calculate constant terms |
---|
1014 | double s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
1015 | double a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
1016 | double err=0.0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
1017 | double c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
1018 | double t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
1019 | |
---|
1020 | s2 = 2.0*r2; |
---|
1021 | s1 = aa*s2; |
---|
1022 | v = phi; |
---|
1023 | a3 = aa*aa*aa; |
---|
1024 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
1025 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
1026 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
1027 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
1028 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
1029 | wmv = 1/(1.-v); |
---|
1030 | wmv3 = wmv*wmv*wmv; |
---|
1031 | wmv4 = wmv*wmv3; |
---|
1032 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
1033 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
1034 | a2=a2i/a3; |
---|
1035 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
1036 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
1037 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
1038 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
1039 | gm12=2.*gm1*(1.-aa)/aa; |
---|
1040 | //c |
---|
1041 | //c calculate the direct correlation functions and print results |
---|
1042 | //c |
---|
1043 | // do 20 j=1,npts |
---|
1044 | |
---|
1045 | yy=qval*s2; |
---|
1046 | //c calculate direct correlation functions |
---|
1047 | //c ----c11 |
---|
1048 | ay=aa*yy; |
---|
1049 | ay2 = ay*ay; |
---|
1050 | ay3 = ay*ay*ay; |
---|
1051 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
1052 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
1053 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
1054 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
1055 | |
---|
1056 | //c ------c22 |
---|
1057 | y2=yy*yy; |
---|
1058 | y3=yy*y2; |
---|
1059 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
1060 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
1061 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
1062 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
1063 | |
---|
1064 | //c -----c12 |
---|
1065 | yl=.5*yy*(1.-aa); |
---|
1066 | yl3=yl*yl*yl; |
---|
1067 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
1068 | y1=aa*yy; |
---|
1069 | y13 = y1*y1*y1; |
---|
1070 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
1071 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
1072 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
1073 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
1074 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
1075 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
1076 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
1077 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
1078 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
1079 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
1080 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
1081 | ttt4=a1*(t41+t42)/y1; |
---|
1082 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
1083 | |
---|
1084 | c11=f11; |
---|
1085 | c22=f22; |
---|
1086 | c12=f12; |
---|
1087 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
1088 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
1089 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
1090 | |
---|
1091 | return(err); |
---|
1092 | } |
---|
1093 | |
---|
1094 | |
---|
1095 | |
---|
1096 | /* |
---|
1097 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
1098 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1099 | //must always be a surfactant layer on the outside |
---|
1100 | // |
---|
1101 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1102 | // resolution smeared version gives he most appropriate view of the model |
---|
1103 | |
---|
1104 | Warning: |
---|
1105 | The call to WaveData() below returns a pointer to the middle |
---|
1106 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1107 | calculations could cause memory to move, you should copy the coefficient |
---|
1108 | values to local variables or an array before such operations. |
---|
1109 | */ |
---|
1110 | double |
---|
1111 | MultiShell(double dp[], double q) |
---|
1112 | { |
---|
1113 | double x; |
---|
1114 | double scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
1115 | int ii; |
---|
1116 | double fval,voli,ri,sldi; |
---|
1117 | double pi; |
---|
1118 | |
---|
1119 | pi = 4.0*atan(1.0); |
---|
1120 | |
---|
1121 | x= q; |
---|
1122 | scale = dp[0]; |
---|
1123 | rcore = dp[1]; |
---|
1124 | ts = dp[2]; |
---|
1125 | tw = dp[3]; |
---|
1126 | rhocore = dp[4]; |
---|
1127 | rhoshel = dp[5]; |
---|
1128 | num = dp[6]; |
---|
1129 | bkg = dp[7]; |
---|
1130 | |
---|
1131 | //calculate with a loop, two shells at a time |
---|
1132 | |
---|
1133 | ii=0; |
---|
1134 | fval=0.0; |
---|
1135 | |
---|
1136 | do { |
---|
1137 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
1138 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
1139 | sldi = rhocore-rhoshel; |
---|
1140 | fval += voli*sldi*F_func(ri*x); |
---|
1141 | ri += ts; |
---|
1142 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
1143 | sldi = rhoshel-rhocore; |
---|
1144 | fval += voli*sldi*F_func(ri*x); |
---|
1145 | ii+=1; //do 2 layers at a time |
---|
1146 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1147 | |
---|
1148 | fval *= fval; //square it |
---|
1149 | fval /= voli; //normalize by the overall volume |
---|
1150 | fval *= scale*1.0e8; |
---|
1151 | fval += bkg; |
---|
1152 | |
---|
1153 | return(fval); |
---|
1154 | } |
---|
1155 | |
---|
1156 | /* |
---|
1157 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
1158 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1159 | //must always be a surfactant layer on the outside |
---|
1160 | // |
---|
1161 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1162 | // resolution smeared version gives he most appropriate view of the model |
---|
1163 | // |
---|
1164 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
1165 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
1166 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
1167 | // |
---|
1168 | Warning: |
---|
1169 | The call to WaveData() below returns a pointer to the middle |
---|
1170 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1171 | calculations could cause memory to move, you should copy the coefficient |
---|
1172 | values to local variables or an array before such operations. |
---|
1173 | */ |
---|
1174 | double |
---|
1175 | PolyMultiShell(double dp[], double q) |
---|
1176 | { |
---|
1177 | double x; |
---|
1178 | double scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
1179 | int ii,minPairs,maxPairs,first; |
---|
1180 | double fval,ri,pi; |
---|
1181 | double avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
1182 | |
---|
1183 | pi = 4.0*atan(1.0); |
---|
1184 | x= q; |
---|
1185 | |
---|
1186 | scale = dp[0]; |
---|
1187 | avg = dp[1]; // average (total) outer radius |
---|
1188 | pd = dp[2]; |
---|
1189 | rcore = dp[3]; |
---|
1190 | ts = dp[4]; |
---|
1191 | tw = dp[5]; |
---|
1192 | rhocore = dp[6]; |
---|
1193 | rhoshel = dp[7]; |
---|
1194 | bkg = dp[8]; |
---|
1195 | |
---|
1196 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
1197 | |
---|
1198 | //max radius set to be 5 std deviations past mean |
---|
1199 | hi = avg + pd*avg*5.0; |
---|
1200 | lo = avg - pd*avg*5.0; |
---|
1201 | |
---|
1202 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
1203 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
1204 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
1205 | |
---|
1206 | ii=minPairs; |
---|
1207 | fval=0.0; |
---|
1208 | d1 = 0.0; |
---|
1209 | d2 = 0.0; |
---|
1210 | r1 = 0.0; |
---|
1211 | r2 = 0.0; |
---|
1212 | distr = 0.0; |
---|
1213 | first = 1.0; |
---|
1214 | do { |
---|
1215 | //make the current values old |
---|
1216 | r1 = r2; |
---|
1217 | d1 = d2; |
---|
1218 | |
---|
1219 | ri = (double)ii*(ts+tw) - tw + rcore; |
---|
1220 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
1221 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
1222 | r2 = ri; |
---|
1223 | d2 = SchulzPoint(ri,avg,zz); |
---|
1224 | if( !first ) { |
---|
1225 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
1226 | } |
---|
1227 | ii+=1; |
---|
1228 | first = 0; |
---|
1229 | } while(ii<=maxPairs); |
---|
1230 | |
---|
1231 | fval /= 4.0*pi/3.0*avg*avg*avg; //normalize by the overall volume |
---|
1232 | fval /= distr; |
---|
1233 | fval *= scale; |
---|
1234 | fval += bkg; |
---|
1235 | |
---|
1236 | return(fval); |
---|
1237 | } |
---|
1238 | |
---|
1239 | double |
---|
1240 | MultiShellGuts(double x,double rcore,double ts,double tw,double rhocore,double rhoshel,int num) { |
---|
1241 | |
---|
1242 | double ri,sldi,fval,voli,pi; |
---|
1243 | int ii; |
---|
1244 | |
---|
1245 | pi = 4.0*atan(1.0); |
---|
1246 | ii=0; |
---|
1247 | fval=0.0; |
---|
1248 | |
---|
1249 | do { |
---|
1250 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
1251 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
1252 | sldi = rhocore-rhoshel; |
---|
1253 | fval += voli*sldi*F_func(ri*x); |
---|
1254 | ri += ts; |
---|
1255 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
1256 | sldi = rhoshel-rhocore; |
---|
1257 | fval += voli*sldi*F_func(ri*x); |
---|
1258 | ii+=1; //do 2 layers at a time |
---|
1259 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1260 | |
---|
1261 | fval *= fval; |
---|
1262 | fval /= voli; |
---|
1263 | fval *= 1.0e8; |
---|
1264 | |
---|
1265 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
1266 | } |
---|
1267 | |
---|
1268 | /* |
---|
1269 | static double |
---|
1270 | SchulzPoint(double x, double avg, double zz) { |
---|
1271 | |
---|
1272 | double dr; |
---|
1273 | |
---|
1274 | dr = zz*log(x) - gammln(zz+1.0)+(zz+1.0)*log((zz+1.0)/avg)-(x/avg*(zz+1.0)); |
---|
1275 | return (exp(dr)); |
---|
1276 | } |
---|
1277 | |
---|
1278 | static double |
---|
1279 | gammln(double xx) { |
---|
1280 | |
---|
1281 | double x,y,tmp,ser; |
---|
1282 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
1283 | 24.01409824083091,-1.231739572450155, |
---|
1284 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
1285 | int j; |
---|
1286 | |
---|
1287 | y=x=xx; |
---|
1288 | tmp=x+5.5; |
---|
1289 | tmp -= (x+0.5)*log(tmp); |
---|
1290 | ser=1.000000000190015; |
---|
1291 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
1292 | return -tmp+log(2.5066282746310005*ser/x); |
---|
1293 | } |
---|
1294 | */ |
---|
1295 | |
---|
1296 | double |
---|
1297 | F_func(double qr) { |
---|
1298 | double sc; |
---|
1299 | if (qr == 0.0){ |
---|
1300 | sc = 1.0; |
---|
1301 | }else{ |
---|
1302 | sc=(3.0*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
1303 | } |
---|
1304 | return sc; |
---|
1305 | } |
---|
1306 | |
---|
1307 | double |
---|
1308 | OneShell(double dp[], double q) |
---|
1309 | { |
---|
1310 | // variables are: |
---|
1311 | //[0] scale factor |
---|
1312 | //[1] radius of core [ᅵ] |
---|
1313 | //[2] SLD of the core [ᅵ-2] |
---|
1314 | //[3] thickness of the shell [ᅵ] |
---|
1315 | //[4] SLD of the shell |
---|
1316 | //[5] SLD of the solvent |
---|
1317 | //[6] background [cm-1] |
---|
1318 | |
---|
1319 | double x,pi; |
---|
1320 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
1321 | double bes,f,vol,qr,contr,f2; |
---|
1322 | |
---|
1323 | pi = 4.0*atan(1.0); |
---|
1324 | x=q; |
---|
1325 | |
---|
1326 | scale = dp[0]; |
---|
1327 | rcore = dp[1]; |
---|
1328 | rhocore = dp[2]; |
---|
1329 | thick = dp[3]; |
---|
1330 | rhoshel = dp[4]; |
---|
1331 | rhosolv = dp[5]; |
---|
1332 | bkg = dp[6]; |
---|
1333 | |
---|
1334 | // core first, then add in shell |
---|
1335 | qr=x*rcore; |
---|
1336 | contr = rhocore-rhoshel; |
---|
1337 | if(qr == 0){ |
---|
1338 | bes = 1.0; |
---|
1339 | }else{ |
---|
1340 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1341 | } |
---|
1342 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
1343 | f = vol*bes*contr; |
---|
1344 | //now the shell |
---|
1345 | qr=x*(rcore+thick); |
---|
1346 | contr = rhoshel-rhosolv; |
---|
1347 | if(qr == 0){ |
---|
1348 | bes = 1.0; |
---|
1349 | }else{ |
---|
1350 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1351 | } |
---|
1352 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
1353 | f += vol*bes*contr; |
---|
1354 | |
---|
1355 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
1356 | f2 = f*f/vol*1.0e8; |
---|
1357 | |
---|
1358 | //scale if desired |
---|
1359 | f2 *= scale; |
---|
1360 | // then add in the background |
---|
1361 | f2 += bkg; |
---|
1362 | |
---|
1363 | return(f2); |
---|
1364 | } |
---|
1365 | |
---|
1366 | double |
---|
1367 | TwoShell(double dp[], double q) |
---|
1368 | { |
---|
1369 | // variables are: |
---|
1370 | //[0] scale factor |
---|
1371 | //[1] radius of core [ᅵ] |
---|
1372 | //[2] SLD of the core [ᅵ-2] |
---|
1373 | //[3] thickness of shell 1 [ᅵ] |
---|
1374 | //[4] SLD of shell 1 |
---|
1375 | //[5] thickness of shell 2 [ᅵ] |
---|
1376 | //[6] SLD of shell 2 |
---|
1377 | //[7] SLD of the solvent |
---|
1378 | //[8] background [cm-1] |
---|
1379 | |
---|
1380 | double x,pi; |
---|
1381 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
1382 | double bes,f,vol,qr,contr,f2; |
---|
1383 | double rhoshel2,thick2; |
---|
1384 | |
---|
1385 | pi = 4.0*atan(1.0); |
---|
1386 | x=q; |
---|
1387 | |
---|
1388 | scale = dp[0]; |
---|
1389 | rcore = dp[1]; |
---|
1390 | rhocore = dp[2]; |
---|
1391 | thick1 = dp[3]; |
---|
1392 | rhoshel1 = dp[4]; |
---|
1393 | thick2 = dp[5]; |
---|
1394 | rhoshel2 = dp[6]; |
---|
1395 | rhosolv = dp[7]; |
---|
1396 | bkg = dp[8]; |
---|
1397 | // core first, then add in shells |
---|
1398 | qr=x*rcore; |
---|
1399 | contr = rhocore-rhoshel1; |
---|
1400 | if(qr == 0){ |
---|
1401 | bes = 1.0; |
---|
1402 | }else{ |
---|
1403 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1404 | } |
---|
1405 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
1406 | f = vol*bes*contr; |
---|
1407 | //now the shell (1) |
---|
1408 | qr=x*(rcore+thick1); |
---|
1409 | contr = rhoshel1-rhoshel2; |
---|
1410 | if(qr == 0){ |
---|
1411 | bes = 1.0; |
---|
1412 | }else{ |
---|
1413 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1414 | } |
---|
1415 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
1416 | f += vol*bes*contr; |
---|
1417 | //now the shell (2) |
---|
1418 | qr=x*(rcore+thick1+thick2); |
---|
1419 | contr = rhoshel2-rhosolv; |
---|
1420 | if(qr == 0){ |
---|
1421 | bes = 1.0; |
---|
1422 | }else{ |
---|
1423 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1424 | } |
---|
1425 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
1426 | f += vol*bes*contr; |
---|
1427 | |
---|
1428 | |
---|
1429 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
1430 | f2 = f*f/vol*1.0e8; |
---|
1431 | |
---|
1432 | //scale if desired |
---|
1433 | f2 *= scale; |
---|
1434 | // then add in the background |
---|
1435 | f2 += bkg; |
---|
1436 | |
---|
1437 | return(f2); |
---|
1438 | } |
---|
1439 | |
---|
1440 | double |
---|
1441 | ThreeShell(double dp[], double q) |
---|
1442 | { |
---|
1443 | // variables are: |
---|
1444 | //[0] scale factor |
---|
1445 | //[1] radius of core [ᅵ] |
---|
1446 | //[2] SLD of the core [ᅵ-2] |
---|
1447 | //[3] thickness of shell 1 [ᅵ] |
---|
1448 | //[4] SLD of shell 1 |
---|
1449 | //[5] thickness of shell 2 [ᅵ] |
---|
1450 | //[6] SLD of shell 2 |
---|
1451 | //[7] thickness of shell 3 |
---|
1452 | //[8] SLD of shell 3 |
---|
1453 | //[9] SLD of solvent |
---|
1454 | //[10] background [cm-1] |
---|
1455 | |
---|
1456 | double x,pi; |
---|
1457 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
1458 | double bes,f,vol,qr,contr,f2; |
---|
1459 | double rhoshel2,thick2,rhoshel3,thick3; |
---|
1460 | |
---|
1461 | pi = 4.0*atan(1.0); |
---|
1462 | x=q; |
---|
1463 | |
---|
1464 | scale = dp[0]; |
---|
1465 | rcore = dp[1]; |
---|
1466 | rhocore = dp[2]; |
---|
1467 | thick1 = dp[3]; |
---|
1468 | rhoshel1 = dp[4]; |
---|
1469 | thick2 = dp[5]; |
---|
1470 | rhoshel2 = dp[6]; |
---|
1471 | thick3 = dp[7]; |
---|
1472 | rhoshel3 = dp[8]; |
---|
1473 | rhosolv = dp[9]; |
---|
1474 | bkg = dp[10]; |
---|
1475 | |
---|
1476 | // core first, then add in shells |
---|
1477 | qr=x*rcore; |
---|
1478 | contr = rhocore-rhoshel1; |
---|
1479 | if(qr == 0){ |
---|
1480 | bes = 1.0; |
---|
1481 | }else{ |
---|
1482 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1483 | } |
---|
1484 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
1485 | f = vol*bes*contr; |
---|
1486 | //now the shell (1) |
---|
1487 | qr=x*(rcore+thick1); |
---|
1488 | contr = rhoshel1-rhoshel2; |
---|
1489 | if(qr == 0){ |
---|
1490 | bes = 1.0; |
---|
1491 | }else{ |
---|
1492 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1493 | } |
---|
1494 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
1495 | f += vol*bes*contr; |
---|
1496 | //now the shell (2) |
---|
1497 | qr=x*(rcore+thick1+thick2); |
---|
1498 | contr = rhoshel2-rhoshel3; |
---|
1499 | if(qr == 0){ |
---|
1500 | bes = 1.0; |
---|
1501 | }else{ |
---|
1502 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1503 | } |
---|
1504 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
1505 | f += vol*bes*contr; |
---|
1506 | //now the shell (3) |
---|
1507 | qr=x*(rcore+thick1+thick2+thick3); |
---|
1508 | contr = rhoshel3-rhosolv; |
---|
1509 | if(qr == 0){ |
---|
1510 | bes = 1.0; |
---|
1511 | }else{ |
---|
1512 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1513 | } |
---|
1514 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
1515 | f += vol*bes*contr; |
---|
1516 | |
---|
1517 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
1518 | f2 = f*f/vol*1.0e8; |
---|
1519 | |
---|
1520 | //scale if desired |
---|
1521 | f2 *= scale; |
---|
1522 | // then add in the background |
---|
1523 | f2 += bkg; |
---|
1524 | |
---|
1525 | return(f2); |
---|
1526 | } |
---|
1527 | |
---|
1528 | double |
---|
1529 | FourShell(double dp[], double q) |
---|
1530 | { |
---|
1531 | // variables are: |
---|
1532 | //[0] scale factor |
---|
1533 | //[1] radius of core [ᅵ] |
---|
1534 | //[2] SLD of the core [ᅵ-2] |
---|
1535 | //[3] thickness of shell 1 [ᅵ] |
---|
1536 | //[4] SLD of shell 1 |
---|
1537 | //[5] thickness of shell 2 [ᅵ] |
---|
1538 | //[6] SLD of shell 2 |
---|
1539 | //[7] thickness of shell 3 |
---|
1540 | //[8] SLD of shell 3 |
---|
1541 | //[9] thickness of shell 3 |
---|
1542 | //[10] SLD of shell 3 |
---|
1543 | //[11] SLD of solvent |
---|
1544 | //[12] background [cm-1] |
---|
1545 | |
---|
1546 | double x,pi; |
---|
1547 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
1548 | double bes,f,vol,qr,contr,f2; |
---|
1549 | double rhoshel2,thick2,rhoshel3,thick3,rhoshel4,thick4; |
---|
1550 | |
---|
1551 | pi = 4.0*atan(1.0); |
---|
1552 | x=q; |
---|
1553 | |
---|
1554 | scale = dp[0]; |
---|
1555 | rcore = dp[1]; |
---|
1556 | rhocore = dp[2]; |
---|
1557 | thick1 = dp[3]; |
---|
1558 | rhoshel1 = dp[4]; |
---|
1559 | thick2 = dp[5]; |
---|
1560 | rhoshel2 = dp[6]; |
---|
1561 | thick3 = dp[7]; |
---|
1562 | rhoshel3 = dp[8]; |
---|
1563 | thick4 = dp[9]; |
---|
1564 | rhoshel4 = dp[10]; |
---|
1565 | rhosolv = dp[11]; |
---|
1566 | bkg = dp[12]; |
---|
1567 | |
---|
1568 | // core first, then add in shells |
---|
1569 | qr=x*rcore; |
---|
1570 | contr = rhocore-rhoshel1; |
---|
1571 | if(qr == 0){ |
---|
1572 | bes = 1.0; |
---|
1573 | }else{ |
---|
1574 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1575 | } |
---|
1576 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
1577 | f = vol*bes*contr; |
---|
1578 | //now the shell (1) |
---|
1579 | qr=x*(rcore+thick1); |
---|
1580 | contr = rhoshel1-rhoshel2; |
---|
1581 | if(qr == 0){ |
---|
1582 | bes = 1.0; |
---|
1583 | }else{ |
---|
1584 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1585 | } |
---|
1586 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
1587 | f += vol*bes*contr; |
---|
1588 | //now the shell (2) |
---|
1589 | qr=x*(rcore+thick1+thick2); |
---|
1590 | contr = rhoshel2-rhoshel3; |
---|
1591 | if(qr == 0){ |
---|
1592 | bes = 1.0; |
---|
1593 | }else{ |
---|
1594 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1595 | } |
---|
1596 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
1597 | f += vol*bes*contr; |
---|
1598 | //now the shell (3) |
---|
1599 | qr=x*(rcore+thick1+thick2+thick3); |
---|
1600 | contr = rhoshel3-rhoshel4; |
---|
1601 | if(qr == 0){ |
---|
1602 | bes = 1.0; |
---|
1603 | }else{ |
---|
1604 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1605 | } |
---|
1606 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
1607 | f += vol*bes*contr; |
---|
1608 | //now the shell (4) |
---|
1609 | qr=x*(rcore+thick1+thick2+thick3+thick4); |
---|
1610 | contr = rhoshel4-rhosolv; |
---|
1611 | if(qr == 0){ |
---|
1612 | bes = 1.0; |
---|
1613 | }else{ |
---|
1614 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
1615 | } |
---|
1616 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4); |
---|
1617 | f += vol*bes*contr; |
---|
1618 | |
---|
1619 | |
---|
1620 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
1621 | f2 = f*f/vol*1.0e8; |
---|
1622 | |
---|
1623 | //scale if desired |
---|
1624 | f2 *= scale; |
---|
1625 | // then add in the background |
---|
1626 | f2 += bkg; |
---|
1627 | |
---|
1628 | return(f2); |
---|
1629 | } |
---|
1630 | |
---|
1631 | double |
---|
1632 | PolyOneShell(double dp[], double x) |
---|
1633 | { |
---|
1634 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg,pd,zz; //my local names |
---|
1635 | double va,vb,summ,yyy,zi; |
---|
1636 | double answer,zp1,zp2,zp3,vpoly,range,temp_1sf[7],pi; |
---|
1637 | int nord=76,ii; |
---|
1638 | |
---|
1639 | pi = 4.0*atan(1.0); |
---|
1640 | |
---|
1641 | scale = dp[0]; |
---|
1642 | rcore = dp[1]; |
---|
1643 | pd = dp[2]; |
---|
1644 | rhocore = dp[3]; |
---|
1645 | thick = dp[4]; |
---|
1646 | rhoshel = dp[5]; |
---|
1647 | rhosolv = dp[6]; |
---|
1648 | bkg = dp[7]; |
---|
1649 | |
---|
1650 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
1651 | |
---|
1652 | range = 8.0; //std deviations for the integration |
---|
1653 | va = rcore*(1.0-range*pd); |
---|
1654 | if (va<0.0) { |
---|
1655 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
1656 | } |
---|
1657 | if (pd>0.3) { |
---|
1658 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
1659 | } |
---|
1660 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
1661 | |
---|
1662 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
1663 | temp_1sf[0] = 1.0; |
---|
1664 | temp_1sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
1665 | temp_1sf[2] = dp[3]; |
---|
1666 | temp_1sf[3] = dp[4]; |
---|
1667 | temp_1sf[4] = dp[5]; |
---|
1668 | temp_1sf[5] = dp[6]; |
---|
1669 | temp_1sf[6] = 0.0; |
---|
1670 | |
---|
1671 | summ = 0.0; // initialize integral |
---|
1672 | for(ii=0;ii<nord;ii+=1) { |
---|
1673 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
1674 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
1675 | temp_1sf[1] = zi; |
---|
1676 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * OneShell(temp_1sf,x); |
---|
1677 | //un-normalize by volume |
---|
1678 | yyy *= 4.0*pi/3.0*pow((zi+thick),3); |
---|
1679 | summ += yyy; //add to the running total of the quadrature |
---|
1680 | } |
---|
1681 | // calculate value of integral to return |
---|
1682 | answer = (vb-va)/2.0*summ; |
---|
1683 | |
---|
1684 | //re-normalize by the average volume |
---|
1685 | zp1 = zz + 1.0; |
---|
1686 | zp2 = zz + 2.0; |
---|
1687 | zp3 = zz + 3.0; |
---|
1688 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick),3); |
---|
1689 | answer /= vpoly; |
---|
1690 | //scale |
---|
1691 | answer *= scale; |
---|
1692 | // add in the background |
---|
1693 | answer += bkg; |
---|
1694 | |
---|
1695 | return(answer); |
---|
1696 | } |
---|
1697 | |
---|
1698 | double |
---|
1699 | PolyTwoShell(double dp[], double x) |
---|
1700 | { |
---|
1701 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
1702 | double va,vb,summ,yyy,zi; |
---|
1703 | double answer,zp1,zp2,zp3,vpoly,range,temp_2sf[9],pi; |
---|
1704 | int nord=76,ii; |
---|
1705 | double thick1,thick2; |
---|
1706 | double rhoshel1,rhoshel2; |
---|
1707 | |
---|
1708 | scale = dp[0]; |
---|
1709 | rcore = dp[1]; |
---|
1710 | pd = dp[2]; |
---|
1711 | rhocore = dp[3]; |
---|
1712 | thick1 = dp[4]; |
---|
1713 | rhoshel1 = dp[5]; |
---|
1714 | thick2 = dp[6]; |
---|
1715 | rhoshel2 = dp[7]; |
---|
1716 | rhosolv = dp[8]; |
---|
1717 | bkg = dp[9]; |
---|
1718 | |
---|
1719 | pi = 4.0*atan(1.0); |
---|
1720 | |
---|
1721 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
1722 | |
---|
1723 | range = 8.0; //std deviations for the integration |
---|
1724 | va = rcore*(1.0-range*pd); |
---|
1725 | if (va<0.0) { |
---|
1726 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
1727 | } |
---|
1728 | if (pd>0.3) { |
---|
1729 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
1730 | } |
---|
1731 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
1732 | |
---|
1733 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
1734 | temp_2sf[0] = 1.0; |
---|
1735 | temp_2sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
1736 | temp_2sf[2] = dp[3]; |
---|
1737 | temp_2sf[3] = dp[4]; |
---|
1738 | temp_2sf[4] = dp[5]; |
---|
1739 | temp_2sf[5] = dp[6]; |
---|
1740 | temp_2sf[6] = dp[7]; |
---|
1741 | temp_2sf[7] = dp[8]; |
---|
1742 | temp_2sf[8] = 0.0; |
---|
1743 | |
---|
1744 | summ = 0.0; // initialize integral |
---|
1745 | for(ii=0;ii<nord;ii+=1) { |
---|
1746 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
1747 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
1748 | temp_2sf[1] = zi; |
---|
1749 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * TwoShell(temp_2sf,x); |
---|
1750 | //un-normalize by volume |
---|
1751 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2),3); |
---|
1752 | summ += yyy; //add to the running total of the quadrature |
---|
1753 | } |
---|
1754 | // calculate value of integral to return |
---|
1755 | answer = (vb-va)/2.0*summ; |
---|
1756 | |
---|
1757 | //re-normalize by the average volume |
---|
1758 | zp1 = zz + 1.0; |
---|
1759 | zp2 = zz + 2.0; |
---|
1760 | zp3 = zz + 3.0; |
---|
1761 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2),3); |
---|
1762 | answer /= vpoly; |
---|
1763 | //scale |
---|
1764 | answer *= scale; |
---|
1765 | // add in the background |
---|
1766 | answer += bkg; |
---|
1767 | |
---|
1768 | return(answer); |
---|
1769 | } |
---|
1770 | |
---|
1771 | double |
---|
1772 | PolyThreeShell(double dp[], double x) |
---|
1773 | { |
---|
1774 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
1775 | double va,vb,summ,yyy,zi; |
---|
1776 | double answer,zp1,zp2,zp3,vpoly,range,temp_3sf[11],pi; |
---|
1777 | int nord=76,ii; |
---|
1778 | double thick1,thick2,thick3; |
---|
1779 | double rhoshel1,rhoshel2,rhoshel3; |
---|
1780 | |
---|
1781 | scale = dp[0]; |
---|
1782 | rcore = dp[1]; |
---|
1783 | pd = dp[2]; |
---|
1784 | rhocore = dp[3]; |
---|
1785 | thick1 = dp[4]; |
---|
1786 | rhoshel1 = dp[5]; |
---|
1787 | thick2 = dp[6]; |
---|
1788 | rhoshel2 = dp[7]; |
---|
1789 | thick3 = dp[8]; |
---|
1790 | rhoshel3 = dp[9]; |
---|
1791 | rhosolv = dp[10]; |
---|
1792 | bkg = dp[11]; |
---|
1793 | |
---|
1794 | pi = 4.0*atan(1.0); |
---|
1795 | |
---|
1796 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
1797 | |
---|
1798 | range = 8.0; //std deviations for the integration |
---|
1799 | va = rcore*(1.0-range*pd); |
---|
1800 | if (va<0) { |
---|
1801 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
1802 | } |
---|
1803 | if (pd>0.3) { |
---|
1804 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
1805 | } |
---|
1806 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
1807 | |
---|
1808 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
1809 | temp_3sf[0] = 1.0; |
---|
1810 | temp_3sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
1811 | temp_3sf[2] = dp[3]; |
---|
1812 | temp_3sf[3] = dp[4]; |
---|
1813 | temp_3sf[4] = dp[5]; |
---|
1814 | temp_3sf[5] = dp[6]; |
---|
1815 | temp_3sf[6] = dp[7]; |
---|
1816 | temp_3sf[7] = dp[8]; |
---|
1817 | temp_3sf[8] = dp[9]; |
---|
1818 | temp_3sf[9] = dp[10]; |
---|
1819 | temp_3sf[10] = 0.0; |
---|
1820 | |
---|
1821 | summ = 0.0; // initialize integral |
---|
1822 | for(ii=0;ii<nord;ii+=1) { |
---|
1823 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
1824 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
1825 | temp_3sf[1] = zi; |
---|
1826 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * ThreeShell(temp_3sf,x); |
---|
1827 | //un-normalize by volume |
---|
1828 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3),3); |
---|
1829 | summ += yyy; //add to the running total of the quadrature |
---|
1830 | } |
---|
1831 | // calculate value of integral to return |
---|
1832 | answer = (vb-va)/2.0*summ; |
---|
1833 | |
---|
1834 | //re-normalize by the average volume |
---|
1835 | zp1 = zz + 1.0; |
---|
1836 | zp2 = zz + 2.0; |
---|
1837 | zp3 = zz + 3.0; |
---|
1838 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3),3); |
---|
1839 | answer /= vpoly; |
---|
1840 | //scale |
---|
1841 | answer *= scale; |
---|
1842 | // add in the background |
---|
1843 | answer += bkg; |
---|
1844 | |
---|
1845 | return(answer); |
---|
1846 | } |
---|
1847 | |
---|
1848 | double |
---|
1849 | PolyFourShell(double dp[], double x) |
---|
1850 | { |
---|
1851 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
1852 | double va,vb,summ,yyy,zi; |
---|
1853 | double answer,zp1,zp2,zp3,vpoly,range,temp_4sf[13],pi; |
---|
1854 | int nord=76,ii; |
---|
1855 | double thick1,thick2,thick3,thick4; |
---|
1856 | double rhoshel1,rhoshel2,rhoshel3,rhoshel4; |
---|
1857 | |
---|
1858 | scale = dp[0]; |
---|
1859 | rcore = dp[1]; |
---|
1860 | pd = dp[2]; |
---|
1861 | rhocore = dp[3]; |
---|
1862 | thick1 = dp[4]; |
---|
1863 | rhoshel1 = dp[5]; |
---|
1864 | thick2 = dp[6]; |
---|
1865 | rhoshel2 = dp[7]; |
---|
1866 | thick3 = dp[8]; |
---|
1867 | rhoshel3 = dp[9]; |
---|
1868 | thick4 = dp[10]; |
---|
1869 | rhoshel4 = dp[11]; |
---|
1870 | rhosolv = dp[12]; |
---|
1871 | bkg = dp[13]; |
---|
1872 | |
---|
1873 | pi = 4.0*atan(1.0); |
---|
1874 | |
---|
1875 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
1876 | |
---|
1877 | range = 8.0; //std deviations for the integration |
---|
1878 | va = rcore*(1.0-range*pd); |
---|
1879 | if (va<0) { |
---|
1880 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
1881 | } |
---|
1882 | if (pd>0.3) { |
---|
1883 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
1884 | } |
---|
1885 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
1886 | |
---|
1887 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
1888 | temp_4sf[0] = 1.0; |
---|
1889 | temp_4sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
1890 | temp_4sf[2] = dp[3]; |
---|
1891 | temp_4sf[3] = dp[4]; |
---|
1892 | temp_4sf[4] = dp[5]; |
---|
1893 | temp_4sf[5] = dp[6]; |
---|
1894 | temp_4sf[6] = dp[7]; |
---|
1895 | temp_4sf[7] = dp[8]; |
---|
1896 | temp_4sf[8] = dp[9]; |
---|
1897 | temp_4sf[9] = dp[10]; |
---|
1898 | temp_4sf[10] = dp[11]; |
---|
1899 | temp_4sf[11] = dp[12]; |
---|
1900 | temp_4sf[12] = 0.0; |
---|
1901 | |
---|
1902 | summ = 0.0; // initialize integral |
---|
1903 | for(ii=0;ii<nord;ii+=1) { |
---|
1904 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
1905 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
1906 | temp_4sf[1] = zi; |
---|
1907 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * FourShell(temp_4sf,x); |
---|
1908 | //un-normalize by volume |
---|
1909 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3+thick4),3); |
---|
1910 | summ += yyy; //add to the running total of the quadrature |
---|
1911 | } |
---|
1912 | // calculate value of integral to return |
---|
1913 | answer = (vb-va)/2.0*summ; |
---|
1914 | |
---|
1915 | //re-normalize by the average volume |
---|
1916 | zp1 = zz + 1.0; |
---|
1917 | zp2 = zz + 2.0; |
---|
1918 | zp3 = zz + 3.0; |
---|
1919 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3+thick4),3); |
---|
1920 | answer /= vpoly; |
---|
1921 | //scale |
---|
1922 | answer *= scale; |
---|
1923 | // add in the background |
---|
1924 | answer += bkg; |
---|
1925 | |
---|
1926 | return(answer); |
---|
1927 | } |
---|
1928 | |
---|
1929 | |
---|
1930 | /* BCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
1931 | |
---|
1932 | Uses 150 pt Gaussian quadrature for both integrals |
---|
1933 | |
---|
1934 | */ |
---|
1935 | double |
---|
1936 | BCC_ParaCrystal(double w[], double x) |
---|
1937 | { |
---|
1938 | int i,j; |
---|
1939 | double Pi; |
---|
1940 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
1941 | int nordi=150; //order of integration |
---|
1942 | int nordj=150; |
---|
1943 | double va,vb; //upper and lower integration limits |
---|
1944 | double summ,zi,yyy,answer; //running tally of integration |
---|
1945 | double summj,vaj,vbj,zij; //for the inner integration |
---|
1946 | |
---|
1947 | Pi = 4.0*atan(1.0); |
---|
1948 | va = 0.0; |
---|
1949 | vb = 2.0*Pi; //orintational average, outer integral |
---|
1950 | vaj = 0.0; |
---|
1951 | vbj = Pi; //endpoints of inner integral |
---|
1952 | |
---|
1953 | summ = 0.0; //initialize intergral |
---|
1954 | |
---|
1955 | scale = w[0]; |
---|
1956 | Dnn = w[1]; //Nearest neighbor distance A |
---|
1957 | gg = w[2]; //Paracrystal distortion factor |
---|
1958 | Rad = w[3]; //Sphere radius |
---|
1959 | sld = w[4]; |
---|
1960 | sldSolv = w[5]; |
---|
1961 | background = w[6]; |
---|
1962 | |
---|
1963 | contrast = sld - sldSolv; |
---|
1964 | |
---|
1965 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
1966 | latticeScale = 2.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn/sqrt(3.0/4.0),3); |
---|
1967 | |
---|
1968 | for(i=0;i<nordi;i++) { |
---|
1969 | //setup inner integral over the ellipsoidal cross-section |
---|
1970 | summj=0.0; |
---|
1971 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
1972 | for(j=0;j<nordj;j++) { |
---|
1973 | //20 gauss points for the inner integral |
---|
1974 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
1975 | yyy = Gauss150Wt[j] * BCC_Integrand(w,x,zi,zij); |
---|
1976 | summj += yyy; |
---|
1977 | } |
---|
1978 | //now calculate the value of the inner integral |
---|
1979 | answer = (vbj-vaj)/2.0*summj; |
---|
1980 | |
---|
1981 | //now calculate outer integral |
---|
1982 | yyy = Gauss150Wt[i] * answer; |
---|
1983 | summ += yyy; |
---|
1984 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
1985 | |
---|
1986 | answer = (vb-va)/2.0*summ; |
---|
1987 | // Multiply by contrast^2 |
---|
1988 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
1989 | // add in the background |
---|
1990 | answer += background; |
---|
1991 | |
---|
1992 | return answer; |
---|
1993 | } |
---|
1994 | |
---|
1995 | // xx is phi (outer) |
---|
1996 | // yy is theta (inner) |
---|
1997 | double |
---|
1998 | BCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
1999 | |
---|
2000 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
2001 | |
---|
2002 | Dnn = w[1]; //Nearest neighbor distance A |
---|
2003 | gg = w[2]; //Paracrystal distortion factor |
---|
2004 | aa = Dnn; |
---|
2005 | Da = gg*aa; |
---|
2006 | |
---|
2007 | Pi = 4.0*atan(1.0); |
---|
2008 | temp1 = qq*qq*Da*Da; |
---|
2009 | temp3 = qq*aa; |
---|
2010 | |
---|
2011 | retVal = BCCeval(yy,xx,temp1,temp3); |
---|
2012 | retVal /=4.0*Pi; |
---|
2013 | |
---|
2014 | return(retVal); |
---|
2015 | } |
---|
2016 | |
---|
2017 | double |
---|
2018 | BCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
2019 | |
---|
2020 | double temp6,temp7,temp8,temp9,temp10; |
---|
2021 | double result; |
---|
2022 | |
---|
2023 | temp6 = sin(Theta); |
---|
2024 | temp7 = sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)+cos(Theta); |
---|
2025 | temp8 = -1.0*sin(Theta)*cos(Phi)-sin(Theta)*sin(Phi)+cos(Theta); |
---|
2026 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)-cos(Theta); |
---|
2027 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
2028 | result = pow(1.0-(temp10*temp10),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
2029 | |
---|
2030 | return (result); |
---|
2031 | } |
---|
2032 | |
---|
2033 | double |
---|
2034 | SphereForm_Paracrystal(double radius, double delrho, double x) { |
---|
2035 | |
---|
2036 | double bes,f,vol,f2,pi; |
---|
2037 | pi = 4.0*atan(1.0); |
---|
2038 | // |
---|
2039 | //handle q==0 separately |
---|
2040 | if(x==0) { |
---|
2041 | f = 4.0/3.0*pi*radius*radius*radius*delrho*delrho*1.0e8; |
---|
2042 | return(f); |
---|
2043 | } |
---|
2044 | |
---|
2045 | bes = 3.0*(sin(x*radius)-x*radius*cos(x*radius))/(x*x*x)/(radius*radius*radius); |
---|
2046 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
2047 | f = vol*bes*delrho ; // [=] ᅵ |
---|
2048 | // normalize to single particle volume, convert to 1/cm |
---|
2049 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
2050 | |
---|
2051 | return (f2); |
---|
2052 | } |
---|
2053 | |
---|
2054 | /* FCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
2055 | |
---|
2056 | Uses 150 pt Gaussian quadrature for both integrals |
---|
2057 | |
---|
2058 | */ |
---|
2059 | double |
---|
2060 | FCC_ParaCrystal(double w[], double x) |
---|
2061 | { |
---|
2062 | int i,j; |
---|
2063 | double Pi; |
---|
2064 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
2065 | int nordi=150; //order of integration |
---|
2066 | int nordj=150; |
---|
2067 | double va,vb; //upper and lower integration limits |
---|
2068 | double summ,zi,yyy,answer; //running tally of integration |
---|
2069 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2070 | |
---|
2071 | Pi = 4.0*atan(1.0); |
---|
2072 | va = 0.0; |
---|
2073 | vb = 2.0*Pi; //orintational average, outer integral |
---|
2074 | vaj = 0.0; |
---|
2075 | vbj = Pi; //endpoints of inner integral |
---|
2076 | |
---|
2077 | summ = 0.0; //initialize intergral |
---|
2078 | |
---|
2079 | scale = w[0]; |
---|
2080 | Dnn = w[1]; //Nearest neighbor distance A |
---|
2081 | gg = w[2]; //Paracrystal distortion factor |
---|
2082 | Rad = w[3]; //Sphere radius |
---|
2083 | sld = w[4]; |
---|
2084 | sldSolv = w[5]; |
---|
2085 | background = w[6]; |
---|
2086 | |
---|
2087 | contrast = sld - sldSolv; |
---|
2088 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
2089 | latticeScale = 4.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn*sqrt(2.0),3); |
---|
2090 | |
---|
2091 | for(i=0;i<nordi;i++) { |
---|
2092 | //setup inner integral over the ellipsoidal cross-section |
---|
2093 | summj=0.0; |
---|
2094 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
2095 | for(j=0;j<nordj;j++) { |
---|
2096 | //20 gauss points for the inner integral |
---|
2097 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
2098 | yyy = Gauss150Wt[j] * FCC_Integrand(w,x,zi,zij); |
---|
2099 | summj += yyy; |
---|
2100 | } |
---|
2101 | //now calculate the value of the inner integral |
---|
2102 | answer = (vbj-vaj)/2.0*summj; |
---|
2103 | |
---|
2104 | //now calculate outer integral |
---|
2105 | yyy = Gauss150Wt[i] * answer; |
---|
2106 | summ += yyy; |
---|
2107 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2108 | |
---|
2109 | answer = (vb-va)/2.0*summ; |
---|
2110 | // Multiply by contrast^2 |
---|
2111 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
2112 | // add in the background |
---|
2113 | answer += background; |
---|
2114 | |
---|
2115 | return answer; |
---|
2116 | } |
---|
2117 | |
---|
2118 | |
---|
2119 | // xx is phi (outer) |
---|
2120 | // yy is theta (inner) |
---|
2121 | double |
---|
2122 | FCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
2123 | |
---|
2124 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
2125 | |
---|
2126 | Pi = 4.0*atan(1.0); |
---|
2127 | Dnn = w[1]; //Nearest neighbor distance A |
---|
2128 | gg = w[2]; //Paracrystal distortion factor |
---|
2129 | aa = Dnn; |
---|
2130 | Da = gg*aa; |
---|
2131 | |
---|
2132 | temp1 = qq*qq*Da*Da; |
---|
2133 | temp3 = qq*aa; |
---|
2134 | |
---|
2135 | retVal = FCCeval(yy,xx,temp1,temp3); |
---|
2136 | retVal /=4*Pi; |
---|
2137 | |
---|
2138 | return(retVal); |
---|
2139 | } |
---|
2140 | |
---|
2141 | double |
---|
2142 | FCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
2143 | |
---|
2144 | double temp6,temp7,temp8,temp9,temp10; |
---|
2145 | double result; |
---|
2146 | |
---|
2147 | temp6 = sin(Theta); |
---|
2148 | temp7 = sin(Theta)*sin(Phi)+cos(Theta); |
---|
2149 | temp8 = -1.0*sin(Theta)*cos(Phi)+cos(Theta); |
---|
2150 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi); |
---|
2151 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
2152 | result = pow((1.0-(temp10*temp10)),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
2153 | |
---|
2154 | return (result); |
---|
2155 | } |
---|
2156 | |
---|
2157 | |
---|
2158 | /* SC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
2159 | |
---|
2160 | Uses 150 pt Gaussian quadrature for both integrals |
---|
2161 | |
---|
2162 | */ |
---|
2163 | double |
---|
2164 | SC_ParaCrystal(double w[], double x) |
---|
2165 | { |
---|
2166 | int i,j; |
---|
2167 | double Pi; |
---|
2168 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
2169 | int nordi=150; //order of integration |
---|
2170 | int nordj=150; |
---|
2171 | double va,vb; //upper and lower integration limits |
---|
2172 | double summ,zi,yyy,answer; //running tally of integration |
---|
2173 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2174 | |
---|
2175 | Pi = 4.0*atan(1.0); |
---|
2176 | va = 0.0; |
---|
2177 | vb = Pi/2.0; //orintational average, outer integral |
---|
2178 | vaj = 0.0; |
---|
2179 | vbj = Pi/2.0; //endpoints of inner integral |
---|
2180 | |
---|
2181 | summ = 0.0; //initialize intergral |
---|
2182 | |
---|
2183 | scale = w[0]; |
---|
2184 | Dnn = w[1]; //Nearest neighbor distance A |
---|
2185 | gg = w[2]; //Paracrystal distortion factor |
---|
2186 | Rad = w[3]; //Sphere radius |
---|
2187 | sld = w[4]; |
---|
2188 | sldSolv = w[5]; |
---|
2189 | background = w[6]; |
---|
2190 | |
---|
2191 | contrast = sld - sldSolv; |
---|
2192 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
2193 | latticeScale = (4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn,3); |
---|
2194 | |
---|
2195 | for(i=0;i<nordi;i++) { |
---|
2196 | //setup inner integral over the ellipsoidal cross-section |
---|
2197 | summj=0.0; |
---|
2198 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
2199 | for(j=0;j<nordj;j++) { |
---|
2200 | //20 gauss points for the inner integral |
---|
2201 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
2202 | yyy = Gauss150Wt[j] * SC_Integrand(w,x,zi,zij); |
---|
2203 | summj += yyy; |
---|
2204 | } |
---|
2205 | //now calculate the value of the inner integral |
---|
2206 | answer = (vbj-vaj)/2.0*summj; |
---|
2207 | |
---|
2208 | //now calculate outer integral |
---|
2209 | yyy = Gauss150Wt[i] * answer; |
---|
2210 | summ += yyy; |
---|
2211 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2212 | |
---|
2213 | answer = (vb-va)/2.0*summ; |
---|
2214 | // Multiply by contrast^2 |
---|
2215 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
2216 | // add in the background |
---|
2217 | answer += background; |
---|
2218 | |
---|
2219 | return answer; |
---|
2220 | } |
---|
2221 | |
---|
2222 | // xx is phi (outer) |
---|
2223 | // yy is theta (inner) |
---|
2224 | double |
---|
2225 | SC_Integrand(double w[], double qq, double xx, double yy) { |
---|
2226 | |
---|
2227 | double retVal,temp1,temp2,temp3,temp4,temp5,aa,Da,Dnn,gg,Pi; |
---|
2228 | |
---|
2229 | Pi = 4.0*atan(1.0); |
---|
2230 | Dnn = w[1]; //Nearest neighbor distance A |
---|
2231 | gg = w[2]; //Paracrystal distortion factor |
---|
2232 | aa = Dnn; |
---|
2233 | Da = gg*aa; |
---|
2234 | |
---|
2235 | temp1 = qq*qq*Da*Da; |
---|
2236 | temp2 = pow( 1.0-exp(-1.0*temp1) ,3); |
---|
2237 | temp3 = qq*aa; |
---|
2238 | temp4 = 2.0*exp(-0.5*temp1); |
---|
2239 | temp5 = exp(-1.0*temp1); |
---|
2240 | |
---|
2241 | |
---|
2242 | retVal = temp2*SCeval(yy,xx,temp3,temp4,temp5); |
---|
2243 | retVal *= 2.0/Pi; |
---|
2244 | |
---|
2245 | return(retVal); |
---|
2246 | } |
---|
2247 | |
---|
2248 | double |
---|
2249 | SCeval(double Theta, double Phi, double temp3, double temp4, double temp5) { //Function to calculate integrand values for simple cubic structure |
---|
2250 | |
---|
2251 | double temp6,temp7,temp8,temp9; //Theta and phi dependent parts of the equation |
---|
2252 | double result; |
---|
2253 | |
---|
2254 | temp6 = sin(Theta); |
---|
2255 | temp7 = -1.0*temp3*sin(Theta)*cos(Phi); |
---|
2256 | temp8 = temp3*sin(Theta)*sin(Phi); |
---|
2257 | temp9 = temp3*cos(Theta); |
---|
2258 | result = temp6/((1.0-temp4*cos((temp7))+temp5)*(1.0-temp4*cos((temp8))+temp5)*(1.0-temp4*cos((temp9))+temp5)); |
---|
2259 | |
---|
2260 | return (result); |
---|
2261 | } |
---|
2262 | |
---|
2263 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
2264 | // |
---|
2265 | double |
---|
2266 | FuzzySpheres(double dp[], double q) |
---|
2267 | { |
---|
2268 | double pi,x; |
---|
2269 | double scale,rad,pd,sig,rho,rhos,bkg,delrho,sig_surf,f2,bes,vol,f; //my local names |
---|
2270 | double va,vb,zi,yy,summ,inten; |
---|
2271 | int nord=20,ii; |
---|
2272 | |
---|
2273 | pi = 4.0*atan(1.0); |
---|
2274 | x= q; |
---|
2275 | |
---|
2276 | scale=dp[0]; |
---|
2277 | rad=dp[1]; |
---|
2278 | pd=dp[2]; |
---|
2279 | sig=pd*rad; |
---|
2280 | sig_surf = dp[3]; |
---|
2281 | rho=dp[4]; |
---|
2282 | rhos=dp[5]; |
---|
2283 | delrho=rho-rhos; |
---|
2284 | bkg=dp[6]; |
---|
2285 | |
---|
2286 | |
---|
2287 | va = -4.0*sig + rad; |
---|
2288 | if (va<0) { |
---|
2289 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
2290 | } |
---|
2291 | vb = 4.0*sig +rad; |
---|
2292 | |
---|
2293 | summ = 0.0; // initialize integral |
---|
2294 | for(ii=0;ii<nord;ii+=1) { |
---|
2295 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
2296 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
2297 | // calculate sphere scattering |
---|
2298 | // |
---|
2299 | //handle q==0 separately |
---|
2300 | if (x==0.0) { |
---|
2301 | f2 = 4.0/3.0*pi*zi*zi*zi*delrho*delrho*1.0e8; |
---|
2302 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
2303 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
2304 | } else { |
---|
2305 | bes = 3.0*(sin(x*zi)-x*zi*cos(x*zi))/(x*x*x)/(zi*zi*zi); |
---|
2306 | vol = 4.0*pi/3.0*zi*zi*zi; |
---|
2307 | f = vol*bes*delrho; // [=] A |
---|
2308 | f *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
2309 | // normalize to single particle volume, convert to 1/cm |
---|
2310 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
2311 | } |
---|
2312 | |
---|
2313 | yy = Gauss20Wt[ii] * Gauss_distr(sig,rad,zi) * f2; |
---|
2314 | yy *= 4.0*pi/3.0*zi*zi*zi; //un-normalize by current sphere volume |
---|
2315 | |
---|
2316 | summ += yy; //add to the running total of the quadrature |
---|
2317 | |
---|
2318 | |
---|
2319 | } |
---|
2320 | // calculate value of integral to return |
---|
2321 | inten = (vb-va)/2.0*summ; |
---|
2322 | |
---|
2323 | //re-normalize by polydisperse sphere volume |
---|
2324 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
2325 | |
---|
2326 | inten *= scale; |
---|
2327 | inten += bkg; |
---|
2328 | |
---|
2329 | return(inten); //scale, and add in the background |
---|
2330 | } |
---|
2331 | |
---|
2332 | // Micelle with spherical core |
---|
2333 | // J.S. Pedersen, J. Appl. Cryst. 33, 637 (2000) |
---|
2334 | |
---|
2335 | double |
---|
2336 | MicelleSphericalCore(double dp[], double q) |
---|
2337 | { |
---|
2338 | double x, pi; |
---|
2339 | double ndensity, v_core, v_corona, rho_solv, rho_core, rho_corona; // local names of input params |
---|
2340 | double radius_core, radius_gyr, d_penetration, n_aggreg, bkg, scale; // local names of input params |
---|
2341 | double beta_core, beta_corona, qr, qrg, qrg2, qrdrg, bes_core, bes_corona; |
---|
2342 | double term1, term2, term3, term4, debye_chain, chain_ampl, i_micelle; |
---|
2343 | |
---|
2344 | x = q; |
---|
2345 | |
---|
2346 | scale = dp[0]; |
---|
2347 | ndensity = dp[1]; // number density [1/cm^3] |
---|
2348 | v_core = dp[2]; // volume block in core [A^3] |
---|
2349 | v_corona = dp[3]; // volume block in corona [A^3] |
---|
2350 | rho_solv = dp[4]; // sld of solvent [1/A^2] |
---|
2351 | rho_core = dp[5]; // sld of core [1/A^2] |
---|
2352 | rho_corona = dp[6]; // sld of corona [1/A^2] |
---|
2353 | radius_core = dp[7]; // radius of core [A] |
---|
2354 | radius_gyr = dp[8]; // radius of gyration of chains in corona [A] |
---|
2355 | d_penetration = dp[9]; // close to unity, mimics non-penetration of gaussian chains |
---|
2356 | n_aggreg = dp[10]; // aggregation number of the micelle |
---|
2357 | bkg = dp[11]; // background |
---|
2358 | |
---|
2359 | beta_core = v_core * (rho_core - rho_solv); |
---|
2360 | beta_corona = v_corona * (rho_corona - rho_solv); |
---|
2361 | |
---|
2362 | |
---|
2363 | // Self-correlation term of the core |
---|
2364 | |
---|
2365 | qr = x*radius_core; |
---|
2366 | if(qr == 0){bes_core = 1.0;} else {bes_core = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr);} |
---|
2367 | |
---|
2368 | term1 = n_aggreg * n_aggreg * beta_core * beta_core * bes_core * bes_core; |
---|
2369 | |
---|
2370 | // Self-correlation term of the chains |
---|
2371 | |
---|
2372 | qrg = x*radius_gyr; |
---|
2373 | qrg2 = qrg*qrg; |
---|
2374 | if(qrg2 == 0){debye_chain = 1.0;} else {debye_chain = 2.0*(exp(-qrg2)-1+qrg2)/(qrg2*qrg2);} |
---|
2375 | |
---|
2376 | term2 = n_aggreg * beta_corona * beta_corona * debye_chain; |
---|
2377 | |
---|
2378 | // Interference cross-term between core and chains |
---|
2379 | |
---|
2380 | if(qrg2 == 0){chain_ampl = 1.0;} else {chain_ampl = (1-exp(-qrg2))/qrg2;} |
---|
2381 | |
---|
2382 | qrdrg = x * (radius_core + d_penetration * radius_gyr); |
---|
2383 | if(qrdrg == 0){bes_corona = 1.0;} else {bes_corona = sin(qrdrg)/qrdrg;} |
---|
2384 | |
---|
2385 | term3 = 2 * n_aggreg * n_aggreg * beta_core * beta_corona * bes_core * chain_ampl * bes_corona; |
---|
2386 | |
---|
2387 | // Interference cross-term between chains |
---|
2388 | |
---|
2389 | term4 = n_aggreg * (n_aggreg - 1.0) * beta_corona * beta_corona * chain_ampl * chain_ampl * bes_corona * bes_corona; |
---|
2390 | |
---|
2391 | // I(q)_micelle : Sum of 4 terms computed above |
---|
2392 | |
---|
2393 | i_micelle = term1 + term2 + term3 + term4 ; |
---|
2394 | |
---|
2395 | // rescale from [A^2] to [cm^2] |
---|
2396 | |
---|
2397 | i_micelle *= 1.0e-16; |
---|
2398 | |
---|
2399 | // "normalize" by number density --> intensity in [cm-1] |
---|
2400 | |
---|
2401 | i_micelle *= ndensity; |
---|
2402 | |
---|
2403 | //scale if desired |
---|
2404 | i_micelle *= scale; |
---|
2405 | |
---|
2406 | // add in the background |
---|
2407 | i_micelle += bkg; |
---|
2408 | |
---|
2409 | return(i_micelle); |
---|
2410 | |
---|
2411 | } |
---|
2412 | |
---|