1 | /* CylinderFit.c |
---|
2 | |
---|
3 | A simplified project designed to act as a template for your curve fitting function. |
---|
4 | The fitting function is a Cylinder form factor. No resolution effects are included (yet) |
---|
5 | */ |
---|
6 | |
---|
7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
8 | #include "GaussWeights.h" |
---|
9 | #include "libCylinder.h" |
---|
10 | |
---|
11 | /////////functions for WRC implementation of flexible cylinders |
---|
12 | static double |
---|
13 | gammaln(double xx) |
---|
14 | { |
---|
15 | double x,y,tmp,ser; |
---|
16 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
17 | 24.01409824083091,-1.231739572450155, |
---|
18 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
19 | int j; |
---|
20 | |
---|
21 | y=x=xx; |
---|
22 | tmp=x+5.5; |
---|
23 | tmp -= (x+0.5)*log(tmp); |
---|
24 | ser=1.000000000190015; |
---|
25 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
26 | return -tmp+log(2.5066282746310005*ser/x); |
---|
27 | } |
---|
28 | /////////functions for WRC implementation of flexible cylinders |
---|
29 | |
---|
30 | // |
---|
31 | static double |
---|
32 | AlphaSquare(double x) |
---|
33 | { |
---|
34 | double yy; |
---|
35 | yy = pow( (1.0 + (x/3.12)*(x/3.12) + (x/8.67)*(x/8.67)*(x/8.67)),(0.176/3.0) ); |
---|
36 | |
---|
37 | return (yy); |
---|
38 | } |
---|
39 | |
---|
40 | // |
---|
41 | static double |
---|
42 | Rgsquarezero(double q, double L, double b) |
---|
43 | { |
---|
44 | double yy; |
---|
45 | yy = (L*b/6.0) * (1.0 - 1.5*(b/L) + 1.5*pow((b/L),2) - 0.75*pow((b/L),3)*(1.0 - exp(-2.0*(L/b)))); |
---|
46 | |
---|
47 | return (yy); |
---|
48 | } |
---|
49 | |
---|
50 | // |
---|
51 | static double |
---|
52 | Rgsquareshort(double q, double L, double b) |
---|
53 | { |
---|
54 | double yy; |
---|
55 | yy = AlphaSquare(L/b) * Rgsquarezero(q,L,b); |
---|
56 | |
---|
57 | return (yy); |
---|
58 | } |
---|
59 | |
---|
60 | // |
---|
61 | static double |
---|
62 | Rgsquare(double q, double L, double b) |
---|
63 | { |
---|
64 | double yy; |
---|
65 | yy = AlphaSquare(L/b)*L*b/6.0; |
---|
66 | |
---|
67 | return (yy); |
---|
68 | } |
---|
69 | |
---|
70 | // ?? funciton is not used - but should the log actually be log10??? |
---|
71 | /* |
---|
72 | static double |
---|
73 | miu(double x) |
---|
74 | { |
---|
75 | double yy; |
---|
76 | yy = (1.0/8.0)*(9.0*x - 2.0 + 2.0*log(1.0 + x)/x)*exp(1.0/2.565*(1.0/x + (1.0 - 1.0/(x*x))*log(1.0 + x))); |
---|
77 | |
---|
78 | return (yy); |
---|
79 | } |
---|
80 | */ |
---|
81 | |
---|
82 | //WR named this w (too generic) |
---|
83 | static double |
---|
84 | w_WR(double x) |
---|
85 | { |
---|
86 | double yy; |
---|
87 | yy = 0.5*(1 + tanh((x - 1.523)/0.1477)); |
---|
88 | |
---|
89 | return (yy); |
---|
90 | } |
---|
91 | |
---|
92 | // |
---|
93 | static double |
---|
94 | u1(double q, double L, double b) |
---|
95 | { |
---|
96 | double yy; |
---|
97 | |
---|
98 | yy = Rgsquareshort(q,L,b)*q*q; |
---|
99 | |
---|
100 | return (yy); |
---|
101 | } |
---|
102 | |
---|
103 | // was named u |
---|
104 | static double |
---|
105 | u_WR(double q, double L, double b) |
---|
106 | { |
---|
107 | double yy; |
---|
108 | yy = Rgsquare(q,L,b)*q*q; |
---|
109 | return (yy); |
---|
110 | } |
---|
111 | |
---|
112 | |
---|
113 | // |
---|
114 | static double |
---|
115 | Sdebye1(double q, double L, double b) |
---|
116 | { |
---|
117 | double yy; |
---|
118 | yy = 2.0*(exp(-u1(q,L,b)) + u1(q,L,b) -1.0)/( pow((u1(q,L,b)),2.0) ); |
---|
119 | |
---|
120 | return (yy); |
---|
121 | } |
---|
122 | |
---|
123 | |
---|
124 | // |
---|
125 | static double |
---|
126 | Sdebye(double q, double L, double b) |
---|
127 | { |
---|
128 | double yy; |
---|
129 | yy = 2.0*(exp(-u_WR(q,L,b)) + u_WR(q,L,b) -1.0)/(pow((u_WR(q,L,b)),2)); |
---|
130 | |
---|
131 | return (yy); |
---|
132 | } |
---|
133 | |
---|
134 | // |
---|
135 | static double |
---|
136 | Sexv(double q, double L, double b) |
---|
137 | { |
---|
138 | double yy,C1,C2,C3,miu,Rg2; |
---|
139 | C1=1.22; |
---|
140 | C2=0.4288; |
---|
141 | C3=-1.651; |
---|
142 | miu = 0.585; |
---|
143 | |
---|
144 | Rg2 = Rgsquare(q,L,b); |
---|
145 | |
---|
146 | yy = (1.0 - w_WR(q*sqrt(Rg2)))*Sdebye(q,L,b) + w_WR(q*sqrt(Rg2))*(C1*pow((q*sqrt(Rg2)),(-1.0/miu)) + C2*pow((q*sqrt(Rg2)),(-2.0/miu)) + C3*pow((q*sqrt(Rg2)),(-3.0/miu))); |
---|
147 | |
---|
148 | return (yy); |
---|
149 | } |
---|
150 | |
---|
151 | // this must be WR modified version |
---|
152 | static double |
---|
153 | Sexvnew(double q, double L, double b) |
---|
154 | { |
---|
155 | double yy,C1,C2,C3,miu; |
---|
156 | double del=1.05,C_star2,Rg2; |
---|
157 | |
---|
158 | C1=1.22; |
---|
159 | C2=0.4288; |
---|
160 | C3=-1.651; |
---|
161 | miu = 0.585; |
---|
162 | |
---|
163 | //calculating the derivative to decide on the corection (cutoff) term? |
---|
164 | // I have modified this from WRs original code |
---|
165 | |
---|
166 | if( (Sexv(q*del,L,b)-Sexv(q,L,b))/(q*del - q) >= 0.0 ) { |
---|
167 | C_star2 = 0.0; |
---|
168 | } else { |
---|
169 | C_star2 = 1.0; |
---|
170 | } |
---|
171 | |
---|
172 | Rg2 = Rgsquare(q,L,b); |
---|
173 | |
---|
174 | yy = (1.0 - w_WR(q*sqrt(Rg2)))*Sdebye(q,L,b) + C_star2*w_WR(q*sqrt(Rg2))*(C1*pow((q*sqrt(Rg2)),(-1.0/miu)) + C2*pow((q*sqrt(Rg2)),(-2.0/miu)) + C3*pow((q*sqrt(Rg2)),(-3.0/miu))); |
---|
175 | |
---|
176 | return (yy); |
---|
177 | } |
---|
178 | |
---|
179 | // these are the messy ones |
---|
180 | static double |
---|
181 | a2short(double q, double L, double b, double p1short, double p2short, double q0) |
---|
182 | { |
---|
183 | double yy,Rg2_sh; |
---|
184 | double t1,E,Rg2_sh2,Et1,Emt1,q02,q0p; |
---|
185 | double pi; |
---|
186 | |
---|
187 | E = 2.718281828459045091; |
---|
188 | pi = 4.0*atan(1.0); |
---|
189 | Rg2_sh = Rgsquareshort(q,L,b); |
---|
190 | Rg2_sh2 = Rg2_sh*Rg2_sh; |
---|
191 | t1 = ((q0*q0*Rg2_sh)/(b*b)); |
---|
192 | Et1 = pow(E,t1); |
---|
193 | Emt1 =pow(E,-t1); |
---|
194 | q02 = q0*q0; |
---|
195 | q0p = pow(q0,(-4.0 + p2short) ); |
---|
196 | |
---|
197 | //E is the number e |
---|
198 | yy = ((-(1.0/(L*((p1short - p2short))*Rg2_sh2)*((b*Emt1*q0p*((8.0*b*b*b*L - 8.0*b*b*b*Et1*L - 2.0*b*b*b*L*p1short + 2.0*b*b*b*Et1*L*p1short + 4.0*b*L*q02*Rg2_sh + 4.0*b*Et1*L*q02*Rg2_sh - 2.0*b*Et1*L*p1short*q02*Rg2_sh - Et1*pi*q02*q0*Rg2_sh2 + Et1*p1short*pi*q02*q0*Rg2_sh2))))))); |
---|
199 | |
---|
200 | return (yy); |
---|
201 | } |
---|
202 | |
---|
203 | // |
---|
204 | static double |
---|
205 | a1short(double q, double L, double b, double p1short, double p2short, double q0) |
---|
206 | { |
---|
207 | double yy,Rg2_sh; |
---|
208 | double t1,E,Rg2_sh2,Et1,Emt1,q02,q0p,b3; |
---|
209 | double pi; |
---|
210 | |
---|
211 | E = 2.718281828459045091; |
---|
212 | pi = 4.0*atan(1.0); |
---|
213 | Rg2_sh = Rgsquareshort(q,L,b); |
---|
214 | Rg2_sh2 = Rg2_sh*Rg2_sh; |
---|
215 | b3 = b*b*b; |
---|
216 | t1 = ((q0*q0*Rg2_sh)/(b*b)); |
---|
217 | Et1 = pow(E,t1); |
---|
218 | Emt1 =pow(E,-t1); |
---|
219 | q02 = q0*q0; |
---|
220 | q0p = pow(q0,(-4.0 + p1short) ); |
---|
221 | |
---|
222 | yy = ((1.0/(L*((p1short - p2short))*Rg2_sh2)*((b*Emt1*q0p*((8.0*b3*L - 8.0*b3*Et1*L - 2.0*b3*L*p2short + 2.0*b3*Et1*L*p2short + 4.0*b*L*q02*Rg2_sh + 4.0*b*Et1*L*q02*Rg2_sh - 2.0*b*Et1*L*p2short*q02*Rg2_sh - Et1*pi*q02*q0*Rg2_sh2 + Et1*p2short*pi*q02*q0*Rg2_sh2)))))); |
---|
223 | |
---|
224 | return(yy); |
---|
225 | } |
---|
226 | |
---|
227 | |
---|
228 | //need to define this on my own |
---|
229 | static double |
---|
230 | sech_WR(double x) |
---|
231 | { |
---|
232 | return(1/cosh(x)); |
---|
233 | } |
---|
234 | |
---|
235 | // this one will be lots of trouble |
---|
236 | static double |
---|
237 | a2long(double q, double L, double b, double p1, double p2, double q0) |
---|
238 | { |
---|
239 | double yy,C1,C2,C3,C4,C5,miu,C,Rg2; |
---|
240 | double t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,pi; |
---|
241 | double E,b2,b3,b4,q02,q03,q04,q05,Rg22; |
---|
242 | |
---|
243 | pi = 4.0*atan(1.0); |
---|
244 | E = 2.718281828459045091; |
---|
245 | if( L/b > 10.0) { |
---|
246 | C = 3.06/pow((L/b),0.44); |
---|
247 | } else { |
---|
248 | C = 1.0; |
---|
249 | } |
---|
250 | |
---|
251 | C1 = 1.22; |
---|
252 | C2 = 0.4288; |
---|
253 | C3 = -1.651; |
---|
254 | C4 = 1.523; |
---|
255 | C5 = 0.1477; |
---|
256 | miu = 0.585; |
---|
257 | |
---|
258 | Rg2 = Rgsquare(q,L,b); |
---|
259 | Rg22 = Rg2*Rg2; |
---|
260 | b2 = b*b; |
---|
261 | b3 = b*b*b; |
---|
262 | b4 = b3*b; |
---|
263 | q02 = q0*q0; |
---|
264 | q03 = q0*q0*q0; |
---|
265 | q04 = q03*q0; |
---|
266 | q05 = q04*q0; |
---|
267 | |
---|
268 | t1 = (1.0/(b* p1*pow(q0,((-1.0) - p1 - p2)) - b*p2*pow(q0,((-1.0) - p1 - p2)) )); |
---|
269 | |
---|
270 | t2 = (b*C*(((-1.0*((14.0*b3)/(15.0*q03*Rg2))) + (14.0*b3*pow(E,(-((q02*Rg2)/b2))))/(15.0*q03*Rg2) + (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*((11.0/15.0 + (7*b2)/(15.0*q02*Rg2)))*Rg2)/b)))/L; |
---|
271 | |
---|
272 | t3 = (sqrt(Rg2)*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2.0))/(2.0*C5); |
---|
273 | |
---|
274 | t4 = (b4*sqrt(Rg2)*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2))/(C5*q04*Rg22); |
---|
275 | |
---|
276 | t5 = (2.0*b4*(((2.0*q0*Rg2)/b - (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*Rg2)/b))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q04*Rg22); |
---|
277 | |
---|
278 | t6 = (8.0*b4*b*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q05*Rg22); |
---|
279 | |
---|
280 | t7 = (((-((3.0*C3*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 3.0/miu)))/miu)) - (2.0*C2*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 2.0/miu)))/miu - (C1*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 1.0/miu)))/miu)); |
---|
281 | |
---|
282 | t8 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
283 | |
---|
284 | t9 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15*q02*Rg2))) + (7.0*b2)/(15.0*q02*Rg2))))/L; |
---|
285 | |
---|
286 | t10 = (2.0*b4*(((-1) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))/(q04*Rg22); |
---|
287 | |
---|
288 | |
---|
289 | yy = ((-1.0*(t1* ((-pow(q0,-p1)*(((b2*pi)/(L*q02) + t2 + t3 - t4 + t5 - t6 + 1.0/2.0*t7*t8)) - b*p1*pow(q0,((-1.0) - p1))*(((-((b*pi)/(L*q0))) + t9 + t10 + 1.0/2.0*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))))))); |
---|
290 | |
---|
291 | return (yy); |
---|
292 | } |
---|
293 | // |
---|
294 | static double |
---|
295 | a1long(double q, double L, double b, double p1, double p2, double q0) |
---|
296 | { |
---|
297 | double yy,C,C1,C2,C3,C4,C5,miu,Rg2; |
---|
298 | double t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15; |
---|
299 | double E,pi; |
---|
300 | double b2,b3,b4,q02,q03,q04,q05,Rg22; |
---|
301 | |
---|
302 | pi = 4.0*atan(1.0); |
---|
303 | E = 2.718281828459045091; |
---|
304 | |
---|
305 | if( L/b > 10.0) { |
---|
306 | C = 3.06/pow((L/b),0.44); |
---|
307 | } else { |
---|
308 | C = 1.0; |
---|
309 | } |
---|
310 | |
---|
311 | C1 = 1.22; |
---|
312 | C2 = 0.4288; |
---|
313 | C3 = -1.651; |
---|
314 | C4 = 1.523; |
---|
315 | C5 = 0.1477; |
---|
316 | miu = 0.585; |
---|
317 | |
---|
318 | Rg2 = Rgsquare(q,L,b); |
---|
319 | Rg22 = Rg2*Rg2; |
---|
320 | b2 = b*b; |
---|
321 | b3 = b*b*b; |
---|
322 | b4 = b3*b; |
---|
323 | q02 = q0*q0; |
---|
324 | q03 = q0*q0*q0; |
---|
325 | q04 = q03*q0; |
---|
326 | q05 = q04*q0; |
---|
327 | |
---|
328 | t1 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15.0*q02*Rg2))) + (7.0*b2)/(15.0*q02*Rg2)))); |
---|
329 | |
---|
330 | t2 = (2.0*b4*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
331 | |
---|
332 | t3 = ((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu)))); |
---|
333 | |
---|
334 | t4 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
335 | |
---|
336 | t5 = (1.0/(b*p1*pow(q0,((-1.0) - p1 - p2)) - b*p2*pow(q0,((-1.0) - p1 - p2)))); |
---|
337 | |
---|
338 | t6 = (b*C*(((-((14.0*b3)/(15.0*q03*Rg2))) + (14.0*b3*pow(E,(-((q02*Rg2)/b2))))/(15.0*q03*Rg2) + (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*((11.0/15.0 + (7.0*b2)/(15.0*q02*Rg2)))*Rg2)/b))); |
---|
339 | |
---|
340 | t7 = (sqrt(Rg2)*((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu))))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2)); |
---|
341 | |
---|
342 | t8 = (b4*sqrt(Rg2)*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*pow(sech_WR(((-C4) + (sqrt(Rg2)*q0)/b)/C5),2)); |
---|
343 | |
---|
344 | t9 = (2.0*b4*(((2.0*q0*Rg2)/b - (2.0*pow(E,(-((q02*Rg2)/b2)))*q0*Rg2)/b))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
345 | |
---|
346 | t10 = (8.0*b4*b*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
347 | |
---|
348 | t11 = (((-((3.0*C3*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 3.0/miu)))/miu)) - (2.0*C2*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 2.0/miu)))/miu - (C1*sqrt(Rg2)*pow((((sqrt(Rg2)*q0)/b)),((-1.0) - 1.0/miu)))/miu)); |
---|
349 | |
---|
350 | t12 = ((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))); |
---|
351 | |
---|
352 | t13 = (b*C*((4.0/15.0 - pow(E,(-((q02*Rg2)/b2)))*((11.0/15.0 + (7.0*b2)/(15.0*q02* Rg2))) + (7.0*b2)/(15.0*q02*Rg2)))); |
---|
353 | |
---|
354 | t14 = (2.0*b4*(((-1.0) + pow(E,(-((q02*Rg2)/b2))) + (q02*Rg2)/b2))*((1.0 + 1.0/2.0*(((-1.0) - tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5)))))); |
---|
355 | |
---|
356 | t15 = ((C3*pow((((sqrt(Rg2)*q0)/b)),((-3.0)/miu)) + C2*pow((((sqrt(Rg2)*q0)/b)),((-2.0)/miu)) + C1*pow((((sqrt(Rg2)*q0)/b)),((-1.0)/miu)))); |
---|
357 | |
---|
358 | |
---|
359 | yy = (pow(q0,p1)*(((-((b*pi)/(L*q0))) +t1/L +t2/(q04*Rg22) + 1.0/2.0*t3*t4)) + (t5*((pow(q0,(p1 - p2))*(((-pow(q0,(-p1)))*(((b2*pi)/(L*q02) +t6/L +t7/(2.0*C5) -t8/(C5*q04*Rg22) +t9/(q04*Rg22) -t10/(q05*Rg22) + 1.0/2.0*t11*t12)) - b*p1*pow(q0,((-1.0) - p1))*(((-((b*pi)/(L*q0))) +t13/L +t14/(q04*Rg22) + 1.0/2.0*t15*((1.0 + tanh(((-C4) + (sqrt(Rg2)*q0)/b)/C5))))))))))); |
---|
360 | |
---|
361 | return (yy); |
---|
362 | } |
---|
363 | |
---|
364 | |
---|
365 | static double |
---|
366 | Sk_WR(double q, double L, double b) |
---|
367 | { |
---|
368 | // |
---|
369 | double p1,p2,p1short,p2short,q0; |
---|
370 | double C,ans,q0short,Sexvmodify,pi; |
---|
371 | |
---|
372 | pi = 4.0*atan(1.0); |
---|
373 | |
---|
374 | p1 = 4.12; |
---|
375 | p2 = 4.42; |
---|
376 | p1short = 5.36; |
---|
377 | p2short = 5.62; |
---|
378 | q0 = 3.1; |
---|
379 | // |
---|
380 | q0short = fmax(1.9/sqrt(Rgsquareshort(q,L,b)),3.0); |
---|
381 | |
---|
382 | // |
---|
383 | if(L/b > 10.0) { |
---|
384 | C = 3.06/pow((L/b),0.44); |
---|
385 | } else { |
---|
386 | C = 1.0; |
---|
387 | } |
---|
388 | // |
---|
389 | |
---|
390 | if( L > 4*b ) { // Longer Chains |
---|
391 | if (q*b <= 3.1) { //Modified by Yun on Oct. 15, |
---|
392 | Sexvmodify = Sexvnew(q, L, b); |
---|
393 | ans = Sexvmodify + C * (4.0/15.0 + 7.0/(15.0*u_WR(q,L,b)) - (11.0/15.0 + 7.0/(15.0*u_WR(q,L,b)))*exp(-u_WR(q,L,b)))*(b/L); |
---|
394 | } else { //q(i)*b > 3.1 |
---|
395 | ans = a1long(q, L, b, p1, p2, q0)/(pow((q*b),p1)) + a2long(q, L, b, p1, p2, q0)/(pow((q*b),p2)) + pi/(q*L); |
---|
396 | } |
---|
397 | } else { //L <= 4*b Shorter Chains |
---|
398 | if (q*b <= fmax(1.9/sqrt(Rgsquareshort(q,L,b)),3.0) ) { |
---|
399 | if (q*b<=0.01) { |
---|
400 | ans = 1.0 - Rgsquareshort(q,L,b)*(q*q)/3.0; |
---|
401 | } else { |
---|
402 | ans = Sdebye1(q,L,b); |
---|
403 | } |
---|
404 | } else { //q*b > max(1.9/sqrt(Rgsquareshort(q(i),L,b)),3) |
---|
405 | ans = a1short(q,L,b,p1short,p2short,q0short)/(pow((q*b),p1short)) + a2short(q,L,b,p1short,p2short,q0short)/(pow((q*b),p2short)) + pi/(q*L); |
---|
406 | } |
---|
407 | } |
---|
408 | |
---|
409 | return(ans); |
---|
410 | //return(a2long(q, L, b, p1, p2, q0)); |
---|
411 | } |
---|
412 | |
---|
413 | /* CylinderForm : calculates the form factor of a cylinder at the give x-value p->x |
---|
414 | |
---|
415 | Warning: |
---|
416 | The call to WaveData() below returns a pointer to the middle |
---|
417 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
418 | calculations could cause memory to move, you should copy the coefficient |
---|
419 | values to local variables or an array before such operations. |
---|
420 | */ |
---|
421 | double |
---|
422 | CylinderForm(double dp[], double q) |
---|
423 | { |
---|
424 | |
---|
425 | int i; |
---|
426 | double Pi; |
---|
427 | double scale,radius,length,delrho,bkg,halfheight,sldCyl,sldSolv; //local variables of coefficient wave |
---|
428 | int nord=76; //order of integration |
---|
429 | double uplim,lolim; //upper and lower integration limits |
---|
430 | double summ,zi,yyy,answer,vcyl; //running tally of integration |
---|
431 | |
---|
432 | Pi = 4.0*atan(1.0); |
---|
433 | lolim = 0.0; |
---|
434 | uplim = Pi/2.0; |
---|
435 | |
---|
436 | summ = 0.0; //initialize intergral |
---|
437 | |
---|
438 | scale = dp[0]; //make local copies in case memory moves |
---|
439 | radius = dp[1]; |
---|
440 | length = dp[2]; |
---|
441 | sldCyl = dp[3]; |
---|
442 | sldSolv = dp[4]; |
---|
443 | bkg = dp[5]; |
---|
444 | |
---|
445 | delrho = sldCyl-sldSolv; |
---|
446 | halfheight = length/2.0; |
---|
447 | for(i=0;i<nord;i++) { |
---|
448 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
449 | yyy = Gauss76Wt[i] * CylKernel(q, radius, halfheight, zi); |
---|
450 | summ += yyy; |
---|
451 | } |
---|
452 | |
---|
453 | answer = (uplim-lolim)/2.0*summ; |
---|
454 | // Multiply by contrast^2 |
---|
455 | answer *= delrho*delrho; |
---|
456 | //normalize by cylinder volume |
---|
457 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
458 | vcyl=Pi*radius*radius*length; |
---|
459 | answer *= vcyl; |
---|
460 | //convert to [cm-1] |
---|
461 | answer *= 1.0e8; |
---|
462 | //Scale |
---|
463 | answer *= scale; |
---|
464 | // add in the background |
---|
465 | answer += bkg; |
---|
466 | |
---|
467 | return answer; |
---|
468 | } |
---|
469 | |
---|
470 | /* EllipCyl76X : calculates the form factor of a elliptical cylinder at the given x-value p->x |
---|
471 | |
---|
472 | Uses 76 pt Gaussian quadrature for both integrals |
---|
473 | |
---|
474 | Warning: |
---|
475 | The call to WaveData() below returns a pointer to the middle |
---|
476 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
477 | calculations could cause memory to move, you should copy the coefficient |
---|
478 | values to local variables or an array before such operations. |
---|
479 | */ |
---|
480 | double |
---|
481 | EllipCyl76(double dp[], double q) |
---|
482 | { |
---|
483 | int i,j; |
---|
484 | double Pi,slde,sld; |
---|
485 | double scale,ra,nu,length,delrho,bkg; //local variables of coefficient wave |
---|
486 | int nord=76; //order of integration |
---|
487 | double va,vb; //upper and lower integration limits |
---|
488 | double summ,zi,yyy,answer,vell; //running tally of integration |
---|
489 | double summj,vaj,vbj,zij,arg, si; //for the inner integration |
---|
490 | |
---|
491 | Pi = 4.0*atan(1.0); |
---|
492 | va = 0.0; |
---|
493 | vb = 1.0; //orintational average, outer integral |
---|
494 | vaj=0.0; |
---|
495 | vbj=Pi; //endpoints of inner integral |
---|
496 | |
---|
497 | summ = 0.0; //initialize intergral |
---|
498 | |
---|
499 | scale = dp[0]; //make local copies in case memory moves |
---|
500 | ra = dp[1]; |
---|
501 | nu = dp[2]; |
---|
502 | length = dp[3]; |
---|
503 | slde = dp[4]; |
---|
504 | sld = dp[5]; |
---|
505 | delrho = slde - sld; |
---|
506 | bkg = dp[6]; |
---|
507 | |
---|
508 | for(i=0;i<nord;i++) { |
---|
509 | //setup inner integral over the ellipsoidal cross-section |
---|
510 | summj=0; |
---|
511 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
512 | arg = ra*sqrt(1.0-zi*zi); |
---|
513 | for(j=0;j<nord;j++) { |
---|
514 | //76 gauss points for the inner integral as well |
---|
515 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
516 | yyy = Gauss76Wt[j] * EllipCylKernel(q,arg,nu,zij); |
---|
517 | summj += yyy; |
---|
518 | } |
---|
519 | //now calculate the value of the inner integral |
---|
520 | answer = (vbj-vaj)/2.0*summj; |
---|
521 | //divide integral by Pi |
---|
522 | answer /=Pi; |
---|
523 | |
---|
524 | //now calculate outer integral |
---|
525 | arg = q*length*zi/2.0; |
---|
526 | if (arg == 0.0){ |
---|
527 | si = 1.0; |
---|
528 | }else{ |
---|
529 | si = sin(arg) * sin(arg) / arg / arg; |
---|
530 | } |
---|
531 | yyy = Gauss76Wt[i] * answer * si; |
---|
532 | summ += yyy; |
---|
533 | } |
---|
534 | answer = (vb-va)/2.0*summ; |
---|
535 | // Multiply by contrast^2 |
---|
536 | answer *= delrho*delrho; |
---|
537 | //normalize by cylinder volume |
---|
538 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
539 | vell = Pi*ra*(nu*ra)*length; |
---|
540 | answer *= vell; |
---|
541 | //convert to [cm-1] |
---|
542 | answer *= 1.0e8; |
---|
543 | //Scale |
---|
544 | answer *= scale; |
---|
545 | // add in the background |
---|
546 | answer += bkg; |
---|
547 | |
---|
548 | return answer; |
---|
549 | } |
---|
550 | |
---|
551 | /* EllipCyl20X : calculates the form factor of a elliptical cylinder at the given x-value p->x |
---|
552 | |
---|
553 | Uses 76 pt Gaussian quadrature for orientational integral |
---|
554 | Uses 20 pt quadrature for the inner integral over the elliptical cross-section |
---|
555 | |
---|
556 | Warning: |
---|
557 | The call to WaveData() below returns a pointer to the middle |
---|
558 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
559 | calculations could cause memory to move, you should copy the coefficient |
---|
560 | values to local variables or an array before such operations. |
---|
561 | */ |
---|
562 | double |
---|
563 | EllipCyl20(double dp[], double q) |
---|
564 | { |
---|
565 | int i,j; |
---|
566 | double Pi,slde,sld; |
---|
567 | double scale,ra,nu,length,delrho,bkg; //local variables of coefficient wave |
---|
568 | int nordi=76; //order of integration |
---|
569 | int nordj=20; |
---|
570 | double va,vb; //upper and lower integration limits |
---|
571 | double summ,zi,yyy,answer,vell; //running tally of integration |
---|
572 | double summj,vaj,vbj,zij,arg,si; //for the inner integration |
---|
573 | |
---|
574 | Pi = 4.0*atan(1.0); |
---|
575 | va = 0.0; |
---|
576 | vb = 1.0; //orintational average, outer integral |
---|
577 | vaj=0.0; |
---|
578 | vbj=Pi; //endpoints of inner integral |
---|
579 | |
---|
580 | summ = 0.0; //initialize intergral |
---|
581 | |
---|
582 | scale = dp[0]; //make local copies in case memory moves |
---|
583 | ra = dp[1]; |
---|
584 | nu = dp[2]; |
---|
585 | length = dp[3]; |
---|
586 | slde = dp[4]; |
---|
587 | sld = dp[5]; |
---|
588 | delrho = slde - sld; |
---|
589 | bkg = dp[6]; |
---|
590 | |
---|
591 | for(i=0;i<nordi;i++) { |
---|
592 | //setup inner integral over the ellipsoidal cross-section |
---|
593 | summj=0; |
---|
594 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
595 | arg = ra*sqrt(1.0-zi*zi); |
---|
596 | for(j=0;j<nordj;j++) { |
---|
597 | //20 gauss points for the inner integral |
---|
598 | zij = ( Gauss20Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
599 | yyy = Gauss20Wt[j] * EllipCylKernel(q,arg,nu,zij); |
---|
600 | summj += yyy; |
---|
601 | } |
---|
602 | //now calculate the value of the inner integral |
---|
603 | answer = (vbj-vaj)/2.0*summj; |
---|
604 | //divide integral by Pi |
---|
605 | answer /=Pi; |
---|
606 | |
---|
607 | //now calculate outer integral |
---|
608 | arg = q*length*zi/2.0; |
---|
609 | if (arg == 0.0){ |
---|
610 | si = 1.0; |
---|
611 | }else{ |
---|
612 | si = sin(arg) * sin(arg) / arg / arg; |
---|
613 | } |
---|
614 | yyy = Gauss76Wt[i] * answer * si; |
---|
615 | summ += yyy; |
---|
616 | } |
---|
617 | |
---|
618 | answer = (vb-va)/2.0*summ; |
---|
619 | // Multiply by contrast^2 |
---|
620 | answer *= delrho*delrho; |
---|
621 | //normalize by cylinder volume |
---|
622 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
623 | vell = Pi*ra*(nu*ra)*length; |
---|
624 | answer *= vell; |
---|
625 | //convert to [cm-1] |
---|
626 | answer *= 1.0e8; |
---|
627 | //Scale |
---|
628 | answer *= scale; |
---|
629 | // add in the background |
---|
630 | answer += bkg; |
---|
631 | |
---|
632 | return answer; |
---|
633 | } |
---|
634 | |
---|
635 | /* TriaxialEllipsoidX : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
636 | |
---|
637 | Uses 76 pt Gaussian quadrature for both integrals |
---|
638 | |
---|
639 | Warning: |
---|
640 | The call to WaveData() below returns a pointer to the middle |
---|
641 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
642 | calculations could cause memory to move, you should copy the coefficient |
---|
643 | values to local variables or an array before such operations. |
---|
644 | */ |
---|
645 | double |
---|
646 | TriaxialEllipsoid(double dp[], double q) |
---|
647 | { |
---|
648 | int i,j; |
---|
649 | double Pi; |
---|
650 | double scale,aa,bb,cc,delrho,bkg; //local variables of coefficient wave |
---|
651 | int nordi=76; //order of integration |
---|
652 | int nordj=76; |
---|
653 | double va,vb; //upper and lower integration limits |
---|
654 | double summ,zi,yyy,answer; //running tally of integration |
---|
655 | double summj,vaj,vbj,zij,slde,sld; //for the inner integration |
---|
656 | |
---|
657 | Pi = 4.0*atan(1.0); |
---|
658 | va = 0.0; |
---|
659 | vb = 1.0; //orintational average, outer integral |
---|
660 | vaj = 0.0; |
---|
661 | vbj = 1.0; //endpoints of inner integral |
---|
662 | |
---|
663 | summ = 0.0; //initialize intergral |
---|
664 | |
---|
665 | scale = dp[0]; //make local copies in case memory moves |
---|
666 | aa = dp[1]; |
---|
667 | bb = dp[2]; |
---|
668 | cc = dp[3]; |
---|
669 | slde = dp[4]; |
---|
670 | sld = dp[5]; |
---|
671 | delrho = slde - sld; |
---|
672 | bkg = dp[6]; |
---|
673 | for(i=0;i<nordi;i++) { |
---|
674 | //setup inner integral over the ellipsoidal cross-section |
---|
675 | summj=0.0; |
---|
676 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "x" dummy |
---|
677 | for(j=0;j<nordj;j++) { |
---|
678 | //20 gauss points for the inner integral |
---|
679 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "y" dummy |
---|
680 | yyy = Gauss76Wt[j] * TriaxialKernel(q,aa,bb,cc,zi,zij); |
---|
681 | summj += yyy; |
---|
682 | } |
---|
683 | //now calculate the value of the inner integral |
---|
684 | answer = (vbj-vaj)/2.0*summj; |
---|
685 | |
---|
686 | //now calculate outer integral |
---|
687 | yyy = Gauss76Wt[i] * answer; |
---|
688 | summ += yyy; |
---|
689 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
690 | |
---|
691 | answer = (vb-va)/2.0*summ; |
---|
692 | // Multiply by contrast^2 |
---|
693 | answer *= delrho*delrho; |
---|
694 | //normalize by ellipsoid volume |
---|
695 | answer *= 4.0*Pi/3.0*aa*bb*cc; |
---|
696 | //convert to [cm-1] |
---|
697 | answer *= 1.0e8; |
---|
698 | //Scale |
---|
699 | answer *= scale; |
---|
700 | // add in the background |
---|
701 | answer += bkg; |
---|
702 | |
---|
703 | return answer; |
---|
704 | } |
---|
705 | |
---|
706 | /* ParallelepipedX : calculates the form factor of a Parallelepiped (a rectangular solid) |
---|
707 | at the given x-value p->x |
---|
708 | |
---|
709 | Uses 76 pt Gaussian quadrature for both integrals |
---|
710 | |
---|
711 | Warning: |
---|
712 | The call to WaveData() below returns a pointer to the middle |
---|
713 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
714 | calculations could cause memory to move, you should copy the coefficient |
---|
715 | values to local variables or an array before such operations. |
---|
716 | */ |
---|
717 | double |
---|
718 | Parallelepiped(double dp[], double q) |
---|
719 | { |
---|
720 | int i,j; |
---|
721 | double scale,aa,bb,cc,delrho,bkg; //local variables of coefficient wave |
---|
722 | int nordi=76; //order of integration |
---|
723 | int nordj=76; |
---|
724 | double va,vb; //upper and lower integration limits |
---|
725 | double summ,yyy,answer; //running tally of integration |
---|
726 | double summj,vaj,vbj; //for the inner integration |
---|
727 | double mu,mudum,arg,sigma,uu,vol,sldp,sld; |
---|
728 | |
---|
729 | |
---|
730 | // Pi = 4.0*atan(1.0); |
---|
731 | va = 0.0; |
---|
732 | vb = 1.0; //orintational average, outer integral |
---|
733 | vaj = 0.0; |
---|
734 | vbj = 1.0; //endpoints of inner integral |
---|
735 | |
---|
736 | summ = 0.0; //initialize intergral |
---|
737 | |
---|
738 | scale = dp[0]; //make local copies in case memory moves |
---|
739 | aa = dp[1]; |
---|
740 | bb = dp[2]; |
---|
741 | cc = dp[3]; |
---|
742 | sldp = dp[4]; |
---|
743 | sld = dp[5]; |
---|
744 | delrho = sldp - sld; |
---|
745 | bkg = dp[6]; |
---|
746 | |
---|
747 | mu = q*bb; |
---|
748 | vol = aa*bb*cc; |
---|
749 | // normalize all WRT bb |
---|
750 | aa = aa/bb; |
---|
751 | cc = cc/bb; |
---|
752 | |
---|
753 | for(i=0;i<nordi;i++) { |
---|
754 | //setup inner integral over the ellipsoidal cross-section |
---|
755 | summj=0.0; |
---|
756 | sigma = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy |
---|
757 | |
---|
758 | for(j=0;j<nordj;j++) { |
---|
759 | //76 gauss points for the inner integral |
---|
760 | uu = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy |
---|
761 | mudum = mu*sqrt(1.0-sigma*sigma); |
---|
762 | yyy = Gauss76Wt[j] * PPKernel(aa,mudum,uu); |
---|
763 | summj += yyy; |
---|
764 | } |
---|
765 | //now calculate the value of the inner integral |
---|
766 | answer = (vbj-vaj)/2.0*summj; |
---|
767 | |
---|
768 | arg = mu*cc*sigma/2.0; |
---|
769 | if ( arg == 0.0 ) { |
---|
770 | answer *= 1.0; |
---|
771 | } else { |
---|
772 | answer *= sin(arg)*sin(arg)/arg/arg; |
---|
773 | } |
---|
774 | |
---|
775 | //now sum up the outer integral |
---|
776 | yyy = Gauss76Wt[i] * answer; |
---|
777 | summ += yyy; |
---|
778 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
779 | |
---|
780 | answer = (vb-va)/2.0*summ; |
---|
781 | // Multiply by contrast^2 |
---|
782 | answer *= delrho*delrho; |
---|
783 | //normalize by volume |
---|
784 | answer *= vol; |
---|
785 | //convert to [cm-1] |
---|
786 | answer *= 1.0e8; |
---|
787 | //Scale |
---|
788 | answer *= scale; |
---|
789 | // add in the background |
---|
790 | answer += bkg; |
---|
791 | |
---|
792 | return answer; |
---|
793 | } |
---|
794 | |
---|
795 | /* HollowCylinderX : calculates the form factor of a Hollow Cylinder |
---|
796 | at the given x-value p->x |
---|
797 | |
---|
798 | Uses 76 pt Gaussian quadrature for the single integral |
---|
799 | |
---|
800 | Warning: |
---|
801 | The call to WaveData() below returns a pointer to the middle |
---|
802 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
803 | calculations could cause memory to move, you should copy the coefficient |
---|
804 | values to local variables or an array before such operations. |
---|
805 | */ |
---|
806 | double |
---|
807 | HollowCylinder(double dp[], double q) |
---|
808 | { |
---|
809 | int i; |
---|
810 | double scale,rcore,rshell,length,delrho,bkg; //local variables of coefficient wave |
---|
811 | int nord=76; //order of integration |
---|
812 | double va,vb,zi; //upper and lower integration limits |
---|
813 | double summ,answer,pi,sldc,sld; //running tally of integration |
---|
814 | |
---|
815 | pi = 4.0*atan(1.0); |
---|
816 | va = 0.0; |
---|
817 | vb = 1.0; //limits of numerical integral |
---|
818 | |
---|
819 | summ = 0.0; //initialize intergral |
---|
820 | |
---|
821 | scale = dp[0]; //make local copies in case memory moves |
---|
822 | rcore = dp[1]; |
---|
823 | rshell = dp[2]; |
---|
824 | length = dp[3]; |
---|
825 | sldc = dp[4]; |
---|
826 | sld = dp[5]; |
---|
827 | delrho = sldc - sld; |
---|
828 | bkg = dp[6]; |
---|
829 | |
---|
830 | for(i=0;i<nord;i++) { |
---|
831 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; |
---|
832 | summ += Gauss76Wt[i] * HolCylKernel(q, rcore, rshell, length, zi); |
---|
833 | } |
---|
834 | |
---|
835 | answer = (vb-va)/2.0*summ; |
---|
836 | // Multiply by contrast^2 |
---|
837 | answer *= delrho*delrho; |
---|
838 | //normalize by volume |
---|
839 | answer *= pi*(rshell*rshell-rcore*rcore)*length; |
---|
840 | //convert to [cm-1] |
---|
841 | answer *= 1.0e8; |
---|
842 | //Scale |
---|
843 | answer *= scale; |
---|
844 | // add in the background |
---|
845 | answer += bkg; |
---|
846 | |
---|
847 | return answer; |
---|
848 | } |
---|
849 | |
---|
850 | /* EllipsoidFormX : calculates the form factor of an ellipsoid of revolution with semiaxes a:a:nua |
---|
851 | at the given x-value p->x |
---|
852 | |
---|
853 | Uses 76 pt Gaussian quadrature for the single integral |
---|
854 | |
---|
855 | Warning: |
---|
856 | The call to WaveData() below returns a pointer to the middle |
---|
857 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
858 | calculations could cause memory to move, you should copy the coefficient |
---|
859 | values to local variables or an array before such operations. |
---|
860 | */ |
---|
861 | double |
---|
862 | EllipsoidForm(double dp[], double q) |
---|
863 | { |
---|
864 | int i; |
---|
865 | double scale,a,nua,delrho,bkg; //local variables of coefficient wave |
---|
866 | int nord=76; //order of integration |
---|
867 | double va,vb,zi; //upper and lower integration limits |
---|
868 | double summ,answer,pi,slde,sld; //running tally of integration |
---|
869 | |
---|
870 | pi = 4.0*atan(1.0); |
---|
871 | va = 0.0; |
---|
872 | vb = 1.0; //limits of numerical integral |
---|
873 | |
---|
874 | summ = 0.0; //initialize intergral |
---|
875 | |
---|
876 | scale = dp[0]; //make local copies in case memory moves |
---|
877 | nua = dp[1]; |
---|
878 | a = dp[2]; |
---|
879 | slde = dp[3]; |
---|
880 | sld = dp[4]; |
---|
881 | delrho = slde - sld; |
---|
882 | bkg = dp[5]; |
---|
883 | |
---|
884 | for(i=0;i<nord;i++) { |
---|
885 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; |
---|
886 | summ += Gauss76Wt[i] * EllipsoidKernel(q, a, nua, zi); |
---|
887 | } |
---|
888 | |
---|
889 | answer = (vb-va)/2.0*summ; |
---|
890 | // Multiply by contrast^2 |
---|
891 | answer *= delrho*delrho; |
---|
892 | //normalize by volume |
---|
893 | answer *= 4.0*pi/3.0*a*a*nua; |
---|
894 | //convert to [cm-1] |
---|
895 | answer *= 1.0e8; |
---|
896 | //Scale |
---|
897 | answer *= scale; |
---|
898 | // add in the background |
---|
899 | answer += bkg; |
---|
900 | |
---|
901 | return answer; |
---|
902 | } |
---|
903 | |
---|
904 | |
---|
905 | /* Cyl_PolyRadiusX : calculates the form factor of a cylinder at the given x-value p->x |
---|
906 | the cylinder has a polydisperse cross section |
---|
907 | |
---|
908 | */ |
---|
909 | double |
---|
910 | Cyl_PolyRadius(double dp[], double q) |
---|
911 | { |
---|
912 | int i; |
---|
913 | double scale,radius,length,pd,delrho,bkg; //local variables of coefficient wave |
---|
914 | int nord=20; //order of integration |
---|
915 | double uplim,lolim; //upper and lower integration limits |
---|
916 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
917 | double range,zz,Pi,sldc,sld; |
---|
918 | |
---|
919 | Pi = 4.0*atan(1.0); |
---|
920 | range = 3.4; |
---|
921 | |
---|
922 | summ = 0.0; //initialize intergral |
---|
923 | |
---|
924 | scale = dp[0]; //make local copies in case memory moves |
---|
925 | radius = dp[1]; |
---|
926 | length = dp[2]; |
---|
927 | pd = dp[3]; |
---|
928 | sldc = dp[4]; |
---|
929 | sld = dp[5]; |
---|
930 | delrho = sldc - sld; |
---|
931 | bkg = dp[6]; |
---|
932 | |
---|
933 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
934 | |
---|
935 | lolim = radius*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
936 | if(lolim<0.0) { |
---|
937 | lolim = 0.0; |
---|
938 | } |
---|
939 | if(pd>0.3) { |
---|
940 | range = 3.4 + (pd-0.3)*18.0; |
---|
941 | } |
---|
942 | uplim = radius*(1.0+range*pd); |
---|
943 | |
---|
944 | for(i=0;i<nord;i++) { |
---|
945 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
946 | yyy = Gauss20Wt[i] * Cyl_PolyRadKernel(q, radius, length, zz, delrho, zi); |
---|
947 | summ += yyy; |
---|
948 | } |
---|
949 | |
---|
950 | answer = (uplim-lolim)/2.0*summ; |
---|
951 | //normalize by average cylinder volume |
---|
952 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
953 | Vpoly=Pi*radius*radius*length*(zz+2.0)/(zz+1.0); |
---|
954 | answer /= Vpoly; |
---|
955 | //convert to [cm-1] |
---|
956 | answer *= 1.0e8; |
---|
957 | //Scale |
---|
958 | answer *= scale; |
---|
959 | // add in the background |
---|
960 | answer += bkg; |
---|
961 | |
---|
962 | return answer; |
---|
963 | } |
---|
964 | |
---|
965 | /* Cyl_PolyLengthX : calculates the form factor of a cylinder at the given x-value p->x |
---|
966 | the cylinder has a polydisperse Length |
---|
967 | |
---|
968 | */ |
---|
969 | double |
---|
970 | Cyl_PolyLength(double dp[], double q) |
---|
971 | { |
---|
972 | int i; |
---|
973 | double scale,radius,length,pd,delrho,bkg; //local variables of coefficient wave |
---|
974 | int nord=20; //order of integration |
---|
975 | double uplim,lolim; //upper and lower integration limits |
---|
976 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
977 | double range,zz,Pi,sldc,sld; |
---|
978 | |
---|
979 | |
---|
980 | Pi = 4.0*atan(1.0); |
---|
981 | range = 3.4; |
---|
982 | |
---|
983 | summ = 0.0; //initialize intergral |
---|
984 | |
---|
985 | scale = dp[0]; //make local copies in case memory moves |
---|
986 | radius = dp[1]; |
---|
987 | length = dp[2]; |
---|
988 | pd = dp[3]; |
---|
989 | sldc = dp[4]; |
---|
990 | sld = dp[5]; |
---|
991 | delrho = sldc - sld; |
---|
992 | bkg = dp[6]; |
---|
993 | |
---|
994 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
995 | |
---|
996 | lolim = length*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
997 | if(lolim<0.0) { |
---|
998 | lolim = 0.0; |
---|
999 | } |
---|
1000 | if(pd>0.3) { |
---|
1001 | range = 3.4 + (pd-0.3)*18.0; |
---|
1002 | } |
---|
1003 | uplim = length*(1.0+range*pd); |
---|
1004 | |
---|
1005 | for(i=0;i<nord;i++) { |
---|
1006 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1007 | yyy = Gauss20Wt[i] * Cyl_PolyLenKernel(q, radius, length, zz, delrho, zi); |
---|
1008 | summ += yyy; |
---|
1009 | } |
---|
1010 | |
---|
1011 | answer = (uplim-lolim)/2.0*summ; |
---|
1012 | //normalize by average cylinder volume (first moment) |
---|
1013 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
1014 | Vpoly=Pi*radius*radius*length; |
---|
1015 | answer /= Vpoly; |
---|
1016 | //convert to [cm-1] |
---|
1017 | answer *= 1.0e8; |
---|
1018 | //Scale |
---|
1019 | answer *= scale; |
---|
1020 | // add in the background |
---|
1021 | answer += bkg; |
---|
1022 | |
---|
1023 | return answer; |
---|
1024 | } |
---|
1025 | |
---|
1026 | /* CoreShellCylinderX : calculates the form factor of a cylinder at the given x-value p->x |
---|
1027 | the cylinder has a core-shell structure |
---|
1028 | |
---|
1029 | */ |
---|
1030 | double |
---|
1031 | CoreShellCylinder(double dp[], double q) |
---|
1032 | { |
---|
1033 | int i; |
---|
1034 | double scale,rcore,length,bkg; //local variables of coefficient wave |
---|
1035 | double thick,rhoc,rhos,rhosolv; |
---|
1036 | int nord=76; //order of integration |
---|
1037 | double uplim,lolim,halfheight; //upper and lower integration limits |
---|
1038 | double summ,zi,yyy,answer,Vcyl; //running tally of integration |
---|
1039 | double Pi; |
---|
1040 | |
---|
1041 | Pi = 4.0*atan(1.0); |
---|
1042 | |
---|
1043 | lolim = 0.0; |
---|
1044 | uplim = Pi/2.0; |
---|
1045 | |
---|
1046 | summ = 0.0; //initialize intergral |
---|
1047 | |
---|
1048 | scale = dp[0]; //make local copies in case memory moves |
---|
1049 | rcore = dp[1]; |
---|
1050 | thick = dp[2]; |
---|
1051 | length = dp[3]; |
---|
1052 | rhoc = dp[4]; |
---|
1053 | rhos = dp[5]; |
---|
1054 | rhosolv = dp[6]; |
---|
1055 | bkg = dp[7]; |
---|
1056 | |
---|
1057 | halfheight = length/2.0; |
---|
1058 | |
---|
1059 | for(i=0;i<nord;i++) { |
---|
1060 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1061 | yyy = Gauss76Wt[i] * CoreShellCylKernel(q, rcore, thick, rhoc,rhos,rhosolv, halfheight, zi); |
---|
1062 | summ += yyy; |
---|
1063 | } |
---|
1064 | |
---|
1065 | answer = (uplim-lolim)/2.0*summ; |
---|
1066 | // length is the total core length |
---|
1067 | Vcyl=Pi*(rcore+thick)*(rcore+thick)*(length+2.0*thick); |
---|
1068 | answer /= Vcyl; |
---|
1069 | //convert to [cm-1] |
---|
1070 | answer *= 1.0e8; |
---|
1071 | //Scale |
---|
1072 | answer *= scale; |
---|
1073 | // add in the background |
---|
1074 | answer += bkg; |
---|
1075 | |
---|
1076 | return answer; |
---|
1077 | } |
---|
1078 | |
---|
1079 | |
---|
1080 | /* PolyCoShCylinderX : calculates the form factor of a core-shell cylinder at the given x-value p->x |
---|
1081 | the cylinder has a polydisperse CORE radius |
---|
1082 | |
---|
1083 | */ |
---|
1084 | double |
---|
1085 | PolyCoShCylinder(double dp[], double q) |
---|
1086 | { |
---|
1087 | int i; |
---|
1088 | double scale,radius,length,sigma,bkg; //local variables of coefficient wave |
---|
1089 | double rad,radthick,facthick,rhoc,rhos,rhosolv; |
---|
1090 | int nord=20; //order of integration |
---|
1091 | double uplim,lolim; //upper and lower integration limits |
---|
1092 | double summ,yyy,answer,Vpoly; //running tally of integration |
---|
1093 | double Pi,AR,Rsqrsumm,Rsqryyy,Rsqr; |
---|
1094 | |
---|
1095 | Pi = 4.0*atan(1.0); |
---|
1096 | |
---|
1097 | summ = 0.0; //initialize intergral |
---|
1098 | Rsqrsumm = 0.0; |
---|
1099 | |
---|
1100 | scale = dp[0]; |
---|
1101 | radius = dp[1]; |
---|
1102 | sigma = dp[2]; //sigma is the standard mean deviation |
---|
1103 | length = dp[3]; |
---|
1104 | radthick = dp[4]; |
---|
1105 | facthick= dp[5]; |
---|
1106 | rhoc = dp[6]; |
---|
1107 | rhos = dp[7]; |
---|
1108 | rhosolv = dp[8]; |
---|
1109 | bkg = dp[9]; |
---|
1110 | |
---|
1111 | lolim = exp(log(radius)-(4.*sigma)); |
---|
1112 | if (lolim<0.0) { |
---|
1113 | lolim=0.0; //to avoid numerical error when va<0 (-ve r value) |
---|
1114 | } |
---|
1115 | uplim = exp(log(radius)+(4.*sigma)); |
---|
1116 | |
---|
1117 | for(i=0;i<nord;i++) { |
---|
1118 | rad = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1119 | AR=(1.0/(rad*sigma*sqrt(2.0*Pi)))*exp(-(0.5*((log(radius/rad))/sigma)*((log(radius/rad))/sigma))); |
---|
1120 | yyy = AR* Gauss20Wt[i] * CSCylIntegration(q,rad,radthick,facthick,rhoc,rhos,rhosolv,length); |
---|
1121 | Rsqryyy= Gauss20Wt[i] * AR * (rad+radthick)*(rad+radthick); //SRK normalize to total dimensions |
---|
1122 | summ += yyy; |
---|
1123 | Rsqrsumm += Rsqryyy; |
---|
1124 | } |
---|
1125 | |
---|
1126 | answer = (uplim-lolim)/2.0*summ; |
---|
1127 | Rsqr = (uplim-lolim)/2.0*Rsqrsumm; |
---|
1128 | //normalize by average cylinder volume |
---|
1129 | Vpoly = Pi*Rsqr*(length+2*facthick); |
---|
1130 | answer /= Vpoly; |
---|
1131 | //convert to [cm-1] |
---|
1132 | answer *= 1.0e8; |
---|
1133 | //Scale |
---|
1134 | answer *= scale; |
---|
1135 | // add in the background |
---|
1136 | answer += bkg; |
---|
1137 | |
---|
1138 | return answer; |
---|
1139 | } |
---|
1140 | |
---|
1141 | /* OblateFormX : calculates the form factor of a core-shell Oblate ellipsoid at the given x-value p->x |
---|
1142 | the ellipsoid has a core-shell structure |
---|
1143 | |
---|
1144 | */ |
---|
1145 | double |
---|
1146 | OblateForm(double dp[], double q) |
---|
1147 | { |
---|
1148 | int i; |
---|
1149 | double scale,crmaj,crmin,trmaj,trmin,delpc,delps,bkg; |
---|
1150 | int nord=76; //order of integration |
---|
1151 | double uplim,lolim; //upper and lower integration limits |
---|
1152 | double summ,zi,yyy,answer,oblatevol; //running tally of integration |
---|
1153 | double Pi,sldc,slds,sld; |
---|
1154 | |
---|
1155 | Pi = 4.0*atan(1.0); |
---|
1156 | |
---|
1157 | lolim = 0.0; |
---|
1158 | uplim = 1.0; |
---|
1159 | |
---|
1160 | summ = 0.0; //initialize intergral |
---|
1161 | |
---|
1162 | |
---|
1163 | scale = dp[0]; //make local copies in case memory moves |
---|
1164 | crmaj = dp[1]; |
---|
1165 | crmin = dp[2]; |
---|
1166 | trmaj = dp[3]; |
---|
1167 | trmin = dp[4]; |
---|
1168 | sldc = dp[5]; |
---|
1169 | slds = dp[6]; |
---|
1170 | sld = dp[7]; |
---|
1171 | delpc = sldc - slds; //core - shell |
---|
1172 | delps = slds - sld; //shell - solvent |
---|
1173 | bkg = dp[8]; |
---|
1174 | |
---|
1175 | for(i=0;i<nord;i++) { |
---|
1176 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1177 | yyy = Gauss76Wt[i] * gfn4(zi,crmaj,crmin,trmaj,trmin,delpc,delps,q); |
---|
1178 | summ += yyy; |
---|
1179 | } |
---|
1180 | |
---|
1181 | answer = (uplim-lolim)/2.0*summ; |
---|
1182 | // normalize by particle volume |
---|
1183 | oblatevol = 4.0*Pi/3.0*trmaj*trmaj*trmin; |
---|
1184 | answer /= oblatevol; |
---|
1185 | |
---|
1186 | //convert to [cm-1] |
---|
1187 | answer *= 1.0e8; |
---|
1188 | //Scale |
---|
1189 | answer *= scale; |
---|
1190 | // add in the background |
---|
1191 | answer += bkg; |
---|
1192 | |
---|
1193 | return answer; |
---|
1194 | } |
---|
1195 | |
---|
1196 | /* ProlateFormX : calculates the form factor of a core-shell Prolate ellipsoid at the given x-value p->x |
---|
1197 | the ellipsoid has a core-shell structure |
---|
1198 | |
---|
1199 | */ |
---|
1200 | double |
---|
1201 | ProlateForm(double dp[], double q) |
---|
1202 | { |
---|
1203 | int i; |
---|
1204 | double scale,crmaj,crmin,trmaj,trmin,delpc,delps,bkg; |
---|
1205 | int nord=76; //order of integration |
---|
1206 | double uplim,lolim; //upper and lower integration limits |
---|
1207 | double summ,zi,yyy,answer,prolatevol; //running tally of integration |
---|
1208 | double Pi,sldc,slds,sld; |
---|
1209 | |
---|
1210 | Pi = 4.0*atan(1.0); |
---|
1211 | |
---|
1212 | lolim = 0.0; |
---|
1213 | uplim = 1.0; |
---|
1214 | |
---|
1215 | summ = 0.0; //initialize intergral |
---|
1216 | |
---|
1217 | scale = dp[0]; //make local copies in case memory moves |
---|
1218 | crmaj = dp[1]; |
---|
1219 | crmin = dp[2]; |
---|
1220 | trmaj = dp[3]; |
---|
1221 | trmin = dp[4]; |
---|
1222 | sldc = dp[5]; |
---|
1223 | slds = dp[6]; |
---|
1224 | sld = dp[7]; |
---|
1225 | delpc = sldc - slds; //core - shell |
---|
1226 | delps = slds - sld; //shell - sovent |
---|
1227 | bkg = dp[8]; |
---|
1228 | |
---|
1229 | for(i=0;i<nord;i++) { |
---|
1230 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1231 | yyy = Gauss76Wt[i] * gfn2(zi,crmaj,crmin,trmaj,trmin,delpc,delps,q); |
---|
1232 | summ += yyy; |
---|
1233 | } |
---|
1234 | |
---|
1235 | answer = (uplim-lolim)/2.0*summ; |
---|
1236 | // normalize by particle volume |
---|
1237 | prolatevol = 4.0*Pi/3.0*trmaj*trmin*trmin; |
---|
1238 | answer /= prolatevol; |
---|
1239 | |
---|
1240 | //convert to [cm-1] |
---|
1241 | answer *= 1.0e8; |
---|
1242 | //Scale |
---|
1243 | answer *= scale; |
---|
1244 | // add in the background |
---|
1245 | answer += bkg; |
---|
1246 | |
---|
1247 | return answer; |
---|
1248 | } |
---|
1249 | |
---|
1250 | |
---|
1251 | /* StackedDiscsX : calculates the form factor of a stacked "tactoid" of core shell disks |
---|
1252 | like clay platelets that are not exfoliated |
---|
1253 | |
---|
1254 | */ |
---|
1255 | double |
---|
1256 | StackedDiscs(double dp[], double q) |
---|
1257 | { |
---|
1258 | int i; |
---|
1259 | double scale,length,bkg,rcore,thick,rhoc,rhol,rhosolv,N,gsd; //local variables of coefficient wave |
---|
1260 | double va,vb,vcyl,summ,yyy,zi,halfheight,d,answer; |
---|
1261 | int nord=76; //order of integration |
---|
1262 | double Pi; |
---|
1263 | |
---|
1264 | |
---|
1265 | Pi = 4.0*atan(1.0); |
---|
1266 | |
---|
1267 | va = 0.0; |
---|
1268 | vb = Pi/2.0; |
---|
1269 | |
---|
1270 | summ = 0.0; //initialize intergral |
---|
1271 | |
---|
1272 | scale = dp[0]; |
---|
1273 | rcore = dp[1]; |
---|
1274 | length = dp[2]; |
---|
1275 | thick = dp[3]; |
---|
1276 | rhoc = dp[4]; |
---|
1277 | rhol = dp[5]; |
---|
1278 | rhosolv = dp[6]; |
---|
1279 | N = dp[7]; |
---|
1280 | gsd = dp[8]; |
---|
1281 | bkg = dp[9]; |
---|
1282 | |
---|
1283 | d=2.0*thick+length; |
---|
1284 | halfheight = length/2.0; |
---|
1285 | |
---|
1286 | for(i=0;i<nord;i++) { |
---|
1287 | zi = ( Gauss76Z[i]*(vb-va) + vb + va )/2.0; |
---|
1288 | yyy = Gauss76Wt[i] * Stackdisc_kern(q, rcore, rhoc,rhol,rhosolv, halfheight,thick,zi,gsd,d,N); |
---|
1289 | summ += yyy; |
---|
1290 | } |
---|
1291 | |
---|
1292 | answer = (vb-va)/2.0*summ; |
---|
1293 | // length is the total core length |
---|
1294 | vcyl=Pi*rcore*rcore*(2.0*thick+length)*N; |
---|
1295 | answer /= vcyl; |
---|
1296 | //Convert to [cm-1] |
---|
1297 | answer *= 1.0e8; |
---|
1298 | //Scale |
---|
1299 | answer *= scale; |
---|
1300 | // add in the background |
---|
1301 | answer += bkg; |
---|
1302 | |
---|
1303 | return answer; |
---|
1304 | } |
---|
1305 | |
---|
1306 | |
---|
1307 | /* LamellarFFX : calculates the form factor of a lamellar structure - no S(q) effects included |
---|
1308 | |
---|
1309 | */ |
---|
1310 | double |
---|
1311 | LamellarFF(double dp[], double q) |
---|
1312 | { |
---|
1313 | double scale,del,sig,contr,bkg; //local variables of coefficient wave |
---|
1314 | double inten, qval,Pq; |
---|
1315 | double Pi,sldb,sld; |
---|
1316 | |
---|
1317 | |
---|
1318 | Pi = 4.0*atan(1.0); |
---|
1319 | scale = dp[0]; |
---|
1320 | del = dp[1]; |
---|
1321 | sig = dp[2]*del; |
---|
1322 | sldb = dp[3]; |
---|
1323 | sld = dp[4]; |
---|
1324 | contr = sldb - sld; |
---|
1325 | bkg = dp[5]; |
---|
1326 | qval=q; |
---|
1327 | |
---|
1328 | Pq = 2.0*contr*contr/qval/qval*(1.0-cos(qval*del)*exp(-0.5*qval*qval*sig*sig)); |
---|
1329 | |
---|
1330 | inten = 2.0*Pi*scale*Pq/(qval*qval); //this is now dimensionless... |
---|
1331 | |
---|
1332 | inten /= del; //normalize by the thickness (in A) |
---|
1333 | |
---|
1334 | inten *= 1.0e8; // 1/A to 1/cm |
---|
1335 | |
---|
1336 | return(inten+bkg); |
---|
1337 | } |
---|
1338 | |
---|
1339 | /* LamellarPSX : calculates the form factor of a lamellar structure - with S(q) effects included |
---|
1340 | --- now the proper resolution effects are used - the "default" resolution is turned off (= 0) and the |
---|
1341 | model is smeared just like any other function |
---|
1342 | */ |
---|
1343 | double |
---|
1344 | LamellarPS(double dp[], double q) |
---|
1345 | { |
---|
1346 | double scale,dd,del,sig,contr,NN,Cp,bkg; //local variables of coefficient wave |
---|
1347 | double inten,qval,Pq,Sq,alpha,temp,t1,t2,t3,dQ; |
---|
1348 | double Pi,Euler,dQDefault,fii,sldb,sld; |
---|
1349 | int ii,NNint; |
---|
1350 | // char buf[256]; |
---|
1351 | |
---|
1352 | |
---|
1353 | Euler = 0.5772156649; // Euler's constant |
---|
1354 | // dQDefault = 0.0025; //[=] 1/A, q-resolution, default value |
---|
1355 | dQDefault = 0.0; |
---|
1356 | dQ = dQDefault; |
---|
1357 | |
---|
1358 | Pi = 4.0*atan(1.0); |
---|
1359 | qval = q; |
---|
1360 | |
---|
1361 | scale = dp[0]; |
---|
1362 | dd = dp[1]; |
---|
1363 | del = dp[2]; |
---|
1364 | sig = dp[3]*del; |
---|
1365 | sldb = dp[4]; |
---|
1366 | sld = dp[5]; |
---|
1367 | contr = sldb - sld; |
---|
1368 | NN = trunc(dp[6]); //be sure that NN is an integer |
---|
1369 | Cp = dp[7]; |
---|
1370 | bkg = dp[8]; |
---|
1371 | |
---|
1372 | Pq = 2.0*contr*contr/qval/qval*(1.0-cos(qval*del)*exp(-0.5*qval*qval*sig*sig)); |
---|
1373 | |
---|
1374 | NNint = (int)NN; //cast to an integer for the loop |
---|
1375 | |
---|
1376 | // sprintf(buf, "qval = %g\r", qval); |
---|
1377 | // XOPNotice(buf); |
---|
1378 | |
---|
1379 | ii=0; |
---|
1380 | Sq = 0.0; |
---|
1381 | for(ii=1;ii<(NNint-1);ii+=1) { |
---|
1382 | |
---|
1383 | fii = (double)ii; //do I really need to do this? |
---|
1384 | |
---|
1385 | temp = 0.0; |
---|
1386 | alpha = Cp/4.0/Pi/Pi*(log(Pi*fii) + Euler); |
---|
1387 | t1 = 2.0*dQ*dQ*dd*dd*alpha; |
---|
1388 | t2 = 2.0*qval*qval*dd*dd*alpha; |
---|
1389 | t3 = dQ*dQ*dd*dd*fii*fii; |
---|
1390 | |
---|
1391 | temp = 1.0-fii/NN; |
---|
1392 | temp *= cos(dd*qval*fii/(1.0+t1)); |
---|
1393 | temp *= exp(-1.0*(t2 + t3)/(2.0*(1.0+t1)) ); |
---|
1394 | temp /= sqrt(1.0+t1); |
---|
1395 | |
---|
1396 | Sq += temp; |
---|
1397 | } |
---|
1398 | |
---|
1399 | Sq *= 2.0; |
---|
1400 | Sq += 1.0; |
---|
1401 | |
---|
1402 | inten = 2.0*Pi*scale*Pq*Sq/(dd*qval*qval); |
---|
1403 | |
---|
1404 | inten *= 1.0e8; // 1/A to 1/cm |
---|
1405 | |
---|
1406 | return(inten+bkg); |
---|
1407 | } |
---|
1408 | |
---|
1409 | |
---|
1410 | /* LamellarPS_HGX : calculates the form factor of a lamellar structure - with S(q) effects included |
---|
1411 | --- now the proper resolution effects are used - the "default" resolution is turned off (= 0) and the |
---|
1412 | model is smeared just like any other function |
---|
1413 | */ |
---|
1414 | double |
---|
1415 | LamellarPS_HG(double dp[], double q) |
---|
1416 | { |
---|
1417 | double scale,dd,delT,delH,SLD_T,SLD_H,SLD_S,NN,Cp,bkg; //local variables of coefficient wave |
---|
1418 | double inten,qval,Pq,Sq,alpha,temp,t1,t2,t3,dQ,drh,drt; |
---|
1419 | double Pi,Euler,dQDefault,fii; |
---|
1420 | int ii,NNint; |
---|
1421 | |
---|
1422 | |
---|
1423 | Euler = 0.5772156649; // Euler's constant |
---|
1424 | // dQDefault = 0.0025; //[=] 1/A, q-resolution, default value |
---|
1425 | dQDefault = 0.0; |
---|
1426 | dQ = dQDefault; |
---|
1427 | |
---|
1428 | Pi = 4.0*atan(1.0); |
---|
1429 | qval= q; |
---|
1430 | |
---|
1431 | scale = dp[0]; |
---|
1432 | dd = dp[1]; |
---|
1433 | delT = dp[2]; |
---|
1434 | delH = dp[3]; |
---|
1435 | SLD_T = dp[4]; |
---|
1436 | SLD_H = dp[5]; |
---|
1437 | SLD_S = dp[6]; |
---|
1438 | NN = trunc(dp[7]); //be sure that NN is an integer |
---|
1439 | Cp = dp[8]; |
---|
1440 | bkg = dp[9]; |
---|
1441 | |
---|
1442 | |
---|
1443 | drh = SLD_H - SLD_S; |
---|
1444 | drt = SLD_T - SLD_S; //correction 13FEB06 by L.Porcar |
---|
1445 | |
---|
1446 | Pq = drh*(sin(qval*(delH+delT))-sin(qval*delT)) + drt*sin(qval*delT); |
---|
1447 | Pq *= Pq; |
---|
1448 | Pq *= 4.0/(qval*qval); |
---|
1449 | |
---|
1450 | NNint = (int)NN; //cast to an integer for the loop |
---|
1451 | ii=0; |
---|
1452 | Sq = 0.0; |
---|
1453 | for(ii=1;ii<(NNint-1);ii+=1) { |
---|
1454 | |
---|
1455 | fii = (double)ii; //do I really need to do this? |
---|
1456 | |
---|
1457 | temp = 0.0; |
---|
1458 | alpha = Cp/4.0/Pi/Pi*(log(Pi*ii) + Euler); |
---|
1459 | t1 = 2.0*dQ*dQ*dd*dd*alpha; |
---|
1460 | t2 = 2.0*qval*qval*dd*dd*alpha; |
---|
1461 | t3 = dQ*dQ*dd*dd*ii*ii; |
---|
1462 | |
---|
1463 | temp = 1.0-ii/NN; |
---|
1464 | temp *= cos(dd*qval*ii/(1.0+t1)); |
---|
1465 | temp *= exp(-1.0*(t2 + t3)/(2.0*(1.0+t1)) ); |
---|
1466 | temp /= sqrt(1.0+t1); |
---|
1467 | |
---|
1468 | Sq += temp; |
---|
1469 | } |
---|
1470 | |
---|
1471 | Sq *= 2.0; |
---|
1472 | Sq += 1.0; |
---|
1473 | |
---|
1474 | inten = 2.0*Pi*scale*Pq*Sq/(dd*qval*qval); |
---|
1475 | |
---|
1476 | inten *= 1.0e8; // 1/A to 1/cm |
---|
1477 | |
---|
1478 | return(inten+bkg); |
---|
1479 | } |
---|
1480 | |
---|
1481 | /* LamellarFF_HGX : calculates the form factor of a lamellar structure - no S(q) effects included |
---|
1482 | but extra SLD for head groups is included |
---|
1483 | |
---|
1484 | */ |
---|
1485 | double |
---|
1486 | LamellarFF_HG(double dp[], double q) |
---|
1487 | { |
---|
1488 | double scale,delT,delH,slds,sldh,sldt,bkg; //local variables of coefficient wave |
---|
1489 | double inten, qval,Pq,drh,drt; |
---|
1490 | double Pi; |
---|
1491 | |
---|
1492 | |
---|
1493 | Pi = 4.0*atan(1.0); |
---|
1494 | qval= q; |
---|
1495 | scale = dp[0]; |
---|
1496 | delT = dp[1]; |
---|
1497 | delH = dp[2]; |
---|
1498 | sldt = dp[3]; |
---|
1499 | sldh = dp[4]; |
---|
1500 | slds = dp[5]; |
---|
1501 | bkg = dp[6]; |
---|
1502 | |
---|
1503 | |
---|
1504 | drh = sldh - slds; |
---|
1505 | drt = sldt - slds; //correction 13FEB06 by L.Porcar |
---|
1506 | |
---|
1507 | Pq = drh*(sin(qval*(delH+delT))-sin(qval*delT)) + drt*sin(qval*delT); |
---|
1508 | Pq *= Pq; |
---|
1509 | Pq *= 4.0/(qval*qval); |
---|
1510 | |
---|
1511 | inten = 2.0*Pi*scale*Pq/(qval*qval); //dimensionless... |
---|
1512 | |
---|
1513 | inten /= 2.0*(delT+delH); //normalize by the bilayer thickness |
---|
1514 | |
---|
1515 | inten *= 1.0e8; // 1/A to 1/cm |
---|
1516 | |
---|
1517 | return(inten+bkg); |
---|
1518 | } |
---|
1519 | |
---|
1520 | /* FlexExclVolCylX : calculates the form factor of a flexible cylinder with a circular cross section |
---|
1521 | -- incorporates Wei-Ren Chen's fixes - 2006 |
---|
1522 | |
---|
1523 | */ |
---|
1524 | double |
---|
1525 | FlexExclVolCyl(double dp[], double q) |
---|
1526 | { |
---|
1527 | double scale,L,B,bkg,rad,qr,cont,sldc,slds; |
---|
1528 | double Pi,flex,crossSect,answer; |
---|
1529 | |
---|
1530 | |
---|
1531 | Pi = 4.0*atan(1.0); |
---|
1532 | |
---|
1533 | scale = dp[0]; //make local copies in case memory moves |
---|
1534 | L = dp[1]; |
---|
1535 | B = dp[2]; |
---|
1536 | rad = dp[3]; |
---|
1537 | sldc = dp[4]; |
---|
1538 | slds = dp[5]; |
---|
1539 | cont = sldc-slds; |
---|
1540 | bkg = dp[6]; |
---|
1541 | |
---|
1542 | |
---|
1543 | qr = q*rad; |
---|
1544 | |
---|
1545 | flex = Sk_WR(q,L,B); |
---|
1546 | |
---|
1547 | crossSect = (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
1548 | flex *= crossSect; |
---|
1549 | flex *= Pi*rad*rad*L; |
---|
1550 | flex *= cont*cont; |
---|
1551 | flex *= 1.0e8; |
---|
1552 | answer = scale*flex + bkg; |
---|
1553 | |
---|
1554 | return answer; |
---|
1555 | } |
---|
1556 | |
---|
1557 | /* FlexCyl_EllipX : calculates the form factor of a flexible cylinder with an elliptical cross section |
---|
1558 | -- incorporates Wei-Ren Chen's fixes - 2006 |
---|
1559 | |
---|
1560 | */ |
---|
1561 | double |
---|
1562 | FlexCyl_Ellip(double dp[], double q) |
---|
1563 | { |
---|
1564 | double scale,L,B,bkg,rad,qr,cont,ellRatio,slds,sldc; |
---|
1565 | double Pi,flex,crossSect,answer; |
---|
1566 | |
---|
1567 | |
---|
1568 | Pi = 4.0*atan(1.0); |
---|
1569 | scale = dp[0]; //make local copies in case memory moves |
---|
1570 | L = dp[1]; |
---|
1571 | B = dp[2]; |
---|
1572 | rad = dp[3]; |
---|
1573 | ellRatio = dp[4]; |
---|
1574 | sldc = dp[5]; |
---|
1575 | slds = dp[6]; |
---|
1576 | bkg = dp[7]; |
---|
1577 | |
---|
1578 | cont = sldc - slds; |
---|
1579 | qr = q*rad; |
---|
1580 | |
---|
1581 | flex = Sk_WR(q,L,B); |
---|
1582 | |
---|
1583 | crossSect = EllipticalCross_fn(q,rad,(rad*ellRatio)); |
---|
1584 | flex *= crossSect; |
---|
1585 | flex *= Pi*rad*rad*ellRatio*L; |
---|
1586 | flex *= cont*cont; |
---|
1587 | flex *= 1.0e8; |
---|
1588 | answer = scale*flex + bkg; |
---|
1589 | |
---|
1590 | return answer; |
---|
1591 | } |
---|
1592 | |
---|
1593 | double |
---|
1594 | EllipticalCross_fn(double qq, double a, double b) |
---|
1595 | { |
---|
1596 | double uplim,lolim,Pi,summ,arg,zi,yyy,answer; |
---|
1597 | int i,nord=76; |
---|
1598 | |
---|
1599 | Pi = 4.0*atan(1.0); |
---|
1600 | lolim=0.0; |
---|
1601 | uplim=Pi/2.0; |
---|
1602 | summ=0.0; |
---|
1603 | |
---|
1604 | for(i=0;i<nord;i++) { |
---|
1605 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1606 | arg = qq*sqrt(a*a*sin(zi)*sin(zi)+b*b*cos(zi)*cos(zi)); |
---|
1607 | yyy = pow((2.0 * NR_BessJ1(arg) / arg),2); |
---|
1608 | yyy *= Gauss76Wt[i]; |
---|
1609 | summ += yyy; |
---|
1610 | } |
---|
1611 | answer = (uplim-lolim)/2.0*summ; |
---|
1612 | answer *= 2.0/Pi; |
---|
1613 | return(answer); |
---|
1614 | |
---|
1615 | } |
---|
1616 | /* FlexCyl_PolyLenX : calculates the form factor of a flecible cylinder at the given x-value p->x |
---|
1617 | the cylinder has a polydisperse Length |
---|
1618 | |
---|
1619 | */ |
---|
1620 | double |
---|
1621 | FlexCyl_PolyLen(double dp[], double q) |
---|
1622 | { |
---|
1623 | int i; |
---|
1624 | double scale,radius,length,pd,bkg,lb,delrho,sldc,slds; //local variables of coefficient wave |
---|
1625 | int nord=20; //order of integration |
---|
1626 | double uplim,lolim; //upper and lower integration limits |
---|
1627 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
1628 | double range,zz,Pi; |
---|
1629 | |
---|
1630 | Pi = 4.0*atan(1.0); |
---|
1631 | range = 3.4; |
---|
1632 | |
---|
1633 | summ = 0.0; //initialize intergral |
---|
1634 | scale = dp[0]; //make local copies in case memory moves |
---|
1635 | length = dp[1]; //radius |
---|
1636 | pd = dp[2]; // average length |
---|
1637 | lb = dp[3]; |
---|
1638 | radius = dp[4]; |
---|
1639 | sldc = dp[5]; |
---|
1640 | slds = dp[6]; |
---|
1641 | bkg = dp[7]; |
---|
1642 | |
---|
1643 | delrho = sldc - slds; |
---|
1644 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
1645 | |
---|
1646 | lolim = length*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
1647 | if(lolim<0.0) { |
---|
1648 | lolim = 0.0; |
---|
1649 | } |
---|
1650 | if(pd>0.3) { |
---|
1651 | range = 3.4 + (pd-0.3)*18.0; |
---|
1652 | } |
---|
1653 | uplim = length*(1.0+range*pd); |
---|
1654 | |
---|
1655 | for(i=0;i<nord;i++) { |
---|
1656 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1657 | yyy = Gauss20Wt[i] * FlePolyLen_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
1658 | summ += yyy; |
---|
1659 | } |
---|
1660 | |
---|
1661 | answer = (uplim-lolim)/2.0*summ; |
---|
1662 | //normalize by average cylinder volume (first moment), using the average length |
---|
1663 | Vpoly=Pi*radius*radius*length; |
---|
1664 | answer /= Vpoly; |
---|
1665 | |
---|
1666 | answer *=delrho*delrho; |
---|
1667 | |
---|
1668 | //convert to [cm-1] |
---|
1669 | answer *= 1.0e8; |
---|
1670 | //Scale |
---|
1671 | answer *= scale; |
---|
1672 | // add in the background |
---|
1673 | answer += bkg; |
---|
1674 | |
---|
1675 | return answer; |
---|
1676 | } |
---|
1677 | |
---|
1678 | /* FlexCyl_PolyLenX : calculates the form factor of a flexible cylinder at the given x-value p->x |
---|
1679 | the cylinder has a polydisperse cross sectional radius |
---|
1680 | |
---|
1681 | */ |
---|
1682 | double |
---|
1683 | FlexCyl_PolyRad(double dp[], double q) |
---|
1684 | { |
---|
1685 | int i; |
---|
1686 | double scale,radius,length,pd,delrho,bkg,lb,sldc,slds; //local variables of coefficient wave |
---|
1687 | int nord=76; //order of integration |
---|
1688 | double uplim,lolim; //upper and lower integration limits |
---|
1689 | double summ,zi,yyy,answer,Vpoly; //running tally of integration |
---|
1690 | double range,zz,Pi; |
---|
1691 | |
---|
1692 | |
---|
1693 | Pi = 4.0*atan(1.0); |
---|
1694 | range = 3.4; |
---|
1695 | |
---|
1696 | summ = 0.0; //initialize intergral |
---|
1697 | |
---|
1698 | scale = dp[0]; //make local copies in case memory moves |
---|
1699 | length = dp[1]; //radius |
---|
1700 | lb = dp[2]; // average length |
---|
1701 | radius = dp[3]; |
---|
1702 | pd = dp[4]; |
---|
1703 | sldc = dp[5]; |
---|
1704 | slds = dp[6]; |
---|
1705 | bkg = dp[7]; |
---|
1706 | |
---|
1707 | delrho = sldc-slds; |
---|
1708 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
1709 | |
---|
1710 | lolim = radius*(1.0-range*pd); //set the upper/lower limits to cover the distribution |
---|
1711 | if(lolim<0.0) { |
---|
1712 | lolim = 0.0; |
---|
1713 | } |
---|
1714 | if(pd>0.3) { |
---|
1715 | range = 3.4 + (pd-0.3)*18.0; |
---|
1716 | } |
---|
1717 | uplim = radius*(1.0+range*pd); |
---|
1718 | |
---|
1719 | for(i=0;i<nord;i++) { |
---|
1720 | //zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1721 | //yyy = Gauss20Wt[i] * FlePolyRad_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
1722 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1723 | yyy = Gauss76Wt[i] * FlePolyRad_kernel(q,radius,length,lb,zz,delrho,zi); |
---|
1724 | summ += yyy; |
---|
1725 | } |
---|
1726 | |
---|
1727 | answer = (uplim-lolim)/2.0*summ; |
---|
1728 | //normalize by average cylinder volume (second moment), using the average radius |
---|
1729 | Vpoly = Pi*radius*radius*length*(zz+2.0)/(zz+1.0); |
---|
1730 | answer /= Vpoly; |
---|
1731 | |
---|
1732 | answer *=delrho*delrho; |
---|
1733 | |
---|
1734 | //convert to [cm-1] |
---|
1735 | answer *= 1.0e8; |
---|
1736 | //Scale |
---|
1737 | answer *= scale; |
---|
1738 | // add in the background |
---|
1739 | answer += bkg; |
---|
1740 | |
---|
1741 | return answer; |
---|
1742 | } |
---|
1743 | |
---|
1744 | |
---|
1745 | |
---|
1746 | /////////////// |
---|
1747 | |
---|
1748 | // |
---|
1749 | // FUNCTION gfn2: CONTAINS F(Q,A,B,mu)**2 AS GIVEN |
---|
1750 | // BY (53) AND (56,57) IN CHEN AND |
---|
1751 | // KOTLARCHYK REFERENCE |
---|
1752 | // |
---|
1753 | // <PROLATE ELLIPSOIDS> |
---|
1754 | // |
---|
1755 | double |
---|
1756 | gfn2(double xx, double crmaj, double crmin, double trmaj, double trmin, double delpc, double delps, double qq) |
---|
1757 | { |
---|
1758 | // local variables |
---|
1759 | double aa,bb,u2,ut2,uq,ut,vc,vt,siq,sit,gfnc,gfnt,gfn2,pi43,gfn,Pi; |
---|
1760 | |
---|
1761 | Pi = 4.0*atan(1.0); |
---|
1762 | |
---|
1763 | pi43=4.0/3.0*Pi; |
---|
1764 | aa = crmaj; |
---|
1765 | bb = crmin; |
---|
1766 | u2 = (aa*aa*xx*xx + bb*bb*(1.0-xx*xx)); |
---|
1767 | ut2 = (trmaj*trmaj*xx*xx + trmin*trmin*(1.0-xx*xx)); |
---|
1768 | uq = sqrt(u2)*qq; |
---|
1769 | ut= sqrt(ut2)*qq; |
---|
1770 | vc = pi43*aa*bb*bb; |
---|
1771 | vt = pi43*trmaj*trmin*trmin; |
---|
1772 | if (uq == 0.0){ |
---|
1773 | siq = 1.0/3.0; |
---|
1774 | }else{ |
---|
1775 | siq = (sin(uq)/uq/uq - cos(uq)/uq)/uq; |
---|
1776 | } |
---|
1777 | if (ut == 0.0){ |
---|
1778 | sit = 1.0/3.0; |
---|
1779 | }else{ |
---|
1780 | sit = (sin(ut)/ut/ut - cos(ut)/ut)/ut; |
---|
1781 | } |
---|
1782 | gfnc = 3.0*siq*vc*delpc; |
---|
1783 | gfnt = 3.0*sit*vt*delps; |
---|
1784 | gfn = gfnc+gfnt; |
---|
1785 | gfn2 = gfn*gfn; |
---|
1786 | |
---|
1787 | return (gfn2); |
---|
1788 | } |
---|
1789 | |
---|
1790 | // |
---|
1791 | // FUNCTION gfn4: CONTAINS F(Q,A,B,MU)**2 AS GIVEN |
---|
1792 | // BY (53) & (58-59) IN CHEN AND |
---|
1793 | // KOTLARCHYK REFERENCE |
---|
1794 | // |
---|
1795 | // <OBLATE ELLIPSOID> |
---|
1796 | // function gfn4 for oblate ellipsoids |
---|
1797 | double |
---|
1798 | gfn4(double xx, double crmaj, double crmin, double trmaj, double trmin, double delpc, double delps, double qq) |
---|
1799 | { |
---|
1800 | // local variables |
---|
1801 | double aa,bb,u2,ut2,uq,ut,vc,vt,siq,sit,gfnc,gfnt,tgfn,gfn4,pi43,Pi; |
---|
1802 | |
---|
1803 | Pi = 4.0*atan(1.0); |
---|
1804 | pi43=4.0/3.0*Pi; |
---|
1805 | aa = crmaj; |
---|
1806 | bb = crmin; |
---|
1807 | u2 = (bb*bb*xx*xx + aa*aa*(1.0-xx*xx)); |
---|
1808 | ut2 = (trmin*trmin*xx*xx + trmaj*trmaj*(1.0-xx*xx)); |
---|
1809 | uq = sqrt(u2)*qq; |
---|
1810 | ut= sqrt(ut2)*qq; |
---|
1811 | vc = pi43*aa*aa*bb; |
---|
1812 | vt = pi43*trmaj*trmaj*trmin; |
---|
1813 | if (uq == 0.0){ |
---|
1814 | siq = 1.0/3.0; |
---|
1815 | }else{ |
---|
1816 | siq = (sin(uq)/uq/uq - cos(uq)/uq)/uq; |
---|
1817 | } |
---|
1818 | if (ut == 0.0){ |
---|
1819 | sit = 1.0/3.0; |
---|
1820 | }else{ |
---|
1821 | sit = (sin(ut)/ut/ut - cos(ut)/ut)/ut; |
---|
1822 | } |
---|
1823 | gfnc = 3.0*siq*vc*delpc; |
---|
1824 | gfnt = 3.0*sit*vt*delps; |
---|
1825 | tgfn = gfnc+gfnt; |
---|
1826 | gfn4 = tgfn*tgfn; |
---|
1827 | |
---|
1828 | return (gfn4); |
---|
1829 | } |
---|
1830 | |
---|
1831 | double |
---|
1832 | FlePolyLen_kernel(double q, double radius, double length, double lb, double zz, double delrho, double zi) |
---|
1833 | { |
---|
1834 | double Pq,vcyl,dl; |
---|
1835 | double Pi,qr; |
---|
1836 | |
---|
1837 | Pi = 4.0*atan(1.0); |
---|
1838 | qr = q*radius; |
---|
1839 | |
---|
1840 | Pq = Sk_WR(q,zi,lb); //does not have cross section term |
---|
1841 | if (qr !=0){ |
---|
1842 | Pq *= (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
1843 | } |
---|
1844 | vcyl=Pi*radius*radius*zi; |
---|
1845 | Pq *= vcyl*vcyl; |
---|
1846 | |
---|
1847 | dl = SchulzPoint_cpr(zi,length,zz); |
---|
1848 | return (Pq*dl); |
---|
1849 | |
---|
1850 | } |
---|
1851 | |
---|
1852 | double |
---|
1853 | FlePolyRad_kernel(double q, double ravg, double Lc, double Lb, double zz, double delrho, double zi) |
---|
1854 | { |
---|
1855 | double Pq,vcyl,dr; |
---|
1856 | double Pi,qr; |
---|
1857 | |
---|
1858 | Pi = 4.0*atan(1.0); |
---|
1859 | qr = q*zi; |
---|
1860 | |
---|
1861 | Pq = Sk_WR(q,Lc,Lb); //does not have cross section term |
---|
1862 | if (qr !=0){ |
---|
1863 | Pq *= (2.0*NR_BessJ1(qr)/qr)*(2.0*NR_BessJ1(qr)/qr); |
---|
1864 | } |
---|
1865 | |
---|
1866 | vcyl=Pi*zi*zi*Lc; |
---|
1867 | Pq *= vcyl*vcyl; |
---|
1868 | |
---|
1869 | dr = SchulzPoint_cpr(zi,ravg,zz); |
---|
1870 | return (Pq*dr); |
---|
1871 | |
---|
1872 | } |
---|
1873 | |
---|
1874 | double |
---|
1875 | CSCylIntegration(double qq, double rad, double radthick, double facthick, double rhoc, double rhos, double rhosolv, double length) |
---|
1876 | { |
---|
1877 | double answer,halfheight,Pi; |
---|
1878 | double lolim,uplim,summ,yyy,zi; |
---|
1879 | int nord,i; |
---|
1880 | |
---|
1881 | // set up the integration end points |
---|
1882 | Pi = 4.0*atan(1.0); |
---|
1883 | nord = 76; |
---|
1884 | lolim = 0.0; |
---|
1885 | uplim = Pi/2.0; |
---|
1886 | halfheight = length/2.0; |
---|
1887 | |
---|
1888 | summ = 0.0; // initialize integral |
---|
1889 | i=0; |
---|
1890 | for(i=0;i<nord;i++) { |
---|
1891 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
1892 | yyy = Gauss76Wt[i] * CScyl(qq, rad, radthick, facthick, rhoc,rhos,rhosolv, halfheight, zi); |
---|
1893 | summ += yyy; |
---|
1894 | } |
---|
1895 | |
---|
1896 | // calculate value of integral to return |
---|
1897 | answer = (uplim-lolim)/2.0*summ; |
---|
1898 | return (answer); |
---|
1899 | } |
---|
1900 | |
---|
1901 | double |
---|
1902 | CScyl(double qq, double rad, double radthick, double facthick, double rhoc, double rhos, double rhosolv, double length, double dum) |
---|
1903 | { |
---|
1904 | // qq is the q-value for the calculation (1/A) |
---|
1905 | // radius is the core radius of the cylinder (A) |
---|
1906 | // radthick and facthick are the radial and face layer thicknesses |
---|
1907 | // rho(n) are the respective SLD's |
---|
1908 | // length is the *Half* CORE-LENGTH of the cylinder |
---|
1909 | // dum is the dummy variable for the integration (theta) |
---|
1910 | |
---|
1911 | double dr1,dr2,besarg1,besarg2,vol1,vol2,sinarg1,sinarg2,si1,si2,be1,be2,t1,t2,retval; |
---|
1912 | double Pi; |
---|
1913 | |
---|
1914 | Pi = 4.0*atan(1.0); |
---|
1915 | |
---|
1916 | dr1 = rhoc-rhos; |
---|
1917 | dr2 = rhos-rhosolv; |
---|
1918 | vol1 = Pi*rad*rad*(2.0*length); |
---|
1919 | vol2 = Pi*(rad+radthick)*(rad+radthick)*(2.0*length+2.0*facthick); |
---|
1920 | |
---|
1921 | besarg1 = qq*rad*sin(dum); |
---|
1922 | besarg2 = qq*(rad+radthick)*sin(dum); |
---|
1923 | sinarg1 = qq*length*cos(dum); |
---|
1924 | sinarg2 = qq*(length+facthick)*cos(dum); |
---|
1925 | if (besarg1 == 0.0){ |
---|
1926 | be1 = 0.5; |
---|
1927 | }else{ |
---|
1928 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
1929 | } |
---|
1930 | if (besarg2 == 0.0){ |
---|
1931 | be2 = 0.5; |
---|
1932 | }else{ |
---|
1933 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
1934 | } |
---|
1935 | if (sinarg1 == 0.0){ |
---|
1936 | si1 = 1.0; |
---|
1937 | }else{ |
---|
1938 | si1 = sin(sinarg1)/sinarg1; |
---|
1939 | } |
---|
1940 | if (sinarg2 == 0.0){ |
---|
1941 | si2 = 1.0; |
---|
1942 | }else{ |
---|
1943 | si2 = sin(sinarg2)/sinarg2; |
---|
1944 | } |
---|
1945 | |
---|
1946 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
1947 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
1948 | |
---|
1949 | retval = ((t1+t2)*(t1+t2))*sin(dum); |
---|
1950 | return (retval); |
---|
1951 | |
---|
1952 | } |
---|
1953 | |
---|
1954 | |
---|
1955 | double |
---|
1956 | CoreShellCylKernel(double qq, double rcore, double thick, double rhoc, double rhos, double rhosolv, double length, double dum) |
---|
1957 | { |
---|
1958 | |
---|
1959 | double dr1,dr2,besarg1,besarg2,vol1,vol2,sinarg1,sinarg2,si1,si2,be1,be2,t1,t2,retval; |
---|
1960 | double Pi; |
---|
1961 | |
---|
1962 | Pi = 4.0*atan(1.0); |
---|
1963 | |
---|
1964 | dr1 = rhoc-rhos; |
---|
1965 | dr2 = rhos-rhosolv; |
---|
1966 | vol1 = Pi*rcore*rcore*(2.0*length); |
---|
1967 | vol2 = Pi*(rcore+thick)*(rcore+thick)*(2.0*length+2.0*thick); |
---|
1968 | |
---|
1969 | besarg1 = qq*rcore*sin(dum); |
---|
1970 | besarg2 = qq*(rcore+thick)*sin(dum); |
---|
1971 | sinarg1 = qq*length*cos(dum); |
---|
1972 | sinarg2 = qq*(length+thick)*cos(dum); |
---|
1973 | |
---|
1974 | if (besarg1 == 0.0){ |
---|
1975 | be1 = 0.5; |
---|
1976 | }else{ |
---|
1977 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
1978 | } |
---|
1979 | if (besarg2 == 0.0){ |
---|
1980 | be2 = 0.5; |
---|
1981 | }else{ |
---|
1982 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
1983 | } |
---|
1984 | if (sinarg1 == 0.0){ |
---|
1985 | si1 = 1.0; |
---|
1986 | }else{ |
---|
1987 | si1 = sin(sinarg1)/sinarg1; |
---|
1988 | } |
---|
1989 | if (sinarg2 == 0.0){ |
---|
1990 | si2 = 1.0; |
---|
1991 | }else{ |
---|
1992 | si2 = sin(sinarg2)/sinarg2; |
---|
1993 | } |
---|
1994 | |
---|
1995 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
1996 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
1997 | |
---|
1998 | retval = ((t1+t2)*(t1+t2))*sin(dum); |
---|
1999 | |
---|
2000 | return (retval); |
---|
2001 | } |
---|
2002 | |
---|
2003 | double |
---|
2004 | Cyl_PolyLenKernel(double q, double radius, double len_avg, double zz, double delrho, double dumLen) |
---|
2005 | { |
---|
2006 | |
---|
2007 | double halfheight,uplim,lolim,zi,summ,yyy,Pi; |
---|
2008 | double answer,dr,Vcyl; |
---|
2009 | int i,nord; |
---|
2010 | |
---|
2011 | Pi = 4.0*atan(1.0); |
---|
2012 | lolim = 0.0; |
---|
2013 | uplim = Pi/2.0; |
---|
2014 | halfheight = dumLen/2.0; |
---|
2015 | nord=20; |
---|
2016 | summ = 0.0; |
---|
2017 | |
---|
2018 | //do the cylinder orientational average |
---|
2019 | for(i=0;i<nord;i++) { |
---|
2020 | zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
2021 | yyy = Gauss20Wt[i] * CylKernel(q, radius, halfheight, zi); |
---|
2022 | summ += yyy; |
---|
2023 | } |
---|
2024 | answer = (uplim-lolim)/2.0*summ; |
---|
2025 | // Multiply by contrast^2 |
---|
2026 | answer *= delrho*delrho; |
---|
2027 | // don't do the normal scaling to volume here |
---|
2028 | // instead, multiply by VCyl^2 to get rid of the normalization for this radius of cylinder |
---|
2029 | Vcyl = Pi*radius*radius*dumLen; |
---|
2030 | answer *= Vcyl*Vcyl; |
---|
2031 | |
---|
2032 | dr = SchulzPoint_cpr(dumLen,len_avg,zz); |
---|
2033 | return(dr*answer); |
---|
2034 | } |
---|
2035 | |
---|
2036 | |
---|
2037 | double |
---|
2038 | Stackdisc_kern(double qq, double rcore, double rhoc, double rhol, double rhosolv, double length, double thick, double dum, double gsd, double d, double N) |
---|
2039 | { |
---|
2040 | // qq is the q-value for the calculation (1/A) |
---|
2041 | // rcore is the core radius of the cylinder (A) |
---|
2042 | // rho(n) are the respective SLD's |
---|
2043 | // length is the *Half* CORE-LENGTH of the cylinder = L (A) |
---|
2044 | // dum is the dummy variable for the integration (x in Feigin's notation) |
---|
2045 | |
---|
2046 | //Local variables |
---|
2047 | double totald,dr1,dr2,besarg1,besarg2,be1,be2,si1,si2,area,sinarg1,sinarg2,t1,t2,retval,sqq,dexpt; |
---|
2048 | double Pi; |
---|
2049 | int kk; |
---|
2050 | |
---|
2051 | Pi = 4.0*atan(1.0); |
---|
2052 | |
---|
2053 | dr1 = rhoc-rhosolv; |
---|
2054 | dr2 = rhol-rhosolv; |
---|
2055 | area = Pi*rcore*rcore; |
---|
2056 | totald=2.0*(thick+length); |
---|
2057 | |
---|
2058 | besarg1 = qq*rcore*sin(dum); |
---|
2059 | besarg2 = qq*rcore*sin(dum); |
---|
2060 | |
---|
2061 | sinarg1 = qq*length*cos(dum); |
---|
2062 | sinarg2 = qq*(length+thick)*cos(dum); |
---|
2063 | |
---|
2064 | if (besarg1 == 0.0){ |
---|
2065 | be1 = 0.5; |
---|
2066 | }else{ |
---|
2067 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
2068 | } |
---|
2069 | if (besarg2 == 0.0){ |
---|
2070 | be2 = 0.5; |
---|
2071 | }else{ |
---|
2072 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
2073 | } |
---|
2074 | if (sinarg1 == 0.0){ |
---|
2075 | si1 = 1.0; |
---|
2076 | }else{ |
---|
2077 | si1 = sin(sinarg1)/sinarg1; |
---|
2078 | } |
---|
2079 | if (sinarg2 == 0.0){ |
---|
2080 | si2 = 1.0; |
---|
2081 | }else{ |
---|
2082 | si2 = sin(sinarg2)/sinarg2; |
---|
2083 | } |
---|
2084 | |
---|
2085 | t1 = 2.0*area*(2.0*length)*dr1*(si1)*(be1); |
---|
2086 | t2 = 2.0*area*dr2*(totald*si2-2.0*length*si1)*(be2); |
---|
2087 | |
---|
2088 | retval =((t1+t2)*(t1+t2))*sin(dum); |
---|
2089 | |
---|
2090 | // loop for the structure facture S(q) |
---|
2091 | sqq=0.0; |
---|
2092 | for(kk=1;kk<N;kk+=1) { |
---|
2093 | dexpt=qq*cos(dum)*qq*cos(dum)*d*d*gsd*gsd*kk/2.0; |
---|
2094 | sqq=sqq+(N-kk)*cos(qq*cos(dum)*d*kk)*exp(-1.*dexpt); |
---|
2095 | } |
---|
2096 | |
---|
2097 | // end of loop for S(q) |
---|
2098 | sqq=1.0+2.0*sqq/N; |
---|
2099 | retval *= sqq; |
---|
2100 | |
---|
2101 | return(retval); |
---|
2102 | } |
---|
2103 | |
---|
2104 | |
---|
2105 | double |
---|
2106 | Cyl_PolyRadKernel(double q, double radius, double length, double zz, double delrho, double dumRad) |
---|
2107 | { |
---|
2108 | |
---|
2109 | double halfheight,uplim,lolim,zi,summ,yyy,Pi; |
---|
2110 | double answer,dr,Vcyl; |
---|
2111 | int i,nord; |
---|
2112 | |
---|
2113 | Pi = 4.0*atan(1.0); |
---|
2114 | lolim = 0.0; |
---|
2115 | uplim = Pi/2.0; |
---|
2116 | halfheight = length/2.0; |
---|
2117 | // nord=20; |
---|
2118 | nord=76; |
---|
2119 | summ = 0.0; |
---|
2120 | |
---|
2121 | //do the cylinder orientational average |
---|
2122 | // for(i=0;i<nord;i++) { |
---|
2123 | // zi = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
2124 | // yyy = Gauss20Wt[i] * CylKernel(q, dumRad, halfheight, zi); |
---|
2125 | // summ += yyy; |
---|
2126 | // } |
---|
2127 | for(i=0;i<nord;i++) { |
---|
2128 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
2129 | yyy = Gauss76Wt[i] * CylKernel(q, dumRad, halfheight, zi); |
---|
2130 | summ += yyy; |
---|
2131 | } |
---|
2132 | answer = (uplim-lolim)/2.0*summ; |
---|
2133 | // Multiply by contrast^2 |
---|
2134 | answer *= delrho*delrho; |
---|
2135 | // don't do the normal scaling to volume here |
---|
2136 | // instead, multiply by VCyl^2 to get rid of the normalization for this radius of cylinder |
---|
2137 | Vcyl = Pi*dumRad*dumRad*length; |
---|
2138 | answer *= Vcyl*Vcyl; |
---|
2139 | |
---|
2140 | dr = SchulzPoint_cpr(dumRad,radius,zz); |
---|
2141 | return(dr*answer); |
---|
2142 | } |
---|
2143 | |
---|
2144 | double |
---|
2145 | SchulzPoint_cpr(double dumRad, double radius, double zz) |
---|
2146 | { |
---|
2147 | double dr; |
---|
2148 | |
---|
2149 | dr = zz*log(dumRad) - gammaln(zz+1.0) + (zz+1.0)*log((zz+1.0)/radius)-(dumRad/radius*(zz+1.0)); |
---|
2150 | return(exp(dr)); |
---|
2151 | } |
---|
2152 | |
---|
2153 | |
---|
2154 | double |
---|
2155 | EllipsoidKernel(double qq, double a, double nua, double dum) |
---|
2156 | { |
---|
2157 | double arg,nu,retval; //local variables |
---|
2158 | |
---|
2159 | nu = nua/a; |
---|
2160 | arg = qq*a*sqrt(1.0+dum*dum*(nu*nu-1.0)); |
---|
2161 | if (arg == 0.0){ |
---|
2162 | retval =1.0/3.0; |
---|
2163 | }else{ |
---|
2164 | retval = (sin(arg)-arg*cos(arg))/(arg*arg*arg); |
---|
2165 | } |
---|
2166 | retval *= retval; |
---|
2167 | retval *= 9.0; |
---|
2168 | |
---|
2169 | return(retval); |
---|
2170 | }//Function EllipsoidKernel() |
---|
2171 | |
---|
2172 | double |
---|
2173 | HolCylKernel(double qq, double rcore, double rshell, double length, double dum) |
---|
2174 | { |
---|
2175 | double gamma,arg1,arg2,lam1,lam2,psi,sinarg,t2,retval; //local variables |
---|
2176 | |
---|
2177 | gamma = rcore/rshell; |
---|
2178 | arg1 = qq*rshell*sqrt(1.0-dum*dum); //1=shell (outer radius) |
---|
2179 | arg2 = qq*rcore*sqrt(1.0-dum*dum); //2=core (inner radius) |
---|
2180 | if (arg1 == 0.0){ |
---|
2181 | lam1 = 1.0; |
---|
2182 | }else{ |
---|
2183 | lam1 = 2.0*NR_BessJ1(arg1)/arg1; |
---|
2184 | } |
---|
2185 | if (arg2 == 0.0){ |
---|
2186 | lam2 = 1.0; |
---|
2187 | }else{ |
---|
2188 | lam2 = 2.0*NR_BessJ1(arg2)/arg2; |
---|
2189 | } |
---|
2190 | //Todo: Need to check psi behavior as gamma goes to 1. |
---|
2191 | psi = 1.0/(1.0-gamma*gamma)*(lam1 - gamma*gamma*lam2); //SRK 10/19/00 |
---|
2192 | sinarg = qq*length*dum/2.0; |
---|
2193 | if (sinarg == 0.0){ |
---|
2194 | t2 = 1.0; |
---|
2195 | }else{ |
---|
2196 | t2 = sin(sinarg)/sinarg; |
---|
2197 | } |
---|
2198 | |
---|
2199 | retval = psi*psi*t2*t2; |
---|
2200 | |
---|
2201 | return(retval); |
---|
2202 | }//Function HolCylKernel() |
---|
2203 | |
---|
2204 | double |
---|
2205 | PPKernel(double aa, double mu, double uu) |
---|
2206 | { |
---|
2207 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
2208 | double arg1,arg2,Pi,tmp1,tmp2; //local variables |
---|
2209 | |
---|
2210 | Pi = 4.0*atan(1.0); |
---|
2211 | |
---|
2212 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
2213 | arg1 = (mu/2.0)*cos(Pi*uu/2.0); |
---|
2214 | arg2 = (mu*aa/2.0)*sin(Pi*uu/2.0); |
---|
2215 | if(arg1==0.0) { |
---|
2216 | tmp1 = 1.0; |
---|
2217 | } else { |
---|
2218 | tmp1 = sin(arg1)*sin(arg1)/arg1/arg1; |
---|
2219 | } |
---|
2220 | |
---|
2221 | if (arg2==0.0) { |
---|
2222 | tmp2 = 1.0; |
---|
2223 | } else { |
---|
2224 | tmp2 = sin(arg2)*sin(arg2)/arg2/arg2; |
---|
2225 | } |
---|
2226 | |
---|
2227 | return (tmp1*tmp2); |
---|
2228 | |
---|
2229 | }//Function PPKernel() |
---|
2230 | |
---|
2231 | |
---|
2232 | double |
---|
2233 | TriaxialKernel(double q, double aa, double bb, double cc, double dx, double dy) |
---|
2234 | { |
---|
2235 | |
---|
2236 | double arg,val,pi; //local variables |
---|
2237 | |
---|
2238 | pi = 4.0*atan(1.0); |
---|
2239 | |
---|
2240 | arg = aa*aa*cos(pi*dx/2)*cos(pi*dx/2); |
---|
2241 | arg += bb*bb*sin(pi*dx/2)*sin(pi*dx/2)*(1-dy*dy); |
---|
2242 | arg += cc*cc*dy*dy; |
---|
2243 | arg = q*sqrt(arg); |
---|
2244 | if (arg == 0.0){ |
---|
2245 | val = 1.0; // as arg --> 0, val should go to 1.0 |
---|
2246 | }else{ |
---|
2247 | val = 9.0 * ( (sin(arg) - arg*cos(arg))/(arg*arg*arg) ) * ( (sin(arg) - arg*cos(arg))/(arg*arg*arg) ); |
---|
2248 | } |
---|
2249 | return (val); |
---|
2250 | |
---|
2251 | }//Function TriaxialKernel() |
---|
2252 | |
---|
2253 | |
---|
2254 | double |
---|
2255 | CylKernel(double qq, double rr,double h, double theta) |
---|
2256 | { |
---|
2257 | |
---|
2258 | // qq is the q-value for the calculation (1/A) |
---|
2259 | // rr is the radius of the cylinder (A) |
---|
2260 | // h is the HALF-LENGTH of the cylinder = L/2 (A) |
---|
2261 | |
---|
2262 | double besarg,bj,retval,d1,t1,b1,t2,b2,siarg,be,si; //Local variables |
---|
2263 | |
---|
2264 | |
---|
2265 | besarg = qq*rr*sin(theta); |
---|
2266 | siarg = qq * h * cos(theta); |
---|
2267 | bj =NR_BessJ1(besarg); |
---|
2268 | |
---|
2269 | //* Computing 2nd power */ |
---|
2270 | d1 = sin(siarg); |
---|
2271 | t1 = d1 * d1; |
---|
2272 | //* Computing 2nd power */ |
---|
2273 | d1 = bj; |
---|
2274 | t2 = d1 * d1 * 4.0 * sin(theta); |
---|
2275 | //* Computing 2nd power */ |
---|
2276 | d1 = siarg; |
---|
2277 | b1 = d1 * d1; |
---|
2278 | //* Computing 2nd power */ |
---|
2279 | d1 = qq * rr * sin(theta); |
---|
2280 | b2 = d1 * d1; |
---|
2281 | if (besarg == 0.0){ |
---|
2282 | be = sin(theta); |
---|
2283 | }else{ |
---|
2284 | be = t2 / b2; |
---|
2285 | } |
---|
2286 | if (siarg == 0.0){ |
---|
2287 | si = 1.0; |
---|
2288 | }else{ |
---|
2289 | si = t1 / b1; |
---|
2290 | } |
---|
2291 | retval = be * si; |
---|
2292 | |
---|
2293 | return (retval); |
---|
2294 | |
---|
2295 | }//Function CylKernel() |
---|
2296 | |
---|
2297 | double |
---|
2298 | EllipCylKernel(double qq, double ra,double nu, double theta) |
---|
2299 | { |
---|
2300 | //this is the function LAMBDA1^2 in Feigin's notation |
---|
2301 | // qq is the q-value for the calculation (1/A) |
---|
2302 | // ra is the transformed radius"a" in Feigin's notation |
---|
2303 | // nu is the ratio (major radius)/(minor radius) of the Ellipsoid [=] --- |
---|
2304 | // theta is the dummy variable of the integration |
---|
2305 | |
---|
2306 | double retval,arg; //Local variables |
---|
2307 | |
---|
2308 | arg = qq*ra*sqrt((1.0+nu*nu)/2+(1.0-nu*nu)*cos(theta)/2); |
---|
2309 | if (arg == 0.0){ |
---|
2310 | retval = 1.0; |
---|
2311 | }else{ |
---|
2312 | retval = 2.0*NR_BessJ1(arg)/arg; |
---|
2313 | } |
---|
2314 | |
---|
2315 | //square it |
---|
2316 | retval *= retval; |
---|
2317 | |
---|
2318 | return(retval); |
---|
2319 | |
---|
2320 | }//Function EllipCylKernel() |
---|
2321 | |
---|
2322 | double NR_BessJ1(double x) |
---|
2323 | { |
---|
2324 | double ax,z; |
---|
2325 | double xx,y,ans,ans1,ans2; |
---|
2326 | |
---|
2327 | if ((ax=fabs(x)) < 8.0) { |
---|
2328 | y=x*x; |
---|
2329 | ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1 |
---|
2330 | +y*(-2972611.439+y*(15704.48260+y*(-30.16036606)))))); |
---|
2331 | ans2=144725228442.0+y*(2300535178.0+y*(18583304.74 |
---|
2332 | +y*(99447.43394+y*(376.9991397+y*1.0)))); |
---|
2333 | ans=ans1/ans2; |
---|
2334 | } else { |
---|
2335 | z=8.0/ax; |
---|
2336 | y=z*z; |
---|
2337 | xx=ax-2.356194491; |
---|
2338 | ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4 |
---|
2339 | +y*(0.2457520174e-5+y*(-0.240337019e-6)))); |
---|
2340 | ans2=0.04687499995+y*(-0.2002690873e-3 |
---|
2341 | +y*(0.8449199096e-5+y*(-0.88228987e-6 |
---|
2342 | +y*0.105787412e-6))); |
---|
2343 | ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2); |
---|
2344 | if (x < 0.0) ans = -ans; |
---|
2345 | } |
---|
2346 | |
---|
2347 | return(ans); |
---|
2348 | } |
---|
2349 | |
---|
2350 | /* Lamellar_ParaCrystal - Pedersen's model |
---|
2351 | |
---|
2352 | */ |
---|
2353 | double |
---|
2354 | Lamellar_ParaCrystal(double w[], double q) |
---|
2355 | { |
---|
2356 | // Input (fitting) variables are: |
---|
2357 | //[0] scale factor |
---|
2358 | //[1] thickness |
---|
2359 | //[2] number of layers |
---|
2360 | //[3] spacing between layers |
---|
2361 | //[4] polydispersity of spacing |
---|
2362 | //[5] SLD lamellar |
---|
2363 | //[6] SLD solvent |
---|
2364 | //[7] incoherent background |
---|
2365 | // give them nice names |
---|
2366 | double inten,qval,scale,th,nl,davg,pd,contr,bkg,xn; |
---|
2367 | double xi,ww,Pbil,Znq,Snq,an,sldLayer,sldSolvent,pi; |
---|
2368 | long n1,n2; |
---|
2369 | |
---|
2370 | pi = 4.0*atan(1.0); |
---|
2371 | scale = w[0]; |
---|
2372 | th = w[1]; |
---|
2373 | nl = w[2]; |
---|
2374 | davg = w[3]; |
---|
2375 | pd = w[4]; |
---|
2376 | sldLayer = w[5]; |
---|
2377 | sldSolvent = w[6]; |
---|
2378 | bkg = w[7]; |
---|
2379 | |
---|
2380 | contr = w[5] - w[6]; |
---|
2381 | qval = q; |
---|
2382 | |
---|
2383 | //get the fractional part of nl, to determine the "mixing" of N's |
---|
2384 | |
---|
2385 | n1 = trunc(nl); //rounds towards zero |
---|
2386 | n2 = n1 + 1; |
---|
2387 | xn = (double)n2 - nl; //fractional contribution of n1 |
---|
2388 | |
---|
2389 | ww = exp(-qval*qval*pd*pd*davg*davg/2.0); |
---|
2390 | |
---|
2391 | //calculate the n1 contribution |
---|
2392 | an = paraCryst_an(ww,qval,davg,n1); |
---|
2393 | Snq = paraCryst_sn(ww,qval,davg,n1,an); |
---|
2394 | |
---|
2395 | Znq = xn*Snq; |
---|
2396 | |
---|
2397 | //calculate the n2 contribution |
---|
2398 | an = paraCryst_an(ww,qval,davg,n2); |
---|
2399 | Snq = paraCryst_sn(ww,qval,davg,n2,an); |
---|
2400 | |
---|
2401 | Znq += (1.0-xn)*Snq; |
---|
2402 | |
---|
2403 | //and the independent contribution |
---|
2404 | Znq += (1.0-ww*ww)/(1.0+ww*ww-2.0*ww*cos(qval*davg)); |
---|
2405 | |
---|
2406 | //the limit when NL approaches infinity |
---|
2407 | // Zq = (1-ww^2)/(1+ww^2-2*ww*cos(qval*davg)) |
---|
2408 | |
---|
2409 | xi = th/2.0; //use 1/2 the bilayer thickness |
---|
2410 | Pbil = (sin(qval*xi)/(qval*xi))*(sin(qval*xi)/(qval*xi)); |
---|
2411 | |
---|
2412 | inten = 2.0*pi*contr*contr*Pbil*Znq/(qval*qval); |
---|
2413 | inten *= 1.0e8; |
---|
2414 | |
---|
2415 | return(scale*inten+bkg); |
---|
2416 | } |
---|
2417 | |
---|
2418 | // functions for the lamellar paracrystal model |
---|
2419 | double |
---|
2420 | paraCryst_sn(double ww, double qval, double davg, long nl, double an) { |
---|
2421 | |
---|
2422 | double Snq; |
---|
2423 | |
---|
2424 | Snq = an/( (double)nl*pow((1.0+ww*ww-2.0*ww*cos(qval*davg)),2) ); |
---|
2425 | |
---|
2426 | return(Snq); |
---|
2427 | } |
---|
2428 | |
---|
2429 | |
---|
2430 | double |
---|
2431 | paraCryst_an(double ww, double qval, double davg, long nl) { |
---|
2432 | |
---|
2433 | double an; |
---|
2434 | |
---|
2435 | an = 4.0*ww*ww - 2.0*(ww*ww*ww+ww)*cos(qval*davg); |
---|
2436 | an -= 4.0*pow(ww,(nl+2))*cos((double)nl*qval*davg); |
---|
2437 | an += 2.0*pow(ww,(nl+3))*cos((double)(nl-1)*qval*davg); |
---|
2438 | an += 2.0*pow(ww,(nl+1))*cos((double)(nl+1)*qval*davg); |
---|
2439 | |
---|
2440 | return(an); |
---|
2441 | } |
---|
2442 | |
---|
2443 | |
---|
2444 | /* Spherocylinder : |
---|
2445 | |
---|
2446 | Uses 76 pt Gaussian quadrature for both integrals |
---|
2447 | */ |
---|
2448 | double |
---|
2449 | Spherocylinder(double w[], double x) |
---|
2450 | { |
---|
2451 | int i,j; |
---|
2452 | double Pi; |
---|
2453 | double scale,contr,bkg,sldc,slds; |
---|
2454 | double len,rad,hDist,endRad; |
---|
2455 | int nordi=76; //order of integration |
---|
2456 | int nordj=76; |
---|
2457 | double va,vb; //upper and lower integration limits |
---|
2458 | double summ,zi,yyy,answer; //running tally of integration |
---|
2459 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2460 | double SphCyl_tmp[7],arg1,arg2,inner,be; |
---|
2461 | |
---|
2462 | |
---|
2463 | scale = w[0]; |
---|
2464 | rad = w[1]; |
---|
2465 | len = w[2]; |
---|
2466 | sldc = w[3]; |
---|
2467 | slds = w[4]; |
---|
2468 | bkg = w[5]; |
---|
2469 | |
---|
2470 | SphCyl_tmp[0] = w[0]; |
---|
2471 | SphCyl_tmp[1] = w[1]; |
---|
2472 | SphCyl_tmp[2] = w[2]; |
---|
2473 | SphCyl_tmp[3] = w[1]; //end radius is same as cylinder radius |
---|
2474 | SphCyl_tmp[4] = w[3]; |
---|
2475 | SphCyl_tmp[5] = w[4]; |
---|
2476 | SphCyl_tmp[6] = w[5]; |
---|
2477 | |
---|
2478 | hDist = 0; //by definition for this model |
---|
2479 | endRad = rad; |
---|
2480 | |
---|
2481 | contr = sldc-slds; |
---|
2482 | |
---|
2483 | Pi = 4.0*atan(1.0); |
---|
2484 | va = 0.0; |
---|
2485 | vb = Pi/2.0; //orintational average, outer integral |
---|
2486 | vaj = -1.0*hDist/endRad; |
---|
2487 | vbj = 1.0; //endpoints of inner integral |
---|
2488 | |
---|
2489 | summ = 0.0; //initialize intergral |
---|
2490 | |
---|
2491 | for(i=0;i<nordi;i++) { |
---|
2492 | //setup inner integral over the ellipsoidal cross-section |
---|
2493 | summj=0.0; |
---|
2494 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
2495 | |
---|
2496 | for(j=0;j<nordj;j++) { |
---|
2497 | //20 gauss points for the inner integral |
---|
2498 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
2499 | yyy = Gauss76Wt[j] * SphCyl_kernel(SphCyl_tmp,x,zij,zi); |
---|
2500 | summj += yyy; |
---|
2501 | } |
---|
2502 | //now calculate the value of the inner integral |
---|
2503 | inner = (vbj-vaj)/2.0*summj; |
---|
2504 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
2505 | |
---|
2506 | //now calculate outer integrand |
---|
2507 | arg1 = x*len/2.0*cos(zi); |
---|
2508 | arg2 = x*rad*sin(zi); |
---|
2509 | yyy = inner; |
---|
2510 | |
---|
2511 | if(arg2 == 0) { |
---|
2512 | be = 0.5; |
---|
2513 | } else { |
---|
2514 | be = NR_BessJ1(arg2)/arg2; |
---|
2515 | } |
---|
2516 | |
---|
2517 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
2518 | yyy += Pi*rad*rad*len*2.0*be; |
---|
2519 | } else { |
---|
2520 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
2521 | } |
---|
2522 | yyy *= yyy; |
---|
2523 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
2524 | yyy *= Gauss76Wt[i]; |
---|
2525 | summ += yyy; |
---|
2526 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2527 | |
---|
2528 | answer = (vb-va)/2.0*summ; |
---|
2529 | |
---|
2530 | answer /= Pi*rad*rad*len + Pi*4.0*endRad*endRad*endRad/3.0; //divide by volume |
---|
2531 | answer *= 1.0e8; //convert to cm^-1 |
---|
2532 | answer *= contr*contr; |
---|
2533 | answer *= scale; |
---|
2534 | answer += bkg; |
---|
2535 | |
---|
2536 | return answer; |
---|
2537 | } |
---|
2538 | |
---|
2539 | |
---|
2540 | // inner integral of the sphereocylinder model, special case of hDist = 0 |
---|
2541 | // |
---|
2542 | double |
---|
2543 | SphCyl_kernel(double w[], double x, double tt, double theta) { |
---|
2544 | |
---|
2545 | double val,arg1,arg2; |
---|
2546 | double scale,bkg,sldc,slds; |
---|
2547 | double len,rad,hDist,endRad,be; |
---|
2548 | scale = w[0]; |
---|
2549 | rad = w[1]; |
---|
2550 | len = w[2]; |
---|
2551 | endRad = w[3]; |
---|
2552 | sldc = w[4]; |
---|
2553 | slds = w[5]; |
---|
2554 | bkg = w[6]; |
---|
2555 | |
---|
2556 | hDist = 0.0; |
---|
2557 | |
---|
2558 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
2559 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
2560 | |
---|
2561 | if(arg2 == 0) { |
---|
2562 | be = 0.5; |
---|
2563 | } else { |
---|
2564 | be = NR_BessJ1(arg2)/arg2; |
---|
2565 | } |
---|
2566 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
2567 | |
---|
2568 | return(val); |
---|
2569 | } |
---|
2570 | |
---|
2571 | |
---|
2572 | /* Convex Lens : special case where L ~ 0 and hDist < 0 |
---|
2573 | |
---|
2574 | Uses 76 pt Gaussian quadrature for both integrals |
---|
2575 | */ |
---|
2576 | double |
---|
2577 | ConvexLens(double w[], double x) |
---|
2578 | { |
---|
2579 | int i,j; |
---|
2580 | double Pi; |
---|
2581 | double scale,contr,bkg,sldc,slds; |
---|
2582 | double len,rad,hDist,endRad; |
---|
2583 | int nordi=76; //order of integration |
---|
2584 | int nordj=76; |
---|
2585 | double va,vb; //upper and lower integration limits |
---|
2586 | double summ,zi,yyy,answer; //running tally of integration |
---|
2587 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2588 | double CLens_tmp[7],arg1,arg2,inner,hh,be; |
---|
2589 | |
---|
2590 | |
---|
2591 | scale = w[0]; |
---|
2592 | rad = w[1]; |
---|
2593 | // len = w[2] |
---|
2594 | endRad = w[2]; |
---|
2595 | sldc = w[3]; |
---|
2596 | slds = w[4]; |
---|
2597 | bkg = w[5]; |
---|
2598 | |
---|
2599 | len = 0.01; |
---|
2600 | |
---|
2601 | CLens_tmp[0] = w[0]; |
---|
2602 | CLens_tmp[1] = w[1]; |
---|
2603 | CLens_tmp[2] = len; //length is some small number, essentially zero |
---|
2604 | CLens_tmp[3] = w[2]; |
---|
2605 | CLens_tmp[4] = w[3]; |
---|
2606 | CLens_tmp[5] = w[4]; |
---|
2607 | CLens_tmp[6] = w[5]; |
---|
2608 | |
---|
2609 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
2610 | |
---|
2611 | contr = sldc-slds; |
---|
2612 | |
---|
2613 | Pi = 4.0*atan(1.0); |
---|
2614 | va = 0.0; |
---|
2615 | vb = Pi/2.0; //orintational average, outer integral |
---|
2616 | vaj = -1.0*hDist/endRad; |
---|
2617 | vbj = 1.0; //endpoints of inner integral |
---|
2618 | |
---|
2619 | summ = 0.0; //initialize intergral |
---|
2620 | |
---|
2621 | for(i=0;i<nordi;i++) { |
---|
2622 | //setup inner integral over the ellipsoidal cross-section |
---|
2623 | summj=0.0; |
---|
2624 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
2625 | |
---|
2626 | for(j=0;j<nordj;j++) { |
---|
2627 | //20 gauss points for the inner integral |
---|
2628 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
2629 | yyy = Gauss76Wt[j] * ConvLens_kernel(CLens_tmp,x,zij,zi); |
---|
2630 | summj += yyy; |
---|
2631 | } |
---|
2632 | //now calculate the value of the inner integral |
---|
2633 | inner = (vbj-vaj)/2.0*summj; |
---|
2634 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
2635 | |
---|
2636 | //now calculate outer integrand |
---|
2637 | arg1 = x*len/2.0*cos(zi); |
---|
2638 | arg2 = x*rad*sin(zi); |
---|
2639 | yyy = inner; |
---|
2640 | |
---|
2641 | if(arg2 == 0) { |
---|
2642 | be = 0.5; |
---|
2643 | } else { |
---|
2644 | be = NR_BessJ1(arg2)/arg2; |
---|
2645 | } |
---|
2646 | |
---|
2647 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
2648 | yyy += Pi*rad*rad*len*2.0*be; |
---|
2649 | } else { |
---|
2650 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
2651 | } |
---|
2652 | yyy *= yyy; |
---|
2653 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
2654 | yyy *= Gauss76Wt[i]; |
---|
2655 | summ += yyy; |
---|
2656 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2657 | |
---|
2658 | answer = (vb-va)/2.0*summ; |
---|
2659 | |
---|
2660 | hh = fabs(hDist); //need positive value for spherical cap volume |
---|
2661 | answer /= 2.0*(1.0/3.0*Pi*(endRad-hh)*(endRad-hh)*(2.0*endRad+hh)); //divide by volume |
---|
2662 | answer *= 1.0e8; //convert to cm^-1 |
---|
2663 | answer *= contr*contr; |
---|
2664 | answer *= scale; |
---|
2665 | answer += bkg; |
---|
2666 | |
---|
2667 | return answer; |
---|
2668 | } |
---|
2669 | |
---|
2670 | /* Capped Cylinder : special case where L is nonzero and hDist < 0 |
---|
2671 | |
---|
2672 | -- uses the same Kernel as the Convex Lens |
---|
2673 | |
---|
2674 | Uses 76 pt Gaussian quadrature for both integrals |
---|
2675 | */ |
---|
2676 | double |
---|
2677 | CappedCylinder(double w[], double x) |
---|
2678 | { |
---|
2679 | int i,j; |
---|
2680 | double Pi; |
---|
2681 | double scale,contr,bkg,sldc,slds; |
---|
2682 | double len,rad,hDist,endRad; |
---|
2683 | int nordi=76; //order of integration |
---|
2684 | int nordj=76; |
---|
2685 | double va,vb; //upper and lower integration limits |
---|
2686 | double summ,zi,yyy,answer; //running tally of integration |
---|
2687 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2688 | double arg1,arg2,inner,hh,be; |
---|
2689 | |
---|
2690 | |
---|
2691 | scale = w[0]; |
---|
2692 | rad = w[1]; |
---|
2693 | len = w[2]; |
---|
2694 | endRad = w[3]; |
---|
2695 | sldc = w[4]; |
---|
2696 | slds = w[5]; |
---|
2697 | bkg = w[6]; |
---|
2698 | |
---|
2699 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
2700 | |
---|
2701 | contr = sldc-slds; |
---|
2702 | |
---|
2703 | Pi = 4.0*atan(1.0); |
---|
2704 | va = 0.0; |
---|
2705 | vb = Pi/2.0; //orintational average, outer integral |
---|
2706 | vaj = -1.0*hDist/endRad; |
---|
2707 | vbj = 1.0; //endpoints of inner integral |
---|
2708 | |
---|
2709 | summ = 0.0; //initialize intergral |
---|
2710 | |
---|
2711 | for(i=0;i<nordi;i++) { |
---|
2712 | //setup inner integral over the ellipsoidal cross-section |
---|
2713 | summj=0.0; |
---|
2714 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
2715 | |
---|
2716 | for(j=0;j<nordj;j++) { |
---|
2717 | //20 gauss points for the inner integral |
---|
2718 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
2719 | yyy = Gauss76Wt[j] * ConvLens_kernel(w,x,zij,zi); //uses the same kernel as ConvexLens, except here L != 0 |
---|
2720 | summj += yyy; |
---|
2721 | } |
---|
2722 | //now calculate the value of the inner integral |
---|
2723 | inner = (vbj-vaj)/2.0*summj; |
---|
2724 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
2725 | |
---|
2726 | //now calculate outer integrand |
---|
2727 | arg1 = x*len/2.0*cos(zi); |
---|
2728 | arg2 = x*rad*sin(zi); |
---|
2729 | yyy = inner; |
---|
2730 | |
---|
2731 | if(arg2 == 0) { |
---|
2732 | be = 0.5; |
---|
2733 | } else { |
---|
2734 | be = NR_BessJ1(arg2)/arg2; |
---|
2735 | } |
---|
2736 | |
---|
2737 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
2738 | yyy += Pi*rad*rad*len*2.0*be; |
---|
2739 | } else { |
---|
2740 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
2741 | } |
---|
2742 | |
---|
2743 | |
---|
2744 | |
---|
2745 | yyy *= yyy; |
---|
2746 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
2747 | yyy *= Gauss76Wt[i]; |
---|
2748 | summ += yyy; |
---|
2749 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2750 | |
---|
2751 | answer = (vb-va)/2.0*summ; |
---|
2752 | |
---|
2753 | hh = fabs(hDist); //need positive value for spherical cap volume |
---|
2754 | answer /= Pi*rad*rad*len + 2.0*(1.0/3.0*Pi*(endRad-hh)*(endRad-hh)*(2.0*endRad+hh)); //divide by volume |
---|
2755 | answer *= 1.0e8; //convert to cm^-1 |
---|
2756 | answer *= contr*contr; |
---|
2757 | answer *= scale; |
---|
2758 | answer += bkg; |
---|
2759 | |
---|
2760 | return answer; |
---|
2761 | } |
---|
2762 | |
---|
2763 | |
---|
2764 | |
---|
2765 | // inner integral of the ConvexLens model, special case where L ~ 0 and hDist < 0 |
---|
2766 | // |
---|
2767 | double |
---|
2768 | ConvLens_kernel(double w[], double x, double tt, double theta) { |
---|
2769 | |
---|
2770 | double val,arg1,arg2; |
---|
2771 | double scale,bkg,sldc,slds; |
---|
2772 | double len,rad,hDist,endRad,be; |
---|
2773 | scale = w[0]; |
---|
2774 | rad = w[1]; |
---|
2775 | len = w[2]; |
---|
2776 | endRad = w[3]; |
---|
2777 | sldc = w[4]; |
---|
2778 | slds = w[5]; |
---|
2779 | bkg = w[6]; |
---|
2780 | |
---|
2781 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); |
---|
2782 | |
---|
2783 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
2784 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
2785 | |
---|
2786 | if(arg2 == 0) { |
---|
2787 | be = 0.5; |
---|
2788 | } else { |
---|
2789 | be = NR_BessJ1(arg2)/arg2; |
---|
2790 | } |
---|
2791 | |
---|
2792 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
2793 | |
---|
2794 | return(val); |
---|
2795 | } |
---|
2796 | |
---|
2797 | |
---|
2798 | /* Dumbbell : special case where L ~ 0 and hDist > 0 |
---|
2799 | |
---|
2800 | Uses 76 pt Gaussian quadrature for both integrals |
---|
2801 | */ |
---|
2802 | double |
---|
2803 | Dumbbell(double w[], double x) |
---|
2804 | { |
---|
2805 | int i,j; |
---|
2806 | double Pi; |
---|
2807 | double scale,contr,bkg,sldc,slds; |
---|
2808 | double len,rad,hDist,endRad; |
---|
2809 | int nordi=76; //order of integration |
---|
2810 | int nordj=76; |
---|
2811 | double va,vb; //upper and lower integration limits |
---|
2812 | double summ,zi,yyy,answer; //running tally of integration |
---|
2813 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2814 | double Dumb_tmp[7],arg1,arg2,inner,be; |
---|
2815 | |
---|
2816 | |
---|
2817 | scale = w[0]; |
---|
2818 | rad = w[1]; |
---|
2819 | // len = w[2] |
---|
2820 | endRad = w[2]; |
---|
2821 | sldc = w[3]; |
---|
2822 | slds = w[4]; |
---|
2823 | bkg = w[5]; |
---|
2824 | |
---|
2825 | len = 0.01; |
---|
2826 | |
---|
2827 | Dumb_tmp[0] = w[0]; |
---|
2828 | Dumb_tmp[1] = w[1]; |
---|
2829 | Dumb_tmp[2] = len; //length is some small number, essentially zero |
---|
2830 | Dumb_tmp[3] = w[2]; |
---|
2831 | Dumb_tmp[4] = w[3]; |
---|
2832 | Dumb_tmp[5] = w[4]; |
---|
2833 | Dumb_tmp[6] = w[5]; |
---|
2834 | |
---|
2835 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
2836 | |
---|
2837 | contr = sldc-slds; |
---|
2838 | |
---|
2839 | Pi = 4.0*atan(1.0); |
---|
2840 | va = 0.0; |
---|
2841 | vb = Pi/2.0; //orintational average, outer integral |
---|
2842 | vaj = -1.0*hDist/endRad; |
---|
2843 | vbj = 1.0; //endpoints of inner integral |
---|
2844 | |
---|
2845 | summ = 0.0; //initialize intergral |
---|
2846 | |
---|
2847 | for(i=0;i<nordi;i++) { |
---|
2848 | //setup inner integral over the ellipsoidal cross-section |
---|
2849 | summj=0.0; |
---|
2850 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
2851 | |
---|
2852 | for(j=0;j<nordj;j++) { |
---|
2853 | //20 gauss points for the inner integral |
---|
2854 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
2855 | yyy = Gauss76Wt[j] * Dumb_kernel(Dumb_tmp,x,zij,zi); |
---|
2856 | summj += yyy; |
---|
2857 | } |
---|
2858 | //now calculate the value of the inner integral |
---|
2859 | inner = (vbj-vaj)/2.0*summj; |
---|
2860 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
2861 | |
---|
2862 | //now calculate outer integrand |
---|
2863 | arg1 = x*len/2.0*cos(zi); |
---|
2864 | arg2 = x*rad*sin(zi); |
---|
2865 | yyy = inner; |
---|
2866 | |
---|
2867 | if(arg2 == 0) { |
---|
2868 | be = 0.5; |
---|
2869 | } else { |
---|
2870 | be = NR_BessJ1(arg2)/arg2; |
---|
2871 | } |
---|
2872 | |
---|
2873 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
2874 | yyy += Pi*rad*rad*len*2.0*be; |
---|
2875 | } else { |
---|
2876 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
2877 | } |
---|
2878 | yyy *= yyy; |
---|
2879 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
2880 | yyy *= Gauss76Wt[i]; |
---|
2881 | summ += yyy; |
---|
2882 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2883 | |
---|
2884 | answer = (vb-va)/2.0*summ; |
---|
2885 | |
---|
2886 | answer /= 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
2887 | answer *= 1.0e8; //convert to cm^-1 |
---|
2888 | answer *= contr*contr; |
---|
2889 | answer *= scale; |
---|
2890 | answer += bkg; |
---|
2891 | |
---|
2892 | return answer; |
---|
2893 | } |
---|
2894 | |
---|
2895 | |
---|
2896 | /* Barbell : "normal" case where L is nonzero 0 and hDist > 0 |
---|
2897 | |
---|
2898 | -- uses the same kernel as the Dumbbell case |
---|
2899 | |
---|
2900 | Uses 76 pt Gaussian quadrature for both integrals |
---|
2901 | */ |
---|
2902 | double |
---|
2903 | Barbell(double w[], double x) |
---|
2904 | { |
---|
2905 | int i,j; |
---|
2906 | double Pi; |
---|
2907 | double scale,contr,bkg,sldc,slds; |
---|
2908 | double len,rad,hDist,endRad; |
---|
2909 | int nordi=76; //order of integration |
---|
2910 | int nordj=76; |
---|
2911 | double va,vb; //upper and lower integration limits |
---|
2912 | double summ,zi,yyy,answer; //running tally of integration |
---|
2913 | double summj,vaj,vbj,zij; //for the inner integration |
---|
2914 | double arg1,arg2,inner,be; |
---|
2915 | |
---|
2916 | |
---|
2917 | scale = w[0]; |
---|
2918 | rad = w[1]; |
---|
2919 | len = w[2]; |
---|
2920 | endRad = w[3]; |
---|
2921 | sldc = w[4]; |
---|
2922 | slds = w[5]; |
---|
2923 | bkg = w[6]; |
---|
2924 | |
---|
2925 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
2926 | |
---|
2927 | contr = sldc-slds; |
---|
2928 | |
---|
2929 | Pi = 4.0*atan(1.0); |
---|
2930 | va = 0.0; |
---|
2931 | vb = Pi/2.0; //orintational average, outer integral |
---|
2932 | vaj = -1.0*hDist/endRad; |
---|
2933 | vbj = 1.0; //endpoints of inner integral |
---|
2934 | |
---|
2935 | summ = 0.0; //initialize intergral |
---|
2936 | |
---|
2937 | for(i=0;i<nordi;i++) { |
---|
2938 | //setup inner integral over the ellipsoidal cross-section |
---|
2939 | summj=0.0; |
---|
2940 | zi = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the "theta" dummy |
---|
2941 | |
---|
2942 | for(j=0;j<nordj;j++) { |
---|
2943 | //20 gauss points for the inner integral |
---|
2944 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
2945 | yyy = Gauss76Wt[j] * Dumb_kernel(w,x,zij,zi); //uses the same Kernel as the Dumbbell, here L>0 |
---|
2946 | summj += yyy; |
---|
2947 | } |
---|
2948 | //now calculate the value of the inner integral |
---|
2949 | inner = (vbj-vaj)/2.0*summj; |
---|
2950 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
2951 | |
---|
2952 | //now calculate outer integrand |
---|
2953 | arg1 = x*len/2.0*cos(zi); |
---|
2954 | arg2 = x*rad*sin(zi); |
---|
2955 | yyy = inner; |
---|
2956 | |
---|
2957 | if(arg2 == 0) { |
---|
2958 | be = 0.5; |
---|
2959 | } else { |
---|
2960 | be = NR_BessJ1(arg2)/arg2; |
---|
2961 | } |
---|
2962 | |
---|
2963 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
2964 | yyy += Pi*rad*rad*len*2.0*be; |
---|
2965 | } else { |
---|
2966 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
2967 | } |
---|
2968 | yyy *= yyy; |
---|
2969 | yyy *= sin(zi); // = |A(q)|^2*sin(theta) |
---|
2970 | yyy *= Gauss76Wt[i]; |
---|
2971 | summ += yyy; |
---|
2972 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
2973 | |
---|
2974 | answer = (vb-va)/2.0*summ; |
---|
2975 | |
---|
2976 | answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
2977 | answer *= 1.0e8; //convert to cm^-1 |
---|
2978 | answer *= contr*contr; |
---|
2979 | answer *= scale; |
---|
2980 | answer += bkg; |
---|
2981 | |
---|
2982 | return answer; |
---|
2983 | } |
---|
2984 | |
---|
2985 | |
---|
2986 | |
---|
2987 | // inner integral of the Dumbbell model, special case where L ~ 0 and hDist > 0 |
---|
2988 | // |
---|
2989 | // inner integral of the Barbell model if L is nonzero |
---|
2990 | // |
---|
2991 | double |
---|
2992 | Dumb_kernel(double w[], double x, double tt, double theta) { |
---|
2993 | |
---|
2994 | double val,arg1,arg2; |
---|
2995 | double scale,bkg,sldc,slds; |
---|
2996 | double len,rad,hDist,endRad,be; |
---|
2997 | scale = w[0]; |
---|
2998 | rad = w[1]; |
---|
2999 | len = w[2]; |
---|
3000 | endRad = w[3]; |
---|
3001 | sldc = w[4]; |
---|
3002 | slds = w[5]; |
---|
3003 | bkg = w[6]; |
---|
3004 | |
---|
3005 | hDist = sqrt(fabs(endRad*endRad-rad*rad)); |
---|
3006 | |
---|
3007 | arg1 = x*cos(theta)*(endRad*tt+hDist+len/2.0); |
---|
3008 | arg2 = x*endRad*sin(theta)*sqrt(1.0-tt*tt); |
---|
3009 | |
---|
3010 | if(arg2 == 0) { |
---|
3011 | be = 0.5; |
---|
3012 | } else { |
---|
3013 | be = NR_BessJ1(arg2)/arg2; |
---|
3014 | } |
---|
3015 | val = cos(arg1)*(1.0-tt*tt)*be; |
---|
3016 | |
---|
3017 | return(val); |
---|
3018 | } |
---|
3019 | |
---|
3020 | double PolyCoreBicelle(double dp[], double q) |
---|
3021 | { |
---|
3022 | int i; |
---|
3023 | int nord = 20; |
---|
3024 | double scale, length, sigma, bkg, radius, radthick, facthick; |
---|
3025 | double rhoc, rhoh, rhor, rhosolv; |
---|
3026 | double answer, Vpoly; |
---|
3027 | double Pi,lolim,uplim,summ,yyy,rad,AR,Rsqr,Rsqrsumm,Rsqryyy; |
---|
3028 | |
---|
3029 | scale = dp[0]; |
---|
3030 | radius = dp[1]; |
---|
3031 | sigma = dp[2]; //sigma is the standard mean deviation |
---|
3032 | length = dp[3]; |
---|
3033 | radthick = dp[4]; |
---|
3034 | facthick= dp[5]; |
---|
3035 | rhoc = dp[6]; |
---|
3036 | rhoh = dp[7]; |
---|
3037 | rhor=dp[8]; |
---|
3038 | rhosolv = dp[9]; |
---|
3039 | bkg = dp[10]; |
---|
3040 | |
---|
3041 | Pi = 4.0*atan(1.0); |
---|
3042 | |
---|
3043 | lolim = exp(log(radius)-(4.*sigma)); |
---|
3044 | if (lolim<0.0) { |
---|
3045 | lolim=0.0; //to avoid numerical error when va<0 (-ve r value) |
---|
3046 | } |
---|
3047 | uplim = exp(log(radius)+(4.*sigma)); |
---|
3048 | |
---|
3049 | summ = 0.0; |
---|
3050 | Rsqrsumm = 0.0; |
---|
3051 | |
---|
3052 | for(i=0;i<nord;i++) { |
---|
3053 | rad = ( Gauss20Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
3054 | AR=(1.0/(rad*sigma*sqrt(2.0*Pi)))*exp(-(0.5*((log(radius/rad))/sigma)*((log(radius/rad))/sigma))); |
---|
3055 | yyy = AR* Gauss20Wt[i] * BicelleIntegration(q,rad,radthick,facthick,rhoc,rhoh,rhor,rhosolv,length); |
---|
3056 | Rsqryyy= Gauss20Wt[i] * AR * (rad+radthick)*(rad+radthick); //SRK normalize to total dimensions |
---|
3057 | summ += yyy; |
---|
3058 | Rsqrsumm += Rsqryyy; |
---|
3059 | } |
---|
3060 | |
---|
3061 | answer = (uplim-lolim)/2.0*summ; |
---|
3062 | Rsqr = (uplim-lolim)/2.0*Rsqrsumm; |
---|
3063 | //normalize by average cylinder volume |
---|
3064 | Vpoly = Pi*Rsqr*(length+2*facthick); |
---|
3065 | answer /= Vpoly; |
---|
3066 | //convert to [cm-1] |
---|
3067 | answer *= 1.0e8; |
---|
3068 | //Scale |
---|
3069 | answer *= scale; |
---|
3070 | // add in the background |
---|
3071 | answer += bkg; |
---|
3072 | |
---|
3073 | return answer; |
---|
3074 | |
---|
3075 | } |
---|
3076 | |
---|
3077 | double |
---|
3078 | BicelleIntegration(double qq, double rad, double radthick, double facthick, double rhoc, double rhoh, double rhor, double rhosolv, double length){ |
---|
3079 | |
---|
3080 | double answer,halfheight,Pi; |
---|
3081 | double lolim,uplim,summ,yyy,zi; |
---|
3082 | int nord,i; |
---|
3083 | |
---|
3084 | // set up the integration end points |
---|
3085 | Pi = 4.0*atan(1.0); |
---|
3086 | nord = 76; |
---|
3087 | lolim = 0.0; |
---|
3088 | uplim = Pi/2; |
---|
3089 | halfheight = length/2.0; |
---|
3090 | |
---|
3091 | summ = 0.0; // initialize integral |
---|
3092 | i=0; |
---|
3093 | for(i=0;i<nord;i++) { |
---|
3094 | zi = ( Gauss76Z[i]*(uplim-lolim) + uplim + lolim )/2.0; |
---|
3095 | yyy = Gauss76Wt[i] * BicelleKernel(qq, rad, radthick, facthick, rhoc, rhoh, rhor,rhosolv, halfheight, zi); |
---|
3096 | summ += yyy; |
---|
3097 | } |
---|
3098 | |
---|
3099 | // calculate value of integral to return |
---|
3100 | answer = (uplim-lolim)/2.0*summ; |
---|
3101 | return(answer); |
---|
3102 | } |
---|
3103 | |
---|
3104 | double |
---|
3105 | BicelleKernel(double qq, double rad, double radthick, double facthick, double rhoc, double rhoh, double rhor, double rhosolv, double length, double dum) |
---|
3106 | { |
---|
3107 | double dr1,dr2,dr3; |
---|
3108 | double besarg1,besarg2; |
---|
3109 | double vol1,vol2,vol3; |
---|
3110 | double sinarg1,sinarg2; |
---|
3111 | double t1,t2,t3; |
---|
3112 | double retval,si1,si2,be1,be2; |
---|
3113 | |
---|
3114 | double Pi = 4.0*atan(1.0); |
---|
3115 | |
---|
3116 | dr1 = rhoc-rhoh; |
---|
3117 | dr2 = rhor-rhosolv; |
---|
3118 | dr3= rhoh-rhor; |
---|
3119 | vol1 = Pi*rad*rad*(2.0*length); |
---|
3120 | vol2 = Pi*(rad+radthick)*(rad+radthick)*(2.0*length+2.0*facthick); |
---|
3121 | vol3= Pi*(rad)*(rad)*(2.0*length+2.0*facthick); |
---|
3122 | besarg1 = qq*rad*sin(dum); |
---|
3123 | besarg2 = qq*(rad+radthick)*sin(dum); |
---|
3124 | sinarg1 = qq*length*cos(dum); |
---|
3125 | sinarg2 = qq*(length+facthick)*cos(dum); |
---|
3126 | |
---|
3127 | if(besarg1 == 0) { |
---|
3128 | be1 = 0.5; |
---|
3129 | } else { |
---|
3130 | be1 = NR_BessJ1(besarg1)/besarg1; |
---|
3131 | } |
---|
3132 | if(besarg2 == 0) { |
---|
3133 | be2 = 0.5; |
---|
3134 | } else { |
---|
3135 | be2 = NR_BessJ1(besarg2)/besarg2; |
---|
3136 | } |
---|
3137 | if(sinarg1 == 0) { |
---|
3138 | si1 = 1.0; |
---|
3139 | } else { |
---|
3140 | si1 = sin(sinarg1)/sinarg1; |
---|
3141 | } |
---|
3142 | if(sinarg2 == 0) { |
---|
3143 | si2 = 1.0; |
---|
3144 | } else { |
---|
3145 | si2 = sin(sinarg2)/sinarg2; |
---|
3146 | } |
---|
3147 | t1 = 2.0*vol1*dr1*si1*be1; |
---|
3148 | t2 = 2.0*vol2*dr2*si2*be2; |
---|
3149 | t3 = 2.0*vol3*dr3*si2*be1; |
---|
3150 | |
---|
3151 | retval = ((t1+t2+t3)*(t1+t2+t3))*sin(dum); |
---|
3152 | return(retval); |
---|
3153 | |
---|
3154 | } |
---|
3155 | |
---|
3156 | |
---|
3157 | double |
---|
3158 | CSPPKernel(double dp[], double mu, double uu) |
---|
3159 | { |
---|
3160 | double aa,bb,cc, ta,tb,tc; |
---|
3161 | double Vin,Vot,V1,V2; |
---|
3162 | double rhoA,rhoB,rhoC, rhoP, rhosolv; |
---|
3163 | double dr0, drA,drB, drC; |
---|
3164 | double arg1,arg2,arg3,arg4,t1,t2, t3, t4; |
---|
3165 | double Pi,retVal; |
---|
3166 | |
---|
3167 | aa = dp[1]; |
---|
3168 | bb = dp[2]; |
---|
3169 | cc = dp[3]; |
---|
3170 | ta = dp[4]; |
---|
3171 | tb = dp[5]; |
---|
3172 | tc = dp[6]; |
---|
3173 | rhoA=dp[7]; |
---|
3174 | rhoB=dp[8]; |
---|
3175 | rhoC=dp[9]; |
---|
3176 | rhoP=dp[10]; |
---|
3177 | rhosolv=dp[11]; |
---|
3178 | dr0=rhoP-rhosolv; |
---|
3179 | drA=rhoA-rhosolv; |
---|
3180 | drB=rhoB-rhosolv; |
---|
3181 | drC=rhoC-rhosolv; |
---|
3182 | Vin=(aa*bb*cc); |
---|
3183 | Vot=(aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc); |
---|
3184 | V1=(2.0*ta*bb*cc); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) |
---|
3185 | V2=(2.0*aa*tb*cc); // incorrect V2(aa*bb*cc+2*aa*tb*cc) |
---|
3186 | aa = aa/bb; |
---|
3187 | ta=(aa+2.0*ta)/bb; |
---|
3188 | tb=(aa+2.0*tb)/bb; |
---|
3189 | |
---|
3190 | Pi = 4.0*atan(1.0); |
---|
3191 | |
---|
3192 | arg1 = (mu*aa/2.0)*sin(Pi*uu/2.0); |
---|
3193 | arg2 = (mu/2.0)*cos(Pi*uu/2.0); |
---|
3194 | arg3= (mu*ta/2.0)*sin(Pi*uu/2.0); |
---|
3195 | arg4= (mu*tb/2.0)*cos(Pi*uu/2.0); |
---|
3196 | |
---|
3197 | if(arg1==0.0){ |
---|
3198 | t1 = 1.0; |
---|
3199 | } else { |
---|
3200 | t1 = (sin(arg1)/arg1); //defn for CSPP model sin(arg1)/arg1 test: (sin(arg1)/arg1)*(sin(arg1)/arg1) |
---|
3201 | } |
---|
3202 | if(arg2==0.0){ |
---|
3203 | t2 = 1.0; |
---|
3204 | } else { |
---|
3205 | t2 = (sin(arg2)/arg2); //defn for CSPP model sin(arg2)/arg2 test: (sin(arg2)/arg2)*(sin(arg2)/arg2) |
---|
3206 | } |
---|
3207 | if(arg3==0.0){ |
---|
3208 | t3 = 1.0; |
---|
3209 | } else { |
---|
3210 | t3 = sin(arg3)/arg3; |
---|
3211 | } |
---|
3212 | if(arg4==0.0){ |
---|
3213 | t4 = 1.0; |
---|
3214 | } else { |
---|
3215 | t4 = sin(arg4)/arg4; |
---|
3216 | } |
---|
3217 | retVal =( dr0*t1*t2*Vin + drA*(t3-t1)*t2*V1+ drB*t1*(t4-t2)*V2 )*( dr0*t1*t2*Vin + drA*(t3-t1)*t2*V1+ drB*t1*(t4-t2)*V2 ); // correct FF : square of sum of phase factors |
---|
3218 | return(retVal); |
---|
3219 | |
---|
3220 | } |
---|
3221 | |
---|
3222 | /* CSParallelepiped : calculates the form factor of a Parallelepiped with a core-shell structure |
---|
3223 | -- different SLDs can be used for the face and rim |
---|
3224 | |
---|
3225 | Uses 76 pt Gaussian quadrature for both integrals |
---|
3226 | */ |
---|
3227 | double |
---|
3228 | CSParallelepiped(double dp[], double q) |
---|
3229 | { |
---|
3230 | int i,j; |
---|
3231 | double scale,aa,bb,cc,ta,tb,tc,rhoA,rhoB,rhoC,rhoP,rhosolv,bkg; //local variables of coefficient wave |
---|
3232 | int nordi=76; //order of integration |
---|
3233 | int nordj=76; |
---|
3234 | double va,vb; //upper and lower integration limits |
---|
3235 | double summ,yyy,answer; //running tally of integration |
---|
3236 | double summj,vaj,vbj; //for the inner integration |
---|
3237 | double mu,mudum,arg,sigma,uu,vol; |
---|
3238 | |
---|
3239 | |
---|
3240 | // Pi = 4.0*atan(1.0); |
---|
3241 | va = 0.0; |
---|
3242 | vb = 1.0; //orintational average, outer integral |
---|
3243 | vaj = 0.0; |
---|
3244 | vbj = 1.0; //endpoints of inner integral |
---|
3245 | |
---|
3246 | summ = 0.0; //initialize intergral |
---|
3247 | |
---|
3248 | scale = dp[0]; |
---|
3249 | aa = dp[1]; |
---|
3250 | bb = dp[2]; |
---|
3251 | cc = dp[3]; |
---|
3252 | ta = dp[4]; |
---|
3253 | tb = dp[5]; |
---|
3254 | tc = dp[6]; // is 0 at the moment |
---|
3255 | rhoA=dp[7]; //rim A SLD |
---|
3256 | rhoB=dp[8]; //rim B SLD |
---|
3257 | rhoC=dp[9]; //rim C SLD |
---|
3258 | rhoP = dp[10]; //Parallelpiped core SLD |
---|
3259 | rhosolv=dp[11]; // Solvent SLD |
---|
3260 | bkg = dp[12]; |
---|
3261 | |
---|
3262 | mu = q*bb; |
---|
3263 | vol = aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc; //calculate volume before rescaling |
---|
3264 | |
---|
3265 | // do the rescaling here, not in the kernel |
---|
3266 | // normalize all WRT bb |
---|
3267 | aa = aa/bb; |
---|
3268 | cc = cc/bb; |
---|
3269 | |
---|
3270 | for(i=0;i<nordi;i++) { |
---|
3271 | //setup inner integral over the ellipsoidal cross-section |
---|
3272 | summj=0.0; |
---|
3273 | sigma = ( Gauss76Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy |
---|
3274 | |
---|
3275 | for(j=0;j<nordj;j++) { |
---|
3276 | //76 gauss points for the inner integral |
---|
3277 | uu = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy |
---|
3278 | mudum = mu*sqrt(1.0-sigma*sigma); |
---|
3279 | yyy = Gauss76Wt[j] * CSPPKernel(dp,mudum,uu); |
---|
3280 | summj += yyy; |
---|
3281 | } |
---|
3282 | //now calculate the value of the inner integral |
---|
3283 | answer = (vbj-vaj)/2.0*summj; |
---|
3284 | |
---|
3285 | //finish the outer integral cc already scaled |
---|
3286 | arg = mu*cc*sigma/2.0; |
---|
3287 | if ( arg == 0.0 ) { |
---|
3288 | answer *= 1.0; |
---|
3289 | } else { |
---|
3290 | answer *= sin(arg)*sin(arg)/arg/arg; |
---|
3291 | } |
---|
3292 | |
---|
3293 | //now sum up the outer integral |
---|
3294 | yyy = Gauss76Wt[i] * answer; |
---|
3295 | summ += yyy; |
---|
3296 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
3297 | |
---|
3298 | answer = (vb-va)/2.0*summ; |
---|
3299 | |
---|
3300 | //normalize by volume |
---|
3301 | answer /= vol; |
---|
3302 | //convert to [cm-1] |
---|
3303 | answer *= 1.0e8; |
---|
3304 | //Scale |
---|
3305 | answer *= scale; |
---|
3306 | // add in the background |
---|
3307 | answer += bkg; |
---|
3308 | |
---|
3309 | return answer; |
---|
3310 | } |
---|
3311 | |
---|
3312 | |
---|
3313 | /* |
---|
3314 | * Massive rectangular prism (a <= b <=c) |
---|
3315 | * using eqns. (12)+(16) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012). |
---|
3316 | * It is totally equivalent to the Parallelepiped model in this library, |
---|
3317 | * but instead of using as input the a, b, and c sides of the prism, |
---|
3318 | * it uses a and the ratios (b/a) and (c/a). |
---|
3319 | * This allows to keep the shape when using the polydispersity. |
---|
3320 | */ |
---|
3321 | |
---|
3322 | double |
---|
3323 | RectangularPrism(double dp[], double q) |
---|
3324 | { |
---|
3325 | int i, j; |
---|
3326 | double scale, aa, bb, cc, delrho, bkg; |
---|
3327 | int nordi=76; //order of integration |
---|
3328 | int nordj=76; |
---|
3329 | double Pi; |
---|
3330 | double sumi, sumj; |
---|
3331 | double v1a, v1b, v2a, v2b; // upper and lower integration limits |
---|
3332 | double answer; |
---|
3333 | double theta, phi, arg, termA, termB, termC, AP, ahalf, bhalf, chalf; |
---|
3334 | double vol, sldp, sld; |
---|
3335 | |
---|
3336 | Pi = 4.0*atan(1.0); |
---|
3337 | |
---|
3338 | scale = dp[0]; |
---|
3339 | aa = dp[1]; // parameter short_side |
---|
3340 | bb = aa * dp[2]; // parameter b/a ratio |
---|
3341 | cc = aa * dp[3]; // parameter c/a ratio |
---|
3342 | sldp = dp[4]; // scattering length density of the object |
---|
3343 | sld = dp[5]; // scattering length density of the solvent |
---|
3344 | delrho = sldp - sld; |
---|
3345 | bkg = dp[6]; |
---|
3346 | |
---|
3347 | vol = aa*bb*cc; |
---|
3348 | ahalf = 0.5 * aa; |
---|
3349 | bhalf = 0.5 * bb; |
---|
3350 | chalf = 0.5 * cc; |
---|
3351 | |
---|
3352 | //Integration limits to use in Gaussian quadrature |
---|
3353 | v1a = 0.; |
---|
3354 | v1b = Pi/2.; //theta integration limits |
---|
3355 | v2a = 0.; |
---|
3356 | v2b = Pi/2.; //phi integration limits |
---|
3357 | |
---|
3358 | sumi = 0.0; |
---|
3359 | for(i=0;i<nordi;i++) { |
---|
3360 | |
---|
3361 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
3362 | |
---|
3363 | arg = q*chalf*cos(theta); |
---|
3364 | if (fabs(arg) > 1.e-16) {termC = sin(arg) / arg;} else {termC = 1.0;} |
---|
3365 | |
---|
3366 | sumj = 0.0; |
---|
3367 | for(j=0;j<nordj;j++) { |
---|
3368 | |
---|
3369 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
3370 | |
---|
3371 | // Amplitude AP from eqn. (12), rewritten to avoid round-off effects when arg=0 |
---|
3372 | |
---|
3373 | arg = q*ahalf*sin(theta)*sin(phi); |
---|
3374 | if (fabs(arg) > 1.e-16) {termA = sin(arg) / arg;} else {termA = 1.0;} |
---|
3375 | |
---|
3376 | arg = q*bhalf*sin(theta)*cos(phi); |
---|
3377 | if (fabs(arg) > 1.e-16) {termB = sin(arg) / arg;} else {termB = 1.0;} |
---|
3378 | |
---|
3379 | AP = termA * termB * termC; |
---|
3380 | |
---|
3381 | sumj += Gauss76Wt[j] * (AP*AP); |
---|
3382 | |
---|
3383 | } |
---|
3384 | |
---|
3385 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
3386 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
3387 | |
---|
3388 | } |
---|
3389 | |
---|
3390 | answer = (v1b-v1a)/2.0*sumi; |
---|
3391 | |
---|
3392 | // Normalize by Pi (Eqn. 16). |
---|
3393 | // The term (ABC)^2 does not appear because it was introduced before from the defs of termA, termB, termC |
---|
3394 | // The factor 2 appears because the theta integral has been defined between 0 and pi/2, instead of 0 to pi |
---|
3395 | answer = 2.0 * answer / Pi; //Form factor P(q) |
---|
3396 | |
---|
3397 | // Multiply by contrast^2 |
---|
3398 | answer *= delrho*delrho; |
---|
3399 | |
---|
3400 | //normalize by volume |
---|
3401 | answer *= vol; |
---|
3402 | |
---|
3403 | //convert to [cm-1] |
---|
3404 | answer *= 1.0e8; |
---|
3405 | |
---|
3406 | //Scale |
---|
3407 | answer *= scale; |
---|
3408 | |
---|
3409 | // add in the background |
---|
3410 | answer += bkg; |
---|
3411 | |
---|
3412 | return answer; |
---|
3413 | } |
---|
3414 | |
---|
3415 | |
---|
3416 | /* |
---|
3417 | * Hollow rectangular prism (a <= b <=c) with infinitely thin walls |
---|
3418 | * using eqn. (7-11) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) |
---|
3419 | */ |
---|
3420 | |
---|
3421 | double |
---|
3422 | RectangularHollowPrismInfThinWalls(double dp[], double q) |
---|
3423 | { |
---|
3424 | int i,j; |
---|
3425 | double scale,aa,bb,cc,delrho,bkg; |
---|
3426 | int nordi=76; |
---|
3427 | int nordj=76; |
---|
3428 | double Pi; |
---|
3429 | double sumi, sumj; |
---|
3430 | double v1a, v1b, v2a, v2b; //upper and lower integration limits |
---|
3431 | double answer; |
---|
3432 | double theta, phi, termAL_theta, termAT_theta, AL, AT, ahalf, bhalf, chalf, vol; |
---|
3433 | double sldp, sld ; |
---|
3434 | |
---|
3435 | Pi = 4.0*atan(1.0); |
---|
3436 | |
---|
3437 | scale = dp[0]; //make local copies in case memory moves |
---|
3438 | aa = dp[1]; |
---|
3439 | bb = aa * dp[2]; |
---|
3440 | cc = aa * dp[3]; |
---|
3441 | sldp = dp[4]; // scattering length density of the object |
---|
3442 | sld = dp[5]; // scattering length density of the solvent |
---|
3443 | delrho = sldp - sld; |
---|
3444 | bkg = dp[6]; |
---|
3445 | |
---|
3446 | ahalf = 0.5 * aa; |
---|
3447 | bhalf = 0.5 * bb; |
---|
3448 | chalf = 0.5 * cc; |
---|
3449 | |
---|
3450 | //Integration limits to use in Gaussian quadrature |
---|
3451 | v1a = 0.; |
---|
3452 | v1b = Pi/2; //theta integration limits |
---|
3453 | v2a = 0.; |
---|
3454 | v2b = Pi/2.; //phi integration limits |
---|
3455 | |
---|
3456 | sumi = 0.0; |
---|
3457 | for(i=0;i<nordi;i++) { |
---|
3458 | |
---|
3459 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
3460 | |
---|
3461 | // To check potential problems if denominator goes to zero here !!! |
---|
3462 | termAL_theta = 8.0*cos(q*chalf*cos(theta)) / (q*q*sin(theta)*sin(theta)); |
---|
3463 | termAT_theta = 8.0*sin(q*chalf*cos(theta)) / (q*q*sin(theta)*cos(theta)); |
---|
3464 | |
---|
3465 | sumj = 0.0; |
---|
3466 | for(j=0;j<nordj;j++) { |
---|
3467 | |
---|
3468 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
3469 | |
---|
3470 | // Amplitude AL from eqn. (7c) |
---|
3471 | AL = termAL_theta * sin(q*ahalf*sin(theta)*sin(phi)) * sin(q*bhalf*sin(theta)*cos(phi)) / (sin(phi)*cos(phi)); |
---|
3472 | |
---|
3473 | // Amplitude AT from eqn. (9) |
---|
3474 | AT = termAT_theta * ( (cos(q*ahalf*sin(theta)*sin(phi))*sin(q*bhalf*sin(theta)*cos(phi))/cos(phi)) + (cos(q*bhalf*sin(theta)*cos(phi))*sin(q*ahalf*sin(theta)*sin(phi))/sin(phi)) ); |
---|
3475 | |
---|
3476 | sumj += Gauss76Wt[j] * (AL+AT)*(AL+AT); |
---|
3477 | |
---|
3478 | } |
---|
3479 | |
---|
3480 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
3481 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
3482 | |
---|
3483 | } |
---|
3484 | |
---|
3485 | answer = (v1b-v1a)/2.0*sumi; |
---|
3486 | |
---|
3487 | // Normalize as in Eqn. (11). The factor 2 is due to the different theta integration limit (pi/2 instead of pi) |
---|
3488 | vol = 2.0*aa*bb+2.0*aa*cc+2.0*bb*cc; |
---|
3489 | answer = 2.0 * answer / Pi / vol / vol; |
---|
3490 | |
---|
3491 | // Multiply by contrast^2 |
---|
3492 | answer *= delrho*delrho; |
---|
3493 | |
---|
3494 | //normalize by volume |
---|
3495 | answer *= vol; |
---|
3496 | |
---|
3497 | //convert to [cm-1] |
---|
3498 | answer *= 1.0e8; |
---|
3499 | |
---|
3500 | //Scale |
---|
3501 | answer *= scale; |
---|
3502 | |
---|
3503 | // add in the background |
---|
3504 | answer += bkg; |
---|
3505 | |
---|
3506 | return answer; |
---|
3507 | } |
---|
3508 | |
---|
3509 | |
---|
3510 | /* |
---|
3511 | * Hollow rectangular prism (a <= b <=c) |
---|
3512 | * using eqn. (13-15) from Nayuk & Huber, Z. Phys. Chem. 226, 837 (2012) |
---|
3513 | */ |
---|
3514 | |
---|
3515 | double |
---|
3516 | RectangularHollowPrism(double dp[], double q) |
---|
3517 | { |
---|
3518 | int i, j; |
---|
3519 | double scale, aa, bb, cc, thickness, delrho, bkg; |
---|
3520 | int nordi=76; |
---|
3521 | int nordj=76; |
---|
3522 | double Pi; |
---|
3523 | double sumi, sumj; |
---|
3524 | double v1a, v1b, v2a, v2b; //upper and lower integration limits |
---|
3525 | double answer; |
---|
3526 | double theta, phi, arg, termA1, termB1, termC1, termA2, termB2, termC2, AP1, AP2, AP, ahalf, bhalf, chalf, vol; |
---|
3527 | double sldp, sld ; |
---|
3528 | |
---|
3529 | Pi = 4.0*atan(1.0); |
---|
3530 | |
---|
3531 | scale = dp[0]; |
---|
3532 | aa = dp[1]; |
---|
3533 | bb = aa * dp[2]; |
---|
3534 | cc = aa * dp[3]; |
---|
3535 | thickness = dp[4]; |
---|
3536 | sldp = dp[5]; // scattering length density of the object |
---|
3537 | sld = dp[6]; // scattering length density of the solvent |
---|
3538 | delrho = sldp - sld; |
---|
3539 | bkg = dp[7]; |
---|
3540 | |
---|
3541 | ahalf = 0.5 * aa; |
---|
3542 | bhalf = 0.5 * bb; |
---|
3543 | chalf = 0.5 * cc; |
---|
3544 | |
---|
3545 | //Integration limits to use in Gaussian quadrature |
---|
3546 | v1a = 0.; |
---|
3547 | v1b = Pi/2; //theta integration limits |
---|
3548 | v2a = 0.; |
---|
3549 | v2b = Pi/2.; //phi integration limits |
---|
3550 | |
---|
3551 | sumi = 0.0; |
---|
3552 | for(i=0;i<nordi;i++) { |
---|
3553 | |
---|
3554 | theta = ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b )/2.0; //z values for gaussian quadrature |
---|
3555 | |
---|
3556 | arg = q*chalf*cos(theta); |
---|
3557 | if (fabs(arg) > 1.e-16) {termC1 = sin(arg) / arg;} else {termC1 = 1.0;} |
---|
3558 | arg = q*(chalf-thickness)*cos(theta); |
---|
3559 | if (fabs(arg) > 1.e-16) {termC2 = sin(arg) / arg;} else {termC2 = 1.0;} |
---|
3560 | |
---|
3561 | sumj = 0.0; |
---|
3562 | for(j=0;j<nordj;j++) { |
---|
3563 | |
---|
3564 | phi = ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b )/2.0; //z values for gaussian quadrature |
---|
3565 | |
---|
3566 | // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 |
---|
3567 | |
---|
3568 | arg = q*ahalf*sin(theta)*sin(phi); |
---|
3569 | if (fabs(arg) > 1.e-16) {termA1 = sin(arg) / arg;} else {termA1 = 1.0;} |
---|
3570 | arg = q*(ahalf-thickness)*sin(theta)*sin(phi); |
---|
3571 | if (fabs(arg) > 1.e-16) {termA2 = sin(arg) / arg;} else {termA2 = 1.0;} |
---|
3572 | |
---|
3573 | arg = q*bhalf*sin(theta)*cos(phi); |
---|
3574 | if (fabs(arg) > 1.e-16) {termB1 = sin(arg) / arg;} else {termB1 = 1.0;} |
---|
3575 | arg = q*(bhalf-thickness)*sin(theta)*cos(phi); |
---|
3576 | if (fabs(arg) > 1.e-16) {termB2 = sin(arg) / arg;} else {termB2 = 1.0;} |
---|
3577 | |
---|
3578 | AP1 = (aa*bb*cc) * termA1 * termB1 * termC1; |
---|
3579 | AP2 = 8 * (ahalf-thickness) * (bhalf-thickness) * (chalf-thickness) * termA2 * termB2 * termC2; |
---|
3580 | AP = AP1 - AP2; |
---|
3581 | |
---|
3582 | sumj += Gauss76Wt[j] * (AP*AP); |
---|
3583 | |
---|
3584 | } |
---|
3585 | |
---|
3586 | sumj = (v2b-v2a) * sumj / 2.0; |
---|
3587 | sumi += Gauss76Wt[i] * sumj * sin(theta); |
---|
3588 | |
---|
3589 | } |
---|
3590 | |
---|
3591 | answer = (v1b-v1a)/2.0*sumi; |
---|
3592 | |
---|
3593 | // Normalize as in Eqn. (15). |
---|
3594 | // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) |
---|
3595 | vol = (aa*bb*cc-((aa-2*thickness)*(bb-2*thickness)*(cc-2*thickness))); |
---|
3596 | answer = 2.0 * answer / Pi / vol / vol; |
---|
3597 | |
---|
3598 | // Multiply by contrast^2 |
---|
3599 | answer *= delrho*delrho; |
---|
3600 | |
---|
3601 | //normalize by volume |
---|
3602 | answer *= vol; |
---|
3603 | |
---|
3604 | //convert to [cm-1] |
---|
3605 | answer *= 1.0e8; |
---|
3606 | |
---|
3607 | //Scale |
---|
3608 | answer *= scale; |
---|
3609 | |
---|
3610 | // add in the background |
---|
3611 | answer += bkg; |
---|
3612 | |
---|
3613 | return answer; |
---|
3614 | } |
---|
3615 | |
---|
3616 | |
---|